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ABSTRACT
Detecting strongly connected components (SCC) has been broadly
used in many real-world applications. To speedup SCC detection
for large-scale graphs, parallel algorithms have been proposed to
leverage modern GPUs. Existing GPU implementations are able to
get speedup on synthetic graph instances, but show limited perfor-
mance when applied to large-scale real-world datasets. In this paper,
we present a parallel SCC detection implementation on GPUs that
achieves high performance on both synthetic and real-world graphs.
We use a hybrid method that divides the algorithm into two phases.
Our method is able to dynamically change parallelism strategies
to maximize performance for each algorithm phase. We then or-
chestrates the graph traversal kernel with customized strategy for
each phase, and employ algorithm extensions to handle the serial-
ization problem caused by irregular graph properties. Our design
is carefully implemented to take advantage of the GPU hardware.
Evaluation with diverse graphs on the NVIDIA K20c GPU shows
that our proposed implementation achieves an average speedup
of 5.0⇥ over the serial Tarjan’s algorithm. It also outperforms the
existing OpenMP implementation with a speedup of 1.4⇥.
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1 INTRODUCTION
Strongly connected component (SCC) detection is a fundamental
graph analysis problem that is pervasively present in many applica-
tion domains. Tarjan’s algorithm is an e�cient sequential method
to solve SCC detection. However, parallelizing this algorithm is
challenging since it uses the inherently sequential depth-�rst search
(DFS) traversal of the graph. To speedup SCC detection for large-
scale graphs, parallel algorithms have been proposed. �e Forward-
Backward (FB) algorithm [10] and its enhancement FB-Trim [22]
are practical algorithms that bring in performance improvement.

Barnat et al. [4] implemented the FB-Trim algorithm using CUDA
on the GPU. Although they achieve signi�cant speedups for syn-
thetic graphs, their implementation works poorly when applied to
real-world graphs [6, 24]. �is is because many real-world graphs
exhibit the power-law property which complicates the problem.
Speci�cally, small-world graphs in social networks usually include a
single giant SCC and a lot of small-sized nontrivial SCCs. When the
giant SCC is detected and removed, the remaining graph contains a
large amount of disconnected subgraphs. �e conventional FB-Trim
algorithm becomes almost serialized when processing the remain-
ing graph. Besides, since the giant SCC is full of data parallelism
while the remaining graph mostly bene�ts from task parallelism,
they might need di�erent parallelism strategies to fully take advan-
tage of the underlying GPU hardware. �ese problems which do
not exist in randomly generated graphs are not speci�cally handled
in previously proposed GPU implementations.

In this work, we present a high performance SCC detection
method on the GPU that e�ciently processes both synthetic and
real-world graphs. Our implementation is based on the FB-Trim
algorithm, and extends it to handle the irregularity of real-world
graphs. More speci�cally, we propose a hybrid method to enable
the adoption of di�erent parallelism strategies to handle di�erent
graph properties that appear in di�erent algorithm phases. �e par-
allelism strategies of graph traversal are customized in each phase
to maximize performance. We also apply the optimization tech-
niques proposed in CPU SCC detection to deal with the serialization
problem by �nding weakly connected components. We implement
our proposed method using CUDA on the NVIDIA GPU. Evaluation
on diverse synthetic as well as real-world graphs shows that our
method signi�cantly outperforms existing GPU implementations.
�e main contributions are:
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1) We present a hybrid method that enables adoption of di�erent
parallelism strategies for di�erent graph properties.

2) We examine the state-of-the-art graph traversal optimizations
and apply the best-performing strategy for each algorithm phase.

3) We extend optimization techniques proposed in CPU SCC
detection to our GPU implementation to exploit more parallelism.

4) We demonstrate the e�ectiveness and e�ciency of the hybrid
method by implementing and evaluating the proposed algorithm
and optimizations on the NVIDIA GPU.

�e rest of the paper is organized as follows: the existing parallel
algorithms as well as the state-of-the-art GPU implementations
are introduced in Section 2. Our proposed design is described
in Section 3. We present the experimental results in Section 4.
Section 5 discusses related work, and Section 6 concludes.

2 BACKGROUND AND MOTIVATION
A strongly connected component in a directed graph refers to a
maximal subgraph where there exists a path between any two
vertices in the subgraph. SCC detection which decomposes a given
directed graph into a set of disjoint SCCs is widely used in many
graph alanytics applications, including web and social network
analysis [16], formal veri�cation [12], reinforcement learning [15],
mesh re�nement [22], computer-aided design [34] and scienti�c
computing [27].

