
A Systems Perspective on GPU Computing: A Tribute to
Karsten Schwan

Naila Farooqui
Georgia Institute of Technology

Atlanta, Georgia
naila@cc.gatech.edu

ABSTRACT
Over a distinguished career, Regents Professor Karsten Schwan
has made significant contributions across a diverse array
of topics in computer systems, including operating systems
for multi-core platforms, virtualization technologies, enter-
prise middleware, and high-performance computing. In this
paper, we summarize his legacy of key research contribu-
tions in general-purpose GPU computing. His vision encom-
passed the conceptualization, implementation, and demon-
stration of systems abstractions and runtime methods to ele-
vate GPUs into first-class citizens in today’s and future het-
erogeneous computing environments. To this end, his contri-
butions include novel scheduling and resource management
abstractions, runtime specialization, and novel data man-
agement techniques to support scalable, distributed GPU
frameworks.

CCS Concepts
•Computer systems organization → Single instruc-
tion, multiple data; Heterogeneous (hybrid) systems;

Keywords
GPU; High-Performance Computing; Scheduling; Virtual-
ization; Resource Management; Dynamic Instrumentation

1. INTRODUCTION
GPUs have become pervasive in today’s computing sys-

tems, due to their ability to provide significant gains in
both performance and energy use for a wide variety of ap-
plications, coupled with recent improvements in their pro-
grammability. General-purpose GPUs can enable high through-
put in several application domains, including data-intensive
scientific applications [5], physical simulations [26], financial
applications [29], and big-data applications [38, 31]. This
has given rise to extensive work in high-level programming
frameworks [9, 31, 7, 30, 22, 6] that insulate the programmer
from the GPU’s low-level architectural complexities. Such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

GPGPU-9, March 12-16, 2016, Barcelona, Spain
c© 2016 ACM. ISBN 978-1-4503-4195-0/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2884045.2884057

frameworks have improved programmer productivity and
enabled rapid adoption of GPU-based systems to a large
number of application domains. However, there remain a
number of challenges in realizing the performance and pro-
ductivity potential of GPU-based systems.

In spite of the tremendous performance increases pro-
vided by GPUs, operating systems and virtualization plat-
forms have traditionally lagged behind in adopting GPUs as
first-class schedulable entities. This has been in part due
to closed-source, vendor-specific driver support in GPUs,
which hide low-level details from operating systems and hy-
pervisors. As a result, GPUs have generally been treated
as secondary devices, with restricted facilities for scheduling
and resource management. A driver-based execution model
not only inhibits coordinated use of heterogeneous compute
units often desired by today’s enterprise workloads, but also
fails to provide strong fairness and isolation guarantees in
multi-tenant environments.

Manifesting performance improvements for individual ap-
plications on GPUs also remains effort intensive due to the
combination of GPU’s specialized architectural features, such
as memory hierarchies, caches, and thread geometries, and
today’s increasingly complex applications. It is well-known
that GPU hardware is designed to explicitly take advantage
of regularity, characterized by workloads with minimal syn-
chronization, high compute intensity, and predictable data-
access and control-flow patterns. However, such pronounced
regularity is not the common case for many of today’s ap-
plications, which fundamentally rely on unstructured and
irregular data and control-flow access patterns. GPU accel-
eration has proven profitable for irregular applications [8, 24,
35, 37], but typically requires the programmer to implement
and compare multiple code versions that exercise different
combinations of the GPU’s architectural features. Moreover,
the efficacy of such optimizations are highly data-dependent
for irregular applications.

Furthermore, since GPUs are bandwidth limited and may
have limited memory capacities (as in the case of discrete
GPUs), their efficacy in distributed environments depends
on novel runtime support for data transfer and management
in the presence of potentially dynamic and irregular access
patterns. Other useful systems abstractions for accelerator-
based environments, such as providing checkpointing mech-
anisms in high-performance computing (HPC) systems, also
depend on reducing this bandwidth impact.

Professor Schwan, one of the most prolific researchers of
our time, has made numerous contributions in computer sys-
tems, in topics ranging from operating systems for many-

core platforms, to enterprise middleware, to high-performance
and parallel computing. Some of his recent work on GPUs
addressed many of the challenges articulated above. Specif-
ically, his vision advocated novel systems abstractions and
runtime methods to elevate GPUs to first-class citizens in
today’s computing environments. Through his students and
colleagues, he influenced the landscape of GPU computing
with his articulation of key systems challenges, deep insights
into performance bottlenecks, and perspectives on creative
solution approaches. In this paper, we summarize some of
Professor Schwan’s main contributions in GPU computing,
as a tribute to his research legacy.

His key contributions in GPU computing include:

• Virtualization and resource management support to
fairly and efficiently share GPUs in multi-tenant cloud
and HPC environments.

• Runtime specialization, using instrumentation-driven
and profile-guided methods, to achieve performance
scaling of data-intensive applications across emerging
heterogeneous GPU processors.

• Novel data transfer and management techniques to
achieve high system throughput and fairness in dis-
tributed GPU environments, as well as enable novel
systems software abstractions, such as accelerator-based
checkpointing in HPC systems.

The rest of the paper is organized as follows. Section 2
summarizes virtualization and resource management sup-
port proposed for GPU-based systems to enable fairness and
efficiency. Section 3 surveys runtime specialization methods
for heterogeneous GPU platforms, followed with Section 4,
which provides an overview of novel data management tech-
niques to support distributed GPU runtimes. Section 5 dis-
cusses future directions, and Section 6 provides concluding
remarks.

2. VIRTUALIZATION AND RESOURCE
MANAGEMENT

While GPUs have made their mark in both high-performance
and cloud environments, the inability to manage GPUs di-
rectly has relegated them to second-class citizens in most
computing environments. GPU vendors shield operating
systems and runtimes from directly impacting GPU schedul-
ing and resource management policies by hiding such de-
tails behind drivers that only expose higher-level applica-
tion APIs [28, 36]. In light of these limitations, the general
approach for impacting GPU scheduling and resource man-
agement has been to provide a middle runtime layer that
sits between the applications and operating systems, which
can interpose the application APIs to provide underlying
scheduling and resource management abstractions. While
such methods are unable to directly modify or influence
the GPU’s hardware-based, thread-level scheduling, they are
still able to provide important systems guarantees for cloud
and HPC environments, such as high throughput, fairness,
and/or utilization.

