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Abstract
We present CaCUDA - a GPGPU kernel abstraction and a paral-
lel programming framework for developing highly efficient large
scale scientific applications using stencil computations on hybrid
CPU/GPU architectures. CaCUDA is built upon the Cactus com-
putational toolkit, an open source problem solving environment de-
signed for scientists and engineers. Due to the flexibility and exten-
sibility of the Cactus toolkit, the addition of a GPGPU program-
ming framework required no changes to the Cactus infrastructure,
guaranteeing that existing features and modules will continue to
work without modification. CaCUDA was tested and benchmarked
using a 3D CFD code based on a finite difference discretization of
Navier-Stokes equations.

1. Introduction
Heterogeneous systems are becoming more common in the field
of High Performance Computing (HPC). Three out of five of
the fastest computers in the world use GPGPUs to achieve their
performance[5], and more than 34 of the top 500 systems are GPU-
based. However, even using tools like CUDA and OpenCL it is a
non-trivial task to obtain optimal performance on the GPU, and it
is even more difficult to achieve sustained performance at scale on
hybrid supercomputers. The CaCUDA programming framework
leverages the highly scalable Cactus framework [3], making use
of its component infrastructure and parallel programming abstrac-
tions to design and implement a tool for creating stencil-based
computation kernels. By using automatic code generation from a
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set of highly optimized code templates, CaCUDA frees scientific
application developers not only from lower level programming is-
sues such as parameter parsing and I/O, but more importantly, from
the parallelization and optimization details of GPGPU program-
ming. Our design assigns one GPU to one MPI process and is
able to benefit from the Cactus grid abstractions without requiring
any changes to the distributed grid structure, grid geometry, and
inter-process communication. CaCUDA extends Cactus by adding
a code generation system that automates the management of stor-
age on the GPU, synchronization among threads, communication
between CPU and GPU, and optimization on GPU. Everything
except the kernel stencil computation itself can be handled in the
CaCUDA programming framework automatically via a kernel de-
scriptor and a code generator.

2. Cactus Computational Framework
Cactus [3] is a problem-solving platform that was designed and
implemented by an international team of computational scientists
led by Seidel, Suen et al., to free numerical relativists from lower
level parallel programming as well as hardware concerns [4]. Af-
ter years of development, Cactus has evolved into a generic, open-
source framework for developing large scale parallel scientific ap-
plications based on structured meshes. Currently, there are at least
30 worldwide research groups using Cactus. The name Cactus is
also a metaphor for its design. A Cactus application consists of a
core piece of infrastructure called the flesh and user modules called
the thorns. The flesh provides a framework for defining and parsing
parameters, for scheduling work, interoperation between C, C++,
F77, and F90, as well as interaction with other thorns. Thorns are
described using a domain specific language (DSL) called the Cac-
tus Configuration Language (CCL) [1]. The information in the CCL
files includes the name of the implementation, the definition of
functions and parameters, the schedule of the routines, and whether
they require synchronization after execution, etc.

3. CaCUDA Programming Framework
In order to facilitate programming in the CaCUDA environment,
we defined the term Kernel Abstraction, which consists of three ma-
jor components: Kernel Descriptor, Computation Templates, and
Code Generator. The definition of a kernel may be divided into
three separate tasks:

• Declaring the Kernel: The cacuda.ccl configuration file is used
to describe the data dependencies, namely the grid functions
and parameters required by the kernel and stencil. This decla-
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Figure 1. The workflow of a CaCUDA-based application: The
upper box shows the generation of the CaCUDA kernel headers
at the code compilation stage, while the lower box shows how the
variables are evolved to the next time step.

ration file is then used to generate a kernel frame (macros) that
performs automatic data fetching, caching and synchronization
with the host.

• Writing the Kernel: Using kernel-specific auto-generated macros
the programmer writes a set of stencil equations for one grid
point only, accessing neighboring grid points by specifying the
relative index in each direction. The code must be written to
avoid read-after-write and write-after-read hazards, and thus
requires some basic knowledge of parallel programming.

• Scheduling the Kernel: Insertion of the newly generated kernel
into the Cactus schedule tree.

The CaCUDA kernel abstraction makes it easy to write and ex-
ecute GPGPU kernels, and makes it possible to optimize the ker-
nel without changing the kernel code itself. The whole optimiza-
tion process is handled by swapping the templates or adjusting the
kernel parameters. Furthermore, our system is not limited to the
GPGPU architecture. The templates could be easily adapted to run
as sequential CPU or parallel OpenMP code. The CaCUDA kernel
code can be integrated in a straightforward manner within existing
thorns (modules) without touching the flesh (core infrastructure).
The workflow of the CaCUDA compilation process as well as the
kernel execution is shown in Figure 1.

4. Sample Application
In this work we’ve focused on a simple test case in Computational
Fluid Dynamics (CFD), namely lid-driven cavity with computa-
tions performed in single precision. Additional details regarding the
testing of the application can be found in our previous work [2]. We
adopted the computational patterns proven to be most efficient in
stencil computations. These patterns were further generalized to fit
wider variety of numerical problems. Our test application achieved
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Figure 2. The graph presents the weak scaling test and shows the
performance (in GFLOPS) and the speedup over a single GPU. The
domain size on each GPU is 1923. Two cases were considered: with
and without domain decomposition along the X direction.

70GFLOPS on single NVIDIA Fermi GPU. However, due to com-
munication overhead, the performance of computations conducted
on 2 nodes is comparable to this on single node. The weak scaling
test is shown in Figure 2.

5. Conclusions
We presented our work to design and implement a GPGPU kernel
abstraction, which is suitable for developing highly efficient large
scale scientific applications using stencil computations on hybrid
CPU/GPU systems. By leveraging the MPI-based data parallelism
implemented in Cactus, we have developed a tool which enables
both MPI and GPU acceleration. The lid-driven cavity problem
was implemented and benchmarked with CaCUDA, and the results
presented. Our current efforts are focused on minimizing the costs
of the data exchange between GPU and CPU and optimizing the
boundary exchange.
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