�e classic sequential algorithm for SCC detection, a.k.a Tarjan’s
algorithm [33], is di�cult to parallelize because it is based on DFS
graph traversal which is known to be inherently sequential [28].
�us, parallel algorithms have been investigated to speedup SCC de-
tection on parallel machines. In this section, we �rst introduce the
widely used parallel algorithms, and then discuss existing GPU im-
plementations and their performance limitations when processing
real-world graph instances.

2.1 Parallel SCC Detection
Fleischer et al. proposed a practical algorithm, i.e. Forward-Backward
(FB) algorithm [10], which achieves parallelism by recursively par-
titioning the given graph into three disjoint subgraphs that can
be processed independently. McLendon et al. [22] extends FB al-
gorithm with a Trim step which detects size-1 SCCs to improve
performance. �e FB-Trim algorithm is shown in Algorithm 1. �is
algorithm includes two parts: FB and Trim.

�e FB algorithm proceeds as follows. A vertex called pivot p
is selected (line 4) and the strongly connected component S that
this pivot belongs to is computed (line 7) as the intersection of the
forward reachable set FW (line 5) and backward reachable sets BW
(line 6) of the pivot. Computation of the reachable sets divides the
graph into four subgraphs: (1) the strongly connected component
S with the pivot, (2) the subgraph FW \ S given by vertices in the
forward reachable set but not in the backward reachable set (line
10), (3) the subgraph BW \ S given by vertices in the backward
reachable set but not in the forward reachable set (line 11), and (4)
the subgraphG \ (FW [ BW ) given by vertices that are neither in
the forward nor in the backward reachable set (line 12). Since an
SCC cannot belong to more than one partition, each partition can
be processed independently. �e subgraphs that do not contain
the pivot form three independent instances of the same problem,

Algorithm 1 FB-Trim Algorithm [22]
1: procedure FB�T���(G (V ,E), SCC)
2: T���(G, SCC)
3: if V , ? then
4: p  pick any vertex in G
5: FW  F���R����(G, p)
6: BW  B���R����(G, p)
7: S  FW \ BW

8: SCC  SCC [ S
9: in parallel do
10: FB�T���(FW \ S , SCC)
11: FB�T���(BW \ S , SCC)
12: FB�T���(G \ (FW [ BW ), SCC)
13: end in parallel
14: end if
15: end procedure

Algorithm 2 Trim Procedure
1: procedure T���(G (V ,E), SCC)
2: repeat
3: for each vertex � 2 V in parallel do
4: if de�reein (� ) = 0 or de�reeout (� ) = 0 then
5: SCC  SCC [ {{�}}
6: G  G \ {�}
7: end if
8: end for
9: until G not changed
10: end procedure

and therefore, they are recursively processed in parallel with the
same algorithm. Furthermore, since each subgraph produces three
additional subgraphs, it is expected that quickly, there would be suf-
�cient independent tasks to consume all of the parallel processing
elements in a system [14].

Based on the FB algorithm, the FB-Trim algorithm adds a Trim
step (line 2) to preprocess the trivial SCCs (i.e., SCC of size one)
before picking the pivot. Since a trivial SCC has either zero incom-
ing edges or zero outgoing edges, it can be easily identi�ed only
by looking at the number of neighbors, rather than by computing
two reachable sets (which is computationally more expensive). �e
Trim step is described in Algorithm 2.

2.2 GPU SCC Detection
Barnat et al. [4] implemented the FB-Trim algorithmusing CUDA [26]
on the GPU. Stuhl [32] improved this work with advanced graph
traversal implementations. �eir methods work e�ciently with
randomly generated graph instances, but show very limited perfor-
mance when applied to real-world graphs with many small sized
nontrivial SCCs. Fig. 1 shows the performance of their CUDA
implementation normalized to the sequential Tarjan’s algorithm.
For the three synthetic graphs (rmat-er, rmat-g and rmat-b),
it achieves signi�cant speedup (6⇥ ⇠ 12⇥), but when applied to
real-world graphs (the other bars on the right) the performance is
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unsatisfactory. �e only one real-world graph that is accelerated
by this GPU implementation is cage14 which has only one gi-
ant nontrivial SCCs. For the other ten real-world graphs, Barnat’s
method is much slower than the sequential Tarjan’s algorithm.