Much of Professor Schwan’s research in this space uses in-
terposition as a basis for providing important systems guar-
antees for GPU-based computing environments. Key contri-
butions of his research, therefore, include novel scheduling

Privileged Software (Physical
Resource Manager)

VM3 VM1 VM2

Guest VM Execution Units

aVCPU3.0 aVCPU1.1

Guest VM Execution Units

VCPU1.0 VCPU2.0

Privileged Software (Physical
Resource Manager)

Accelerator
Scheduler(s)

Federated Schedulers
CPU

Scheduler(s)

Heterogeneous Many-core Platform (Resource Pool)

General Purpose CoresAccelerator(s)

Interconnect
(P

C
Ie/S

hared
M

em
ory/…

)

C1 C2C
acheC3 C4

Acc2
(Network)

Acc1
(Compute)

More
Cores ...

More Accelerators ...

Figure 1: Logical view of the Pegasus system

and resource management methods that achieve important
systems goals for both cloud and HPC environments, by el-
evating GPUs to first-class schedulable entities, in spite of
the limitations of current GPU execution models.

2.1 Coordinated Scheduling for Virtualized
GPU Systems

As noted earlier, operating systems and hypervisors have
lagged behind in adopting GPUs as first-class citizens in het-
erogeneous computing environments. The Pegasus [16] sys-
tem is the first of its kind to advocate uniform resource us-
age models for all cores on heterogeneous chip multiproces-
sors, including accelerators such as GPUs. It smartly man-
ages GPUs by leveraging virtualization technology in cloud
computing and high performance infrastructures. Specifi-
cally, the Pegasus hypervisor extensions make accelerators
into first-class schedulable entities, which can be shared by
multiple tasks. Task mappings to processors are also dy-
namic, within the constraints imposed by the accelerator
software stacks. Second, Pegasus exposes heterogeneity, in
terms of different GPU and CPU capabilities, to the ap-
plications and guest virtual machines that are capable of
exploiting such heterogeneity. Finally, Pegasus advocates
coordination as the basis for resource management, provid-
ing novel scheduling methods to align accelerator resource
usage with platform-level management. In order to achieve
this, Pegasus schedulers operate above the underlying native
schedulers so as to influence the actions of the underlying
schedulers rather than to replace them. In this way, the Pe-
gasus system allows for sophisticated and diverse scheduling
methods that underlying resources may require, while en-
abling the preservation of virtual platform properties, such
as fair-sharing and prioritization.

Figure 1 presents the logical view of the Pegasus architec-
ture. In this view, general-purpose and accelerator tasks are
schedulable entities mapped to virtual CPUS (VCPUs) char-
acterized as general purpose or as ‘accelerator.’ Since both
sets of processors can be scheduled independently, platform-
wide scheduling requires Pegasus to federate the platform’s
general purpose and accelerator schedulers. Federation is

GPU Scheduler

GPU_0

 WA WB WC

CPU0 CPU1

CPU2 CPU3

 NodeN

…

CPU

eN

Feedback

 gPool

ck

GPU Affinity Mapper/ Load Balancer GPU Affinity M er/ Load Balancer appe

Device Selection call

er GPU

F

ppppppeppe

(1)
(0)

(N)

- -

gMap

Interposer Library

GPGPU Request

Node0 Node1

Device Se

CPU0 CPU1

CPU2 CPU3

- -

gMap

Interposer Library

tion callca

CPU0 CPU1

CPU2 CPU3

- -

gMap

Interposer Library

Emulated
GPGPU Server

App2

Context
Packer

Context
Packer

GPU Scheduler GPU Scheduler

P l

GPU_1 GPU_N

Context
Packer

TenantC TenantB TenantA

App1 App3 App1 App2 App3

C

App1 App2 App3

…

Figure 2: Strings Architecture

implemented by coordination methods that provide serviced
virtual machines with shares of physical processors based on
one of the diverse set of scheduling policies provided by the
Pegasus system.

Schedulers in the Pegasus system use coordination to pro-
vide fairness in resource sharing, such as augmented credit-
based and feedback-based proportional fair-share schemes.
The performance benefits from the Pegasus system are im-
pressive: with minimal virtualization and scheduling over-
heads, it achieves from 18-140% performance improvements
over base GPU driver scheduling while respecting fairness,
when the GPUs are shared.

2.2 Multi-Tenant Scheduling for GPU Cloud
Workloads

Cloud and service infrastructures, such as Amazon ECC [1],
Nimbix [2], and Peerl Hosting [3], use GPUs routinely to
service computationally intensive client workloads for a va-
riety of application domains, ranging from online gaming
and multimedia services, to data-mining and search. How-
ever, the current model of static GPU provisioning in cloud
infrastructures, where applications explicitly select GPU de-
vices to run on, limits the efficiency of GPUs in such en-
vironments. In particular, static GPU assignments inhibit
concurrency for varying workloads: certain services heav-
ily utilize their GPUs during peak demands while other
services’ GPUs are idle or underutilized. The Strings [33]
scheduler improves system throughput and fairness for such
GPU-based cloud applications by adopting a multi-tenant

model in which GPUs are treated as first-class schedulable
entities. This is achieved by interposing device selection calls
made by applications and transferring control to a two-level
Strings scheduler. At the higher level, the Strings scheduler
balances workloads across multiple GPUs on each platform.
At the second-level, the scheduler reduces core idling via
multi-tenancy, using CUDA streams support to pack differ-
ent application contexts into a single protection domain and
thereby enabling cross-application space-shared use of GPU
resources, as well as judicious overlap of GPU execution with
host-GPU data movements.