�e poor performance is due to the fact that many real-world
graphs exhibit irregular structural properties such as skewed com-
ponent sizes. Typically, a small-world graph in social networks
contains a single giant SCC and many small-sized nontrivial SCCs.
When the giant SCC is detected and removed, the remaining graph
consists of a large number of disconnected subgraphs. In this case,
the conventional FB-Trim algorithm becomes almost sequential be-
cause only a few pivots can be selected in each iteration due to the
fact that subgraphs are disconnected. �is irregular characteristic is
not properly handled by existing GPU implementations, resulting
in extreme ine�ciency. Note that this problem also exists in CPU
parallel implementations, but it leads to even worse performance
in GPU environment, due to the weaker single-thread computation
capability of GPUs.

On the other hand, processing a graph with skewed component
sizes requires di�erent parallelism strategies to deal with di�erent-
sized subgraphs. For example, when detecting the single giant SCC,
the entire GPU is dedicated to compute it, exploiting data-level
parallelism. In this algorithm phase, we can apply sophisticated
graph traversal strategies. However, when processing the remain-
ing graph with many small-sized subgraphs, straightforward strate-
gies would be be�er since data parallelism is very limited and task
parallelism dominates in this phase. �erefore, existing GPU im-
plementations with �xed parallelism strategy can not fully take
advantage of the underlying GPU hardware. �e unsatisfactory
performance of existing GPU implementations motivates us to ap-
ply algorithm enhancements and optimization techniques to handle
graph irregularity and be�er leverage the GPU architecture.

3 DESIGN AND IMPLEMENTATION
Graph algorithms are considered to be di�cult to parallelize on
GPUs due to their irregularity [7]. However, recent works [9, 18,
21, 23, 31] demonstrate that GPUs are capable to substantially ac-
celerate graph algorithms if the algorithms are carefully designed

 0

 2

 4

 6

 8

 10

 12

 14

rmat-b
rmat-er

rmat-g
cage14

Freescale

WikiTalk

Flickr
Google

WikiGrowth

Youtube

Baidu
LiveJ

Pokec
Wikipedia

geomean

Sp
ee

du
p

Tarjan
Barnat

Figure 1: Performance of Barnat’s CUDASCCdetection, nor-
malized to the sequential Tarjan’s algorithm.

and optimized for the GPU architecture. In this section we �rst
present the baseline design and basic data structures. We then
propose the hybrid method with a 2-phase algorithm structure that
enables dynamic changing of parallelism strategies according to
the graph property. Next we apply the algorithm extensions to
increase the parallelism in Phase-2. We also discuss the e�ect of
di�erent strategies to implement the graph traversal, i.e. breadth
�rst search (BFS). Finally, we discuss some implementation details
that a�ect the performance of GPU SCC detection. We conduct the
following analyses using the NVIDIA Tesla K20c GPU.

3.1 Baseline Design
Our baseline GPU implementation of the FB-Trim algorithm is
similar to Barnat’s implementation, but adds a Trim step before the
main loop. Algorithm 3 illustrates the algorithm skeleton. At line
2, the Trim procedure (see details in Algorithm 2) is launched to
remove trivial SCCs, thus reducing the workload for the following
steps. Note that a data structure mark is added and passed to
Trim. Pivot-Gen (line 3&8) is responsible for generating pivots. A
status bit is used to indicate whether the corresponding vertex is
marked as a pivot. �en the main loop is launched. Fw-Reach (line
5) and Bw-reach (line 6) are procedures to calculate the forward and
backward reachable sets of the pivots respectively. Update (line 9)
is responsible for calculating the SCC (i.e. the intersection of the
forward and backward reachable sets) and updating vertex status.
Details of Fw-Reach and Bw-reach are explained in Section 3.4.

Similar to Hong’s CPU implementation [14], two auxiliary data
structures are used: mark and color. When the SCC of a vertex is
identi�ed, instead of detaching the vertex from the rest of the graph,
we simply set the mark value of the vertex to true, and the vertex
is considered detached therea�er. Similarly, when we partition the
graph, we assign the same color value to vertices belonging to the
same subgraph; each subgraph is assigned a unique color value.
�erefore, two vertices of di�erent color values are considered
disconnected, even when there exists an edge between them in
the original graph. Another data structure visited is used to

0 1 2 3

4 5 6 7

C:

R:

1 2,   4,   5 6 2,   7 0,   5 6 3,   7

0 1 4 5 7 9 10 12 12

0 1 2 3 4 5 6 7 8 9 10 11

0 1 2 3 4 5 6 7 8

Figure 2: An example of the compressed sparse row (CSR)
format. �is graph has 4 SCCs (red, green, blue, purple).
Note that the blue and purple SCCs are trvial SCCs consist-
ing of only one vertex.
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Algorithm 3 Baseline GPU FB-Trim Algorithm
1: procedure FB�T���(G (V ,E), SCC)
2: T���(G, SCC ,mark)
3: P�����G��(G, SCC , color ,mark)
4: repeat
5: F���R����(G, SCC , �isited , color ,mark)
6: B���R����(G, SCC , �isited , color ,mark)
7: T���(G, SCC ,mark)
8: P�����G��(G, SCC , �isited , color ,mark)
9: U�����(G, SCC , �isited , color ,mark)
10: until no pivot generated
11: end procedure

indicate whether the corresponding vertex has been visited during
the forward and backward traversal. If a vertex is both marked as
forward and backward visited, it is identi�ed as an element of the
SCC that the pivot belongs to.

Note that we use the well-known compressed sparse row (CSR)
sparse matrix format to store the graph in memory consisting of
two arrays. Fig. 2 provides a simple example. �e column-indices
array C is formed from the set of the adjacency lists concatenated
into a single array ofm (m is the number of edges) integers. �e
row-o�sets array R contains n + 1 (n is the number of vertices)
integers, and entry R[i] is the index inC of the adjacency list of the
vertex �i .

3.2 Hybrid Method
As mentioned, real-world graphs with a power-law distribution
have fundamentally di�erent characteristics compared to tradi-
tional arti�cial graphs, making the existing FW-Trim method ex-
tremely ine�cient. Previous studies [4, 14, 29] revealed the major
characteristic of real-world graphs that mostly a�ects the perfor-
mance of SCC detection: the existence of a single giant SCC and
a lot of small sized SCCs. Fig. 10 (1) illustrates this characteristic
in a real-world graph instance which is the link relationship of a
blog sphere named LiveJournal [17]. �is characteristic causes load
imbalance and serialization problems [14] in the FB-Trim algorithm.

To handle the irregular characteristic, we propose a hybrid
method. In this algorithm structure, the SCC detection problem is
solved in two phases with di�erent parallelism strategies. During
the �rst phase (Phase-1) the algorithm processes the single giant
SCCwith all threads, exploiting data-level parallelism. In the second
phase (Phase-2), the remaining small sized subgraphs are processed
in parallel, exploiting task-level parallelism. We utilize di�erent
parallelism strategies customized to the workload characteristics
of each phase, maximizing performance for both phases.

Fig. 3 illustrates the execution time distribution of Barnat’s
CUDA SCC detection. For rmat graphs and cage14 (not shown
in the �gure), there is only one nontrivial SCC (i.e. the single giant
SCC), and thus no Phase-2 is needed for these graphs. For the other
graphs, we observe that most of the time is spent on Phase-2 to pro-
cess the large amount of small sized SCCs. �is is because Phase-2
is scarcely parallelized even when a large number of SCCs are iden-
ti�ed in this phase. �is serialization is due to the fact that the large
amount of remaining small sized subgraphs are disconnected to each

Algorithm 4 FB-Trim-Hybrid Algorithm
1: procedure FB�T����H�����(G (V ,E), SCC)
2: /* Phase 1*/
3: T���(G, SCC ,mark)
4: P�����G��(G, SCC , color ,mark)
5: repeat
6: F���R����(G, SCC , color ,mark)
7: B���R����(G, SCC , color ,mark)
8: T���(G, SCC ,mark)
9: P�����G��(G, SCC , color ,mark)
10: U�����(G, SCC , �isited , color ,mark)
11: until more than 1% vertices removed
12: T���(G, SCC ,mark)
13: T���2(G, SCC ,mark)
14: FWCC(G, color ,mark)
15: P�����G��(G, SCC , color ,mark)
16: /* Phase 2 */
17: repeat
18: F���R����(G, SCC , color ,mark)
19: B���R����(G, SCC , color ,mark)
20: T���(G, SCC ,mark)
21: P�����G��(G, SCC , color ,mark)
22: U�����(G, SCC , �isited , color ,mark)
23: until no pivot generated
24: end procedure

other, and recursively applying the FB algorithm to each subgraph
will only identify one SCC to which the pivot belongs, but does
not provide further partitioning [14]. Consequently, processing the
disconnected subgraphs is almost serialized. With this serialization
problem, the FB-Trim algorithm needs thousands of iterations to
complete for most of the small-world graphs in our benchmarks
(since these graphs have thousands of small sized nontrivial SCCs).
Note that although BFS within each subgraph is still parallelized, it
can o�er very limited parallelism since these subgraphs are small.

3.3 Exploiting Parallelism in Phase-2
To handle the serialization problem in Phase-2, we apply the exten-
sions that Hong et al. [14] proposed in their parallel CPU implemen-
tation to our GPU implementation. We refer this implementation
as FW-Trim-Hybrid. �e extensions that FW-Trim-Hybrid applies
to FW-Trim are: 1) �nding weakly connected components (FWCC),
and 2) detecting size-2 SCCs (Trim2).