The Strings architecture is presented in Figure 2. The
interposed device selection calls are forwarded to the top-
level scheduler, GPU Affinity Mapper, which in turn makes
a GPU selection for the application based on a combination
of static (device capabilities) and dynamic (GPU load, appli-
cation type, feedback from lower scheduling layer) informa-
tion. The GPU Affinity Mapper is also responsible for the
cluster-wide aggregation of GPUs. After workload balanc-
ing, the Context Packer packs multiple applications’ GPU
components that share a GPU, on the fly, into a single GPU
context. Finally, the lower-layer scheduler, GPU Scheduler,
addresses inter-application interference arising from multi-
tenancy. It prioritizes and dispatches GPU requests to phys-
ical GPUs in order to meet system-wide policies, such as
throughput and fairness. It also monitors applications’ de-
vice usage and sends feedback to the GPU Affinity Mapper.
The Strings GPU Scheduler implements a rich set of schedul-
ing policies, achieving two cloud-centric goals: fairness for
multiple tenants, coupled with high overall system through-
put. With its scheduling methods, Strings achieves improve-
ments in system throughput and fairness of up to 8.7× and
13%, respectively, compared to the baseline NVIDIA CUDA
runtime.

2.3 Resource Management for GPU-based
HPC Systems

High-performance computing systems are becoming in-
creasingly heterogeneous, incorporating combinations of many-
core processors, non-uniform memory and accelerators like
GPUs. Further, variations in heterogeneity among HPC
systems are significant, consisting of different configurations
of general-purpose and accelerator cores, interconnect net-
works, and memory systems. Such diversity in heterogeneity
makes the management of current and future HPC systems
complex, for both application frameworks and systems soft-
ware. Not only must applications incorporate a variety of
distinct programming models, but also address data parti-
tioning and movement challenges based on the physical con-
figuration of the underlying HPC machine. The Slices [25]
runtime posits that heterogeneous cluster hardware should
be presented to applications as dynamic ‘slices’ based on the
application’s needs and runtime characteristics. Slices pro-
vides an application with exactly the resources it needs via
a portion of the cluster’s resources (general- purpose cores,
accelerator cores, and memory) – called a ‘GPU Assembly’
– where slice allocations are made at sub-node granularity
instead of static application-node assignments. In this way,
Slices can provide distinct resource-to-application mappings,
based on the application’s runtime properties. For example,
Figure 3 illustrates three alternative mappings for an as-
sembly configured with two virtual GPUs and two general-
purpose cores. The first mapping uses local GPUs for a

CUDA
Application

Assembly

vGPU 0

vGPU 1

CPU 0

CPU 1

P
ossible P

hysical M
appings

Cluster of nodes connected by a
high-performance interconnect

Node 0 CPU 0

CPU 1

CPU 2

GPU 0

GPU 1

Node 1 CPU 0

CPU 1

CPU 2

GPU 0

GPU 1

Node 1 CPU 0

CPU 1*

CPU 2*

GPU 0

GPU 1

Node 0 CPU 0

CPU 1

CPU 2

GPU 0

GPU 1

Node 1 CPU 0

CPU 1

CPU 2*

GPU 0

GPU 1

Node 0 CPU 0

CPU 1

CPU 2

GPU 0

GPU 1

HPC application
executing on node 0

Latency-sensitive;
local resource
availability.

Low sensitivity to
latency; remote
resource availability;
growth.

Dynamic mapping
based on resource
monitoring; inputs
from workload
characteristics.

Criteria Influencing
Slice Mapping

*Collateral CPUs needed.

Figure 3: Example assembly mappings to slices provided by
the cluster Slices runtime, considering various constraints.

latency-sensitive application; the second uses remote GPUs
to accommodate throughput-oriented applications in the sit-
uation where local resources are unavailable; and a third
mapping uses resources from more than one node to improve
overall system utilization.

Cluster hardware slicing is realized with a distributed run-
time that includes a distributed collection of stateful, persis-
tent daemon processes with each node hosting one instance.
The daemon processes maintain monitoring information and
service assembly requests form applications, with a master
process designated for responding to such requests. Simi-
lar to the Pegasus and Strings model, Slices also interposes
application APIs to enable transparent access and use of
local or remote assembly GPUs. To achieve intelligent map-
pings, Slices runtime leverages application profiles, obtained
offline, which describe an application’s GPU usage patterns
and characterizes its sensitivities to changes in GPU locality
and host-GPU interactions, including data movements and
computation-communication dependencies.

3. RUNTIME SPECIALIZATION
While heterogeneous GPU platforms can improve perfor-

mance over traditional multi-core CPU platforms for a vari-
ety of data-intensive applications, efficiently leveraging the
distinct compute capabilities of the heterogeneous resources
presents important challenges. First, the distinct execution
models inherent in the heterogeneous devices present on such
platforms drives the need to dynamically match workload
characteristics to the underlying resources. Second, the com-
plex architecture and programming models of heterogeneous
GPU systems require substantial application knowledge and
effort-intensive program tuning to achieve high performance.
These challenges make a case for runtime specialization.
In this context, runtime specialization is defined as using
online methods to match dynamic workload characteristics
to underlying resources, in order to drive greater efficiency.

Professor Schwan’s research posits that runtime special-
ization can achieve high performance and platform through-
put without the need for manual intervention for applica-
tion profiling and/or tuning, for diverse data-intensive ap-
plications on heterogeneous CPU-GPU platforms. In this
direction, his research contributes a dynamic instrumenta-
tion framework that provides real-time insights into appli-
cation behavior seamlessly, transparently, and efficiently for
GPU-based platforms. Online instrumentation and profiling
methods are subsequently used to (a) drive better resource
management, and (b) perform profile-guided optimizations
to improve both platform throughput and individual appli-

cation performance.