As mentioned in 3.2, a�er the giant SCC is identi�ed and re-
moved in Phase-1, Phase-2 is mostly serialized because the small
sized SCCs are disconnected to each other. To exploit more paral-
lelism in Phase-2, FWCC is utilized to identify weakly connected
components (WCCs) before Phase-2 begins. Since one pivot is se-
lected for each WCC, we have many pivots selected at once and
substantially improve the degree of task-level parallelism. Addi-
tionally, to reduce the execution time of FWCC, we add a Trim2
step to identify and remove size-2 SCCs before FWCC. �e GPU
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Figure 3: Exection time distribution of Barnat’s CUDA im-
plementation. Time spent on processing the giant SCC takes
only a small portion of the total time. Most of the time is
taken to process the rest small sized SCCs since this phase
is scarcely parallelized.

implementations of FWCC and Trim2 are quite straightforward
and thus not shown here.

Algorithm 4 shows the algorithm skeleton of FB-Trim-Hybrid.
In Phase-1 (line 3⇠11), the single giant SCC is decomposed. �e
transition between Phase-1 and Phase-2 occurs when an SCC con-
taining more than 1% of the nodes of the original graph is identi�ed
(this condition o�en leads to the giant SCC since the rest SCCs
are small ones). Next Trim2 is done to remove size-2 SCCs (line
13). A�er that WCC is calculated (line 14) to exploit parallelism.
In Phase-2 (line 17⇠23), a large amount of small sized SCCs are
detected. Our experiments in Section 4 show that the FWCC exten-
sion can dramatically increase the parallelism of Phase-2, leading
to signi�cant execution time reduction. Fig. 7 illustrates the exe-
cution time distribution of FB-Trim-Hybrid. Compared to Fig. 3,
we observe that the portion of time spent on Phase-1 increase a
lot due to the execution time reduction of Phase-2. Next, we try to
optimize the major operations in each phase.

3.4 Customizing Graph Traversal
As listed in Algorithm 3, the major SCC detection workload is
the graph traversal (in Fwd-Reach and Bwd-Reach) which is
implemented as parallel BFS on GPUs. �erefore it is essential to
pick an e�cient BFS implementation for high performance SCC
detection. Parallel BFS is a well-explored �eld [3, 5]. Basically
two parallelism strategies are utilized on GPUs: topology-driven or
data-driven implementations [25].

For graph algorithms, the naive topology-driven implementation
simply maps each vertex to a thread, and in each iteration, the
thread stays idle or is responsible to process the vertex depending
on whether the corresponding vertex has been processed or not.
It is straightforward to map the topology-driven implementation
onto the GPU with no extra data structure. Harish et al. [11] �rst
developed topology-driven BFS on GPUs. Hong et al. [13] improved
it by mapping warps rather than threads to vertices.

By contrast, the data-driven implementation maintains a work-
list which holds the remaining vertices to be processed. In each

Algorithm 5 Forward-Reach Procedure (topology-driven)
1: procedure F���R����(G (V ,E), �isited , color ,mark)
2: repeat
3: chan�ed  f alse

4: for each vertex � 2 V in parallel do
5: if !mark (� ) and �isitied (� ). f w = true then
6: F��S���(G, � , �isited , color ,mark , chan�ed)
7: end if
8: end for
9: until chan�ed = f alse

10: end procedure

Algorithm 6 Forward-Step Kernel (topology-driven)
1: procedure F��S���(G, � , �isited , color ,mark , chan�ed)
2: for each vertexw 2 adj (� ) do
3: if !mark (w ) and color (w ) = color (� ) then
4: �isited (w ). f w  true

5: chan�ed  true

6: end if
7: end for
8: end procedure

iteration, threads are created in proportion to the size of the worklist
(i.e. the number of vertices in the worklist). Each thread is respon-
sible for processing a certain amount of vertices in the worklist,
and no thread is idle. �erefore, the data-driven implementation is
generally more work-e�cient than the topology-driven one, but
it needs extra overhead to maintain the worklist. Note that the
data-driven implementation still su�ers from the load imbalance
problem, since vertices may have di�erent amount of edges to be
processed by the corresponding threads. Merrill et al. [23] proposed
a hierarchical load balancing strategy to deal with the problem.