3.1 Dynamic GPU Instrumentation
Lynx [12] is a dynamic instrumentation engine for data-

parallel applications on GPU-based architectures. Lynx pro-
vides the necessary real-time introspection capabilities into
an application’s runtime behavior to support dynamic, on-
line methods for resource management and optimizations.
Specifically, it provides an extensible set of C-based lan-
guage constructs to build customizable program analysis
tools that target the data-parallel programming paradigm
used in GPUs. Furthermore, it uses a just-in-time (JIT)
compiler to translate, insert and optimize instrumentation
code at the intermediate representation (IR) layer. In an
nutshell, Lynx provides the capability to write instrumenta-
tion routines that are (1) selective, instrumenting only what
is needed, (2) transparent, without changes to the applica-
tions’ source code, (3) customizable, and (4) efficient.
Lynx also provides portability by enabling support across

several processor back-ends, including various GPU vendors
(e.g. NVIDIA, AMD [14], Intel) as well as across discrete
and integrated GPU platforms. Lynx’s highly modular de-
sign makes it amicable to extending support to different in-
termediate representations (IRs) and GPU runtimes (e.g.
OpenCL and CUDA). In its current implementation, Lynx
includes runtime support for both OpenCL and CUDA, and
instrumentation support for NVIDIA’s Parallel Thread eX-
ecution (PTX) [27], AMD’s Intermediate Language (IL) [4],
and LLVM [20] intermediate representations (IRs).

Figure 4 illustrates Lynx’s execution/run-time flow in the
context of CUDA applications. CUDA applications com-
piled by nvcc are converted into C++ programs, with PTX
kernels embedded as string literals. When such a program
links with our framework, the CUDA Runtime API func-
tion,
cudaRegisterFatBinary, parses these PTX kernels into an
internal representation. The original PTX kernel is pro-
vided as input to the IR-IR Transformation Pass Manager,
together with the instrumentation PTX generated from the
C code specification via the COD JIT Compiler and the C-
to-PTX Translator. The Pass Manager applies a sequence
of PTX kernel transformations to the original PTX kernel.
A detailed discussion of the Pass Manager and PTX trans-
formation passes can be found in the following work [11].

A specific pass, C-to-PTX Instrumentation Pass, is imple-
mented as part of the Lynx framework to insert the gener-
ated PTX into the original PTX kernel, according to Lynx’s
language specification. The final output, the instrumented
kernel, is prepared for native execution on the selected de-
vice by the PTX Translator/Code Generator.

Since GPU Lynx implements the CUDA Runtime API
as well, it enables the insertion of hooks into the runtime
system for managing resources and data structures needed
to support instrumentation. The Lynx framework utilizes
this capability via the Instrumentor component. Its gen-
eral approach for managing instrumentation-related data for
discrete GPUs is to allocate memory on the device, popu-
late the instrumentation-related data structures during ker-
nel execution, and then move the data back to the host,
freeing up allocated resources on the device. For integrated
GPUs, memory is allocated across shared CPU-GPU buffers,
eliminating the need for costly transfers for instrumentation-
related data structures.

ON_KERNEL_ENTRY: {
syncThreads();
start = clockCounter();

}
ON_BASIC_BLOCK_ENTRY: { …. }
ON_KERNEL_EXIT: { …. }

C Instrumentation Specification

C JIT Compiler
C-IR Translator

IR-IR
Transformation
Pass Manager

CUDA RUNTIME

I
R

P
A
R
S
E
R

G
P
U

B
A
C
K
E
N
D

CUDA
PROGRAM

ON_KERNEL_ENTRY:
bar_sync 0
mov.u64 %r0, clock64

ON_BASIC_BLOCK_ENTRY: …

ON_KERNEL_EXIT: …
BB1: add.s64 %rd2, %rd1

….
@%p1 bra BB3

BB2: …

BB3: …

BB1: enterKernel()
enterBasicBlock()

BB2: enterBasicBlock()

BB3: enterBasicBlock()
exitKernel()

cudaRegisterFatBinary cudaLaunch

Original PTX Kernel
Instrumented PTX Kernel

Instrumentation PTX

Figure 4: Lynx Dynamic Instrumentation System

3.2 Profile-Driven Dynamic GPU
Optimization Framework

Leo [13] is a profile-driven, dynamic optimization frame-
work for GPU applications, which leverages Lynx to drive
GPU-specific code optimizations, specifically data layout op-
timizations. While GPUs enable order-of-magnitude perfor-
mance increases in many data-parallel application domains,
writing efficient codes that can actually manifest those in-
creases is a non-trivial endeavor, typically requiring devel-
opers to exercise specialized architectural features exposed
directly in the programming model. Achieving good perfor-
mance on GPUs involves effort-intensive tuning. Leo aims to
automate much of this effort using dynamic instrumentation
to inform dynamic, profile-driven optimizations.

As a dynamic optimization framework, Leo orchestrates
the identification and selection of the optimal code and data
layout transformation during the application’s execution. It
consists of the following two main components: a compila-
tion engine that generates GPU kernel code and data layout
on-the-fly from higher-level language source code, and a JIT-
based profiling engine that leverages Lynx to enable dynamic
instrumentation and profiling of GPU code at runtime.

From an application’s perspective, Leo leverages Dande-
lion [31] to run LINQ applications on GPU. The Dandelion
system enables the execution of Language-Integrated Query
(LINQ) on GPUs. LINQ introduces a set of declarative op-
erators, which perform transformations on .NET data collec-
tions. LINQ applications are computations formed by com-
posing these operators. Most LINQ operators are common
relational algebra operators, including projection (Select),
filters (Where), grouping (GroupBy), aggregation (Aggre-
gate) and join (Join). The Dandelion compiler automati-
cally compiles a LINQ query into a data-flow graph and any
user-defined .NET code into GPU kernels. The Dandelion
runtime automatically manages the execution of the data-
flow graph on GPUs and the data transfer between CPU

and GPU.
The Leo runtime orchestrates the identification and se-

lection of the optimal code transformations and data lay-
outs for GPU kernels. The computation model supported
is based on streaming, i.e., the input is divided into chunks
and chunks are transferred to GPU concurrently with the
GPU execution. This model enables Leo to make optimiza-
tion decisions based on the execution of preceding chunks.
Leo runs the Lynx instrumented code for the first chunk to
determine possible candidate kernels for optimization. This
allows Leo to generate the optimized version of the code
with the necessary code and data layout transformations.
The system then runs the second and third chunks with and
without the optimizations respectively, and compares the
total elapsed running times to determine which version of
the code to use for the subsequent chunks. This profiling
is repeated at continuous intervals to detect time-varying
runtime behaviors and relevant application phase changes.