We implement four versions of BFS in our SCC detection: naive
topology-driven (topo), topology-drivenwith load balancing (topo-lb),

 0

 1

 2

 3

 4

rmat-b
rmat-er

rmat-g
cage14

Freescale

WikiTalk

Flickr
Google

WikiGrowth

Youtube

Baidu
LiveJ

Pokec
Wikipedia

geomean

Sp
ee

du
p

Topo
Topo-lb

Data
Data-lb

Figure 4: Performance of topology-driven v.s. data-driven
implementations when processing the single giant SCC in
Phase-1, all normalized to the topo implementation.



PMAM’17, February 04-08, 2017, Austin, TX, USA P. Li et. al.

Algorithm 7 Backward-Reach Procedure (data-driven)

1: procedure B���R����(GT (V ,E), �isited , color ,mark)
2: Win  pi�ots

3: whileWin , ? do
4: for each vertex � 2Win in parallel do
5: if !mark (� ) and �isitied (� ).bw = true then
6: B��S���(G, � , �isited , color ,mark)
7: end if
8: end for
9: swap (Win ,Wout ) . Swap the worklists
10: end while
11: end procedure

Algorithm 8 Backward-Step Kernel (data-driven)
1: procedure B��S���(G, � , �isited , color ,mark)
2: for each vertexw 2 adj (� ) do
3: if !mark (w ) and color (w ) = color (� ) then
4: �isited (w ).bw  true

5: Wout  Wout [ {w } . Atomic push
6: end if
7: end for
8: end procedure

naive data-driven (data) and data-driven with load balancing
(data-lb). For topo-lb and data-lb, we use the same load
balancing strategy proposed by Merrill et al. Algorithm 5 illustrates
the naive topology-driven implementation of the Fw-Reach proce-
dure. A �ag chan�ed is used to indicate whether all the vertices are
colored or not. �is �ag is cleared at the beginning of each iteration,
and set by one or more threads if any vertex is updated. Once all the
vertices have been visited, the �ag remains f alse and the algorithm
�nally terminates. Algorithm 6 illustrates the Fw-Step kernel
operations. In real implementation, a data structure expanded
is used to indicate whether the corresponding vertex has been ex-
panded or not during the traversal, so as to �lter expanded vertices
and remove unnecessary work.

Algorithm 7 shows the naive data-driven implementation of
the Bw-Reach procedure. It is implemented through worklists.
At the beginning (line 2), generated pivots are pushed into the
shared worklistWin . Every worker thread in the system grabs a
vertex from the worklist and starts performing BFS concurrently
with respect to other worker threads. �e program is �nished
when all the workers become idle and no work items remain in
the worklist. Double bu�ering [25] is used to avoid copying the
worklist. Algorithm 8 illustrates the Bw-Step kernel operations.

Fig. 4 and Fig. 5 compare the performance of Phase-1 and Phase-
2 using these four BFS implementations respectively. In Fig. 4,
we observe that without load balancing, topo consistently outper-
forms data, since data has extra overhead caused by maintaining
the worklist. A�er applying load balancing, both version get sub-
stantial speedup. For some graphs, e.g. Baidu and Wikipedia,
data-lb shows signi�cant speedups (even be�er than topo-lb)
due to its work-e�ciency. On average topo-lb achieves the best

performance among the four, with a geomean speedup of 1.45⇥
over topo.

Fig. 4 demonstrates that load balancing can accelerate BFS when
processing the largest SCC in Phase-1. However, for Phase-2 where
many small disconnected subgraphs exists, Fig. 5 illustrates that
load balancing is not e�ective since its overhead exceeds its perfor-
mance bene�ts, although Wiki-growth and Wiki-pages can
still bene�t from load balancing and get speedup with data-lb.
According to this observation, we decide to �rst apply topo-lb
in Phase-1 and then switch to topo in Phase-2.

3.5 Implementation Details
Pivot Generation. Typically, pivots are generated by a pseudo
random number generator. However, since multiple subgraphs are
processed simultaneously in the same CUDA kernel, we need to
choose a number of pivots, one for each subgraph. Barnat et al. pro-
posed to let all vertices of a subgraph concurrently write their own
unique identi�ers to a single memory location [4]. �e vertex that
wins the competition will be selected as the pivot of its subgraph.
In this paper, we use this method to generate pivots.

Read-only Data Caching. In CUDA devices of compute capa-
bility 3.5 and higher, data that is read-only for the entire lifetime
of the kernel can be kept in the read-only data (uni�ed L1/texture)
cache by reading it using the intrinsic ldg() [26]. We use the
read-only cache to hold theC array and the R array. In this way, we
capture temporal locality and improve the performance by reducing
the total number of DRAM accesses.