Figure 5 presents a high-level overview of the design of
the Leo framework, depicting the general steps the runtime
takes in order to apply profile-driven optimizations to LINQ
applications.

3.3 Affinity-Aware Work-Stealing for
Integrated CPU-GPU Processors

Recent hardware advances in integrated CPU-GPU pro-
cessors have made possible more effective, finer-grain models
of combined CPU-GPU computation. Specifically, today’s
integrated processors, such as Intel’s Broadwell and Sky-
lake, and AMD’s Kaveri and Carrizo systems, offer hard-
ware CPU-GPU shared virtual memory (SVM), memory co-
herency, and atomic operations. Such hardware support is
an effective basis for realizing GPU-capable fine-grain work-
stealing schedulers operating across both sets of cores.

While work-stealing has been extensively optimized on
multi-core systems [15, 17], little work has been done on

LINQ
Application

1) Generate (or
retrieve) GPU kernel
code and data layout

2) Perform info flow
analysis and instrument
GPU kernels4) Extract profiling

results, identifying
candidate data structures
for optimization

3) Execute (and
measure) GPU kernels

Compilation
Cache

5) Apply data layout
optimization to
candidate data structures

GPU Machine

A B

C

D

Figure 5: High-Level overview of the Leo framework

CPU GPU

…

CPU GPU

…

Figure 6: CPU-GPU classical work-stealing (left) and
Libra’s affinity-aware work-stealing that uses hierarchical
stealing(right)

integrated CPU-GPU processors. Efficient work-stealing on
integrated CPU-GPU processors is challenging: CPUs and
GPUs typically operate at different clock frequencies and
have different core configurations and memory hierarchies,
making their performance differ by an order of magnitude
or more. These differences also result in a huge disparity
in their stealing costs, leading to workload imbalance when
both devices’ worker threads contend to obtain work. As
a result, while classical work-stealing enables seamless and
dynamic work distribution across compute units in the pres-
ence of load imbalance, it does not always work well with
such a large gap in performance and stealing costs.

Libra [10] is the first implementation of a fully-integrated,
affinity-aware CPU-GPU work-stealing scheduler for inte-
grated processors with hardware SVM support, which ad-
vocates runtime specialization methods, such as lightweight
online profiling for workload characterization, to improve
upon classical work-stealing algorithms. Specifically, Libra’s
online profiling determines an application’s bias to a partic-
ular device and optimizes initial work placement. However,
on biased workloads, worker threads on the unbiased device
may still steal too much work from the other device, due to
the significant stealing cost disparity between the two de-
vices, coupled with the application-agnostic nature of steal-
ing. To address this, Libra introduces hierarchical stealing:
worker threads on each device first steal only from deques on
the same device. Only when all deques on its own device are
empty is a worker thread allowed to steal from the other de-
vice’s deques. In other words, hierarchical stealing supports
an application’s affinity to a particular device. Figure 6 de-
picts how affinity-aware work-stealing differs from classical
work-stealing, when worker threads contend for chunks of
work.

4. DATA TRANSFER AND MANAGEMENT
Many cloud and HPC environments employ discrete GPUs

due to the unparalleled performance offered by such devices.
While vendors like Intel and AMD have made substantial
improvements to their integrated GPU counter-parts, dis-
crete GPUs still have a significant edge on performance, not
only because they are computationally more powerful but
also because they have their own dedicated high-speed mem-
ory, unlike integrated GPUs, which share both the system
memory and the data-bus with the CPU. In spite of these
advantages, discrete GPU environments present data trans-
fer and management challenges, in particular for today’s in-
creasingly complex and large-scale applications, which can
benefit from a mix of CPU and GPU computation. Since
data must be resident in GPU memory for computation,
additional data transfers are needed between the CPU and
GPU to leverage the GPU’s computational power. Discrete
GPUs also have limited memory capacities, as compared to
the system host memory, which inhibits large-scale data pro-
cessing. Finally, providing useful systems abstractions, such
as checkpointing in HPC-based environments, are inhibited
due to bandwidth concerns arising from large data transfers.

Professor Schwan’s research advocates novel data trans-
fer and management techniques to address these concerns.
These techniques include overlapping computation with com-
munication using both asynchronous data transfer support
and advanced hardware features in today’s NVIDIA GPUs,
as well as mechanisms to identify and eliminate redundant
data copying altogether.

4.1 Large-Scale Graph Processing on
Discrete GPU Systems

Due to the massive parallelism offered by GPUs, they are
being used heavily for real-world graph analytics. However,
efficiently processing large-scale graphs on discrete GPU sys-
tems is challenging due to the inherent irregularity of graph
algorithms and limitations in discrete GPU-resident memory
for storing large graphs. Previous work on graph processing
has sought out scale-out approaches, by distributing graph
data across different computational nodes. The GraphRe-
duce [34] framework recognizes the low computation to com-
munication ratios of typical graph algorithms, and instead
advocates a ‘scale up’ approach in which large graphs pro-
cessed by memory-limited, discrete GPUs can take advan-
tage of potentially significantly larger memory capacities of
their host machines. This is achieved by novel data man-
agement and transfer techniques. Large-scale graphs are
run efficiently by partitioning graphs into fixed-sized chunks,
called shards, which are moved asynchronously between the
GPU and the host. Additionally, GraphReduce overlaps
GPU computation with data transfer via NVIDIA CUDA
streams support, and uses ‘spray’ operations to divide shards
to obtain fine-grain parallelism that exploits the Hyper-Q
feature of Kepler GPUs. Spray operations are used to fur-
ther divide each shard into multiple sub-buffers, which can
be transferred over dynamically created CUDA streams.

The architecture of the GraphReduce framework, presented
in Figure 7, has three main components: Partition Engine,
Data Movement Engine, and Compute Engine. The Parti-
tion Engine is responsible for load-balanced shard creation,
and providing graph partitioning logics and associated or-
derings of vertices/edges. The Data Movement Engine ac-
celerates data movement via asynchronous memory-copy op-

1. UserGather() {…}
2. UserApply() {…}
3. UserScatter() {…}
4. VertexDataType
5. EdgeDataType

…
….

Partition Engine Data Movement
Engine Compute Engine

GPU
5

1

2

4 6

2

555

11

44

3

1.8 7.5

- 0.4

- 0.9

0

6

0
 Graph

….….….

1. UserGather() {…}
2. UserApply() {…}
3. UserScatter() {…}
4. VertexDataType
5. EdgeDataType

…

UserInfoTuple

Partitioned
Graph

Shard
Synchronization

Data Compute

 Input Graph
Figure 7: GraphReduce Architecture

erations for concurrent GPU kernel execution, and the Com-
pute Engine is responsible for in-memory computation, which
includes parallelizing computation with data movement, as
well as sending feedback to the Data Movement Engine about
the computation frontier used in subsequent iterations. Ex-
perimental evaluation demonstrate significant speedups, up
to 79× and 21×, and an average of 13.4× and 5× over com-
peting CPU-based methods implemented in GraphChi [19]
and X-Stream [32], respectively. GraphReduce performance
is also comparable to existing in-memory GPU frameworks,
like MapGraph and CuSha, for smaller input graphs (i.e.
those that fit in GPU-resident memory).

4.2 Efficient Checkpointing for GPU-based
HPC Systems

As noted earlier, current HPC systems increasingly em-
ploy discrete GPUs. While it is well-known that GPUs pro-
vide substantial speedups for HPC applications, their failure
rates are also at least 10× higher than CPUs on HPC ma-
chines. This makes it increasingly important for GPUs to
have robust restart and checkpointing mechanisms. How-
ever, a key issue with providing checkpointing mechanisms
for discrete GPUs is the lack of direct I/O access and band-
width PCIe bandwidth limitations. Without direct I/O ac-
cess, GPU-resident data has to first be moved to CPU-
accessible DRAM and finally to a nonvolatile (NV) stor-
age. With increasing device memory capacities and applica-
tion footprints, data movement overheads can be substan-
tial, with potential bottlenecks arising at both the GDRAM-
DRAM-PCI interface and the interface to NV storage. Both
of these scenarios are depicted in Figure 8.

To address limited data transfer bandwidth concerns, Het-
eroCheckpoint [18] provides efficient checkpointing methods
to improve fault tolerance for GPU-based HPC machines.
Specifically, HeteroCheckpoint contributes chunk-level data
pre-copy and techniques to eliminate redundant data using
data chunk prediction and checksums. With data pre-copy,
chunks that are not always modified across kernels are iden-
tified and are pre-copied before a synchronous checkpoint
is started, in parallel with computation. This reduces the
total data movement needed at the time of a checkpoint, re-
ducing the impact on bandwidth limits. Employing check-
sums to identify and avoid read-only chunks further avoids
unnecessary copying. However, incremental data modifica-
tions are not easy to capture on GPUs due to absence of

DRAM GDRAM PCM

SSD

GPU Chckpt

2 GB/sec

CPU Chckpt

.15 -.2 GB/sec

PCM

Figure 8: GPU-based checkpoint design

virtual memory page protection or page level dirty tracking
techniques. HeteroCheckpoint, therefore, delegates check-
sum calculation to the CPU in its current implementation,
but advocates a dynamic instrumentation-driven approach
to maintain information about dirty variables and eliminate
the need for checksums altogether.

5. FUTURE DIRECTIONS
An important future direction in Professor Karsten Schwan’s

research is in leveraging the power of runtime specialization
to provide finer-grained sharing and resource management
for GPU-based environments. For example, the Lynx dy-
namic instrumentation framework provides significant op-
portunities for incorporating a variety of GPU systems ab-
stractions seamlessly and transparently. While GPUs have
become primary processing engines in server and cloud com-
puting environments, cloud providers are still not able to
provide fine-grained GPU sharing to end-users, even though
such sharing is possible for CPUs. Previous work, including
Pegasus, has attempted to address shared GPU compute us-
age in different ways [16, 23], but has not been as effective in
enforcing fine-grained service-level objectives (SLOs) due to
limited control over closed-vendor, hardware thread schedul-
ing in today’s GPUs. GPU dynamic instrumentation can en-
able software mechanisms for even finer-grained GPU time-
sharing, by incorporating yielding mechanisms at smaller
execution granularities (such as thread-block level, versus
kernel-level). Similarly, software-based check-pointing mech-
anisms for GPU-based platforms can also benefit from dy-
namic instrumentation to provide transparency (i.e. not re-

quiring source code modifications and therefore can work
with application binaries) and portability (i.e. can target
multiple GPU back-ends). Finally, in applications where
precision and correctness is a necessity, dynamic instrumen-
tation can be utilized to provide additional software abstrac-
tions for reliable operation [21].

Additionally, energy efficiency is now a top design goal for
all GPU-based systems, from fitness trackers and tablets,
where it affects battery life, to cloud computing centers,
where it directly impacts operational cost, maintainability,
and environmental impact. Much of Professor Schwan’s
current work on GPUs has focused on improving platform
throughput and application performance, and therefore a
natural extension to his work in this space is to explore
energy-aware heuristics.