4 EVALUATION
We use the R-MAT [8] graph generator GTGraph [20] to create
synthetic graphs. �e generator determines the degree distribution
by using four non-negative parameters (a; b; c; d) whose sum equals
one. We generate three graphs (rmat-er, rmat-g and rmat-b)
with 1M vertices size but varying structures by using the following
set of parameters: (0:25; 0:25; 0:25; 0:25); (0:45; 0:15; 0:15; 0:25); (0:55;
0:15; 0:15; 0:15). We also pick real-world graphs from the University
of Florida Sparse Matrix Collection [1], the SNAP database [17] and
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Figure 6: Performance of the SCC detection implementa-
tions, all normalized to the sequential Tarjan’s algorithm.

the Koblenz Network Collection [2]. �ese benchmarks are also
used in previous work [14, 29, 30]. �e matrices with the respective
number of vertices and edges are shown in Table 1. In summary, we
use 3 synthetic graphs and 11 real-world graphs for our evaluation.
�e graphs vary widely in size, degree distribution, density of local
subgraphs and application domain.

4.1 Experiment Setup
We compare 4 implementations including (1) Tarjan: Tarjan’s
serial algorithm implemented in [4], (2) OpenMP: Hong’s OpenMP
implementation [14], (3) Barnat: Barnat’s CUDA implementa-
tion [4], (4) Hybrid: our proposed GPU implementation FB-Trim-
Hybrid. We conduct the experiments on the NVIDIA K20c GPU
with CUDA Toolkit 7.5 release. Tarjan and OpenMP is executed
on Intel Xeon E5 2670 2.60 GHz CPU with 8 cores. We launch 16
threads for OpenMP since this is the best performing con�guration
as we evaluated. We use gcc and nvccwith the -O3 optimization
option for compilation along with -arch=sm 35 when compiling
for the GPU. We execute all the benchmarks 10 times and collect
the average execution time to avoid system noise. Timing is only
performed on the computation part of each program. For all the
GPU implementations, the input/output data transfer time (usually
takes 10%-15% of the entire program execution time) is excluded.

4.2 Performance
Fig. 6 compares the performance of our proposed FB-Trim-Hybrid
method with Tarjan, OpenMP and Barnat. On average, our
implementation achieves the best performance among the four
methods. Hybrid obtains a geomean speedup of 5.0⇥ compared
to the Tarjan’s serial one, while OpenMP gets 3.5⇥ performance
improvement. Compared toOpenMP, ourmethod is 40% faster. �is
speedup over OpenMP is reasonable because the CPU has a much
larger last level cache which can be�er capture locality than that
on the GPU, although the GPU has higher throughput and memory
bandwidth. For Wikipedia and WikiGrowth, OpenMP is much
faster than our method, and we �nd that this is due to the fact
that BFS on these two graph instances works be�er on the CPU
than on the GPU. It is most likely that the topology of these two

 0

 100

 200

 300

 400

 500

 600

Freescale

WikiTalk

Flickr
Google

WikiGrowth

Youtube

Baidu
LiveJ

Pokec
Wikipedia

Ex
ec

ut
io

n 
tim

e 
(m

s)

Phase1 Phase2 WCC

Figure 7: Execution time breakdown of our proposed FB-
Trim-Hybrid implementation.

graphs a�ects BFS performance. Note that our BFS implementation
uses generic optimization techniques that is portable to various
GPU architectures. If extremely optimized for Kepler architecture,
graph traversal can be further accelerated with more aggressive
optimization techniques. �is will be our future work.

As mentioned, Barnat get speedup for the �rst four graphs
(because these graphs have only one non-trivial SCC), but it is
much slower than Tarjan on average. Our method, however,
consistently works be�er than Tarjan and Barnat, although for
some benchmarks, e.g. Google, the speedup is very limited due
to the graph topology. For rmat graphs and cage14, Hybrid is
faster than Barnat thanks to the optimized BFS implementation
(see details in Section 3.4), while for the rest real-world graphs, our
method outperforms Tarjan and Barnat mainly because of the
much higher parallelism exploited by the WCC method. Table 2
shows that WCC substantially reduces the number of iterations
required to complete SCC detection. For many real-world graphs,
without WCC, Barnat needs thousands of iterations to �nish
since its Phase-2 is almost sequential. By contrast, our method
terminates within several or a dozen iterations. In general, our
GPU method is more practical and e�cient than the existing one.