Finally, while the key ideas discussed in this paper fo-
cus on GPU-based systems, they can be applied to parallel
multi-core and asymmetric architectures in general. The ex-
plicit parallel model of execution advocated by parallel ar-
chitectures provide complimentary computational character-
istics to the implicitly parallel CPU-based execution model.
To enable today’s increasingly complex applications to run
efficiently and leverage the power of all of the computa-
tional resources in today’s heterogeneous environments, in-
telligent systems support and runtime specialization are crit-
ical components. Future cloud computing infrastructures,
which will consist of increasingly heterogeneous resources,
will certainly benefit from purposefully including mixes of
different platforms specialized for different classes of appli-
cations, and providing systems abstractions for managing all
such resources intelligently.

6. CONCLUSION
Professor Schwan’s research with respect to GPU com-

puting advocates novel resource management, systems and
runtime support for both cloud and HPC infrastructures.
His research demonstrates that runtime specialization and
novel data management schemes can drive greater efficiency
for today’s increasingly complex and irregular data-intensive
applications, while novel scheduling methods can provide
important systems guarantees such as fairness and through-
put.

It is important to note that Professor Schwan’s contri-
butions in this space are only a small constituent of his
extremely illustrious research portfolio. Over his career,
he has conducted research in real-time and distributed sys-
tems, high-performance, parallel and heterogeneous comput-
ing, virtualization technologies, enterprise middleware for
cloud and data-center systems, and edge cloud/mobile-cloud
systems. Professor Schwan, who had joined Georgia Tech’s
College of Computing in 1988, has left behind more than
70 active Ph.D. students, nine active research projects, 26
software systems, and a legacy of 276 published writings in
books, journals, and conference proceedings.

In addition to being an active and leading figure in com-
puting, Professor Karsten Schwan was also an extremely
compassionate advisor. He not only ensured that his stu-
dents achieve success during their time at Georgia Tech, but
actively supported them throughout their academic and in-
dustry careers. To his students, Professor Schwan was more
than an advisor and mentor; he was a family member, who
went through the ups and downs of their lives with them. He
will be deeply missed by his students, peers, collaborators,

and the larger computing community.

Acknowledgments
We would like to thank Professor Sudhakar Yalamanchili,
Ada Gavrilovska, Vishakha Gupta, Sudarsun Kannan, Alexan-
der Merritt, and Dipanjan Sengupta for their feedback and
assistance with the paper.

7. REFERENCES
[1] Amazon ec2 gpu cluster. http://aws.amazon.com/

about-aws/whats-new/2010/11/15/
announcing-cluster-gpu-instances-for-amazon-ec2/.

[2] Nimbix.
http://www.nimbix.net/cloud-supercomputing/.

[3] Peerl hosting.
http://www.peer1hosting.co.uk/hosting/gpu-servers.

[4] AMD. AMD Intermediate Language (IL), 2.4 ed.
AMD, October 2011.

[5] Anderson, J. A., Lorenz, C. D., and Travesset,

A. General purpose molecular dynamics simulations
fully implemented on graphics processing units. J.
Comput. Phys. 227, 10 (May 2008), 5342–5359.

[6] Bauer, M., Treichler, S., Slaughter, E., and

Aiken, A. Legion: Expressing locality and
independence with logical regions. In Proceedings of
the International Conference on High Performance
Computing, Networking, Storage and Analysis (Los
Alamitos, CA, USA, 2012), SC ’12, IEEE Computer
Society Press, pp. 66:1–66:11.

[7] Brown, K., Sujeeth, A., Lee, H., Rompf, T.,

Chafi, H., and OLUKOTUN, K. A heterogeneous
parallel framework for domain-specific languages. In
20th International Conference on Parallel
Architectures and Compilation Techniques (PACT)
(2011).

[8] Burtscher, M., Nasre, R., and Pingali, K. A
quantitative study of irregular programs on gpus. In
Workload Characterization (IISWC), 2012 IEEE
International Symposium on (2012), pp. 141–151.

[9] Catanzaro, B., Garland, M., and Keutzer, K.

Copperhead: Compiling an embedded data parallel
language. In Proceedings of the 16th ACM Symposium
on Principles and Practice of Parallel Programming
(New York, NY, USA, 2011), PPoPP ’11, ACM,
pp. 47–56.

[10] Farooqui, N., Barik, R., Lewis, B. T.,

Shpeisman, T., and Schwan, K. Affinity-aware
work-stealing for integrated cpu-gpu processors. In
Proceedings of the 21st ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming
(2016), PPoPP 2016, ACM.

[11] Farooqui, N., Kerr, A., Diamos, G.,

Yalamanchili, S., and Schwan, K. A framework for
dynamically instrumenting gpu compute applications
within gpu ocelot. In Proceedings of the 4th Workshop
on General-Purpose Computation on Graphics
Processing Units (Newport Beach, CA, USA, March
2011), ACM.

[12] Farooqui, N., Kerr, A., Eisenhauer, G., Schwan,

K., and Yalamanchili, S. Lynx: A dynamic
instrumentation system for data-parallel applications

on gpgpu architectures. In Performance Analysis of
Systems and Software (ISPASS), 2012 IEEE
International Symposium on (April 2012), pp. 58 –67.

[13] Farooqui, N., Rossbach, C., Yu, Y., and Schwan,

K. Leo: A profile-driven, dynamic optimization
framework for gpu applications. In Proceedings of the
second USENIX conference on Timely Results in
Operating Systems (2014), TRIOS ’14.

[14] Farooqui, N., Schwan, K., and Yalamanchili, S.

Efficient instrumentation of gpgpu applications using
information flow analysis and symbolic execution. In
Proceedings of Workshop on General Purpose
Processing Using GPUs (New York, NY, USA, 2014),
GPGPU-7, ACM, pp. 19:19–19:27.

[15] Guo, Y., Zhao, J., Cave, V., and Sarkar, V.

Slaw: A scalable locality-aware adaptive work-stealing
scheduler for multi-core systems. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (New York, NY,
USA, 2010), PPoPP ’10, ACM, pp. 341–342.

[16] Gupta, V., Schwan, K., Tolia, N., Talwar, V.,

and Ranganathan, P. Pegasus: Coordinated
scheduling for virtualized accelerator-based systems.
In Proceedings of the 2011 USENIX Conference on
USENIX Annual Technical Conference (Berkeley, CA,
USA, 2011), USENIXATC’11, USENIX Association,
pp. 3–3.

[17] jai Min, S., Iancu, C., and Yelick, K. Hierarchical
work stealing on manycore clusters. In In Fifth
Conference on Partitioned Global Address Space
Programming Models (2011).

[18] Kannan, S., Farooqui, N., Gavrilovska, A., and

Schwan, K. Heterocheckpoint: Efficient checkpointing
for accelerator-based systems. In 44th Annual
IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2014, Atlanta, GA, USA,
June 23-26, 2014 (2014), pp. 738–743.

[19] Kyrola, A., Blelloch, G., and Guestrin, C.

Graphchi: Large-scale graph computation on just a
pc. In Proceedings of the 10th USENIX Conference on
Operating Systems Design and Implementation
(Berkeley, CA, USA, 2012), OSDI’12, USENIX
Association, pp. 31–46.

[20] Lattner, C., and Adve, V. LLVM: A Compilation
Framework for Lifelong Program Analysis &
Transformation. In Proceedings of the 2004
International Symposium on Code Generation and
Optimization (CGO’04) (Palo Alto, California, Mar
2004).

[21] Li, S., Farooqui, N., , and Yalamanchili, S.

Software reliability enhancements for gpu applications.
In Sixth Workshop on Programmability Issues for
Heterogeneous Multicores (MULTIPROG-2013) (Jan
2013).

[22] Linderman, M. D., Collins, J. D., Wang, H., and

Meng, T. H. Merge: A programming model for
heterogeneous multi-core systems. In Proceedings of
the 13th International Conference on Architectural
Support for Programming Languages and Operating
Systems (New York, NY, USA, 2008), ASPLOS XIII,
ACM, pp. 287–296.

[23] Menychtas, K., Shen, K., and Scott, M. L.

Disengaged scheduling for fair, protected access to fast

computational accelerators. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems (New
York, NY, USA, 2014), ASPLOS ’14, ACM,
pp. 301–316.

[24] Merrill, D., Garland, M., and Grimshaw, A.

Scalable gpu graph traversal. In Proceedings of the
17th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (New York, NY,
USA, 2012), PPoPP ’12, ACM, pp. 117–128.

[25] Merritt, A., Farooqui, N., Slawinska, M.,

Gavrilovska, A., Schwan, K., and Gupta, V.

Slices: Provisioning heterogeneous hpc systems. In
Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery
Environment (New York, NY, USA, 2014), XSEDE
’14, ACM, pp. 46:1–46:8.

[26] Mosegaard, J., and Sørensen, T. Real-time
deformation of detailed geometry based on mappings
to a less detailed physical simulation on the gpu. In
Proceedings of Eurographics Workshop on Virtual
Environments (2005), vol. 11, pp. 105–111.

[27] NVIDIA. NVIDIA Compute PTX: Parallel Thread
Execution, 1.3 ed. NVIDIA Corporation, Santa Clara,
California, October 2008.

[28] NVIDIA. NVIDIA CUDA Compute Unified Device
Architecture, 2.1 ed. NVIDIA Corporation, Santa
Clara, California, October 2008.

[29] Podlozhnyuk, V. Black-scholes option pricing. Part
of CUDA SDK documentation (2007).

[30] Ragan-Kelley, J., Barnes, C., Adams, A., Paris,

S., Durand, F., and Amarasinghe, S. Halide: A
language and compiler for optimizing parallelism,
locality, and recomputation in image processing
pipelines. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(Seattle, WA, June 2013).

[31] Rossbach, C. J., Yu, Y., Currey, J., Martin,

J.-P., and Fetterly, D. Dandelion: a compiler and
runtime for heterogeneous systems. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating
Systems Principles (NY, USA, 2013), SOSP ’13,
ACM, pp. 49–68.

[32] Roy, A., Mihailovic, I., and Zwaenepoel, W.

X-stream: Edge-centric graph processing using
streaming partitions. In Proceedings of the
Twenty-Fourth ACM Symposium on Operating
Systems Principles (New York, NY, USA, 2013),
SOSP ’13, ACM, pp. 472–488.

[33] Sengupta, D., Goswami, A., Schwan, K., and

Pallavi, K. Scheduling multi-tenant cloud workloads
on accelerator-based systems. In Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis
(Piscataway, NJ, USA, 2014), SC ’14, IEEE Press,
pp. 513–524.

[34] Sengupta, D., Song, S. L., Agarwal, K., and

Schwan, K. Graphreduce: Processing large-scale
graphs on accelerator-based systems. In Proceedings of
the International Conference for High Performance
Computing, Networking, Storage and Analysis (New
York, NY, USA, 2015), SC ’15, ACM, pp. 28:1–28:12.

[35] Silberstein, M., Ford, B., Keidar, I., and

Witchel, E. Gpufs: integrating file systems with
gpus. In Proceedings of the Eighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems (2013), ASPLOS
’13, ACM.

[36] Stone, J. E., Gohara, D., and Shi, G. Opencl: A
parallel programming standard for heterogeneous
computing systems. IEEE Des. Test 12, 3 (May 2010),
66–73.

[37] Sujeeth, A. K., Lee, H., Brown, K. J., Rompf,

T., Chafi, H., Wu, M., Atreya, A. R., Odersky,

M., and Olukotun, K. Optiml: An implicitly
parallel domain-specific language for machine learning.
In ICML (2011), L. Getoor and T. Scheffer, Eds.,
Omnipress, pp. 609–616.

[38] Wu, H., Diamos, G., Cadambi, S., and

Yalamanchili, S. Kernel weaver: Automatically
fusing database primitives for efficient gpu
computation. In Proceedings of the 45th Annual
IEEE/ACM International Symposium on

Microarchitecture (2012), MICRO-45 âĂŹ12.