To be�er understand the performance e�ect of our optimization
techniques, we breakdown the execution time into three parts:
Phase-1, WCC and Phase-2, shown in Fig. 7. As expected, since
WCC can exploit parallelism, execution time spent in Phase-2 is
signi�cantly reduced so that it doesn’t dominate the total execution
time any more. Meanwhile, with re�ned BFS implementation, the
Phase-1 performance is also improved. Besides, we parallelize our
WCC implementation on the GPU and ensure its low overhead.
Orchestrating all the three parts with customized optimization
techniques transforms into the �nal performance speedup.

4.3 Sensitivity to Input Scale
We evaluate the sensitivity of our method when changing the size
of the input datasets, shown in Fig. 8. In this experiment, we change
the graph size from 1M to 16M vertices, with a �xed density (aver-
age degree) of 10. �e �gure shows the execution time speedup over
Tarjan’s sequential method. It is clear that our method consistently
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Graph # Vertices # Edges Largest SCC Size Max. deg. Avg. deg. Description
rmat-er 1048576 10485760 1047016 49 10.0 Synthetic random graph
rmat-g 1048576 10485760 969560 692 10.0 Synthetic random graph
rmat-b 1048576 10485760 614556 10114 10.0 Synthetic random graph
cage14 1505785 27130349 1505785 41 18.0 DNA electrophoresis

Freescale 2999349 23042677 2888522 30478 7.7 Circuit simulation
WikiTalk 2394385 5021410 111881 3311 2.1 Wikipedia talk (communication) network
Flickr 2302925 33140017 1605184 18022 14.4 Connection of Flickr users
Google 875713 5105039 434818 6326 5.8 Web graph from Google

WikiGrowth 1870709 39953145 1629321 225883 21.4 English Wikipedia with edge arrival times
Youtube 1138499 4942297 509245 25487 4.3 Youtube users and their connections
Baidu 2141300 17794839 609905 97848 8.3 Chinese online encyclopedia Baidu
LiveJ 4847571 68993773 3828682 13906 14.2 LiveJournal online social network
Pokec 1632803 30622564 1304537 13733 18.8 Pokec online social network

Wikipedia 3148440 39383235 2104115 168685 12.5 Links in Wikipedia pages

Table 1: Suite of benchmark graphs
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Figure 9: Performance of the SCC detection with varied
graph density, all normalized to the sequential Tarjan’s al-
gorithm.

outperforms the existing CPU and GPU implementations as the
input scale increases. For OpenMP and Hybrid, the performance

speedup increases as the size increase from 1M to 8M. �is is as
expected since larger datasets would bene�t more from parallel im-
plementations. �e speedup drops a li�le bit when the size goes to
16M, possibly due to the graph topology, but Hybrid still achieves
a signi�cant speedup of 20⇥ over the Tarjan’s algorithm. By con-
trast, Barnat shows limited performance superiority compared to
OpenMP. Note that we currently focus on single-GPU implemen-
tation, and thus processing even larger graphs with multi-GPU or
multi-node machine will be our future work.

4.4 Sensitivity to Density
To understand the e�ect of graph density on performance, we
conduct another sensitivity study. Fig. 9 illustrates how the perfor-
mance changes as the graph density increases. In this experiment,
we change the graph density from 10 to 60, with a �xed graph
size of 1M vertices. We observe that Hybrid still consistently
outperforms Barnat. �is performance gap is almost unchanged
as the graph becomes denser. However, OpenMP exhibits higher
performance speedup with denser input graphs, while the speedups
of the two GPU implementations drop as the density increases. �is
is possibly due to the much larger cache size of the CPU. Since the

Graphs Barnat Hybrid # nontriv.
rmat-er 1 1 1
rmat-g 1 1 1
rmat-b 1 1 1
cage14 1 1 1

Freescale 55084 2 55084
WikiTalk 456 3 568
Flickr 28804 6 58636
Google 5347 14 12874

WikiGrowth 2702 4 2835
Youtube 10752 6 11370
Baidu 9371 5 22282
LiveJ 12226 5 23456
Pokec 1080 3 2094

Wikipedia 2559 5 2666

Table 2: �e number of iterations required to complete SCC
detection for each graph. �e third column lists the number
of non-trivial SCCs in each graph.



High Performance Detection of Strongly Connected Components in Sparse Graphs on GPUsPMAM’17, February 04-08, 2017, Austin, TX, USA

10
0

101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C
 
C
o
u
n
t

SCC Size

(1) LiveJ

10
0

101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C
 
C
o
u
n
t

SCC Size

(2) Flickr

10
0

101
102
103
104
105
106
107

100 101 102 103 104 105 106 107

S
C
C
 
C
o
u
n
t

SCC Size

(3) Baidu

10
0

10
1

102
103
104
105
10

6

10
7

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

S
C
C
 
C
o
u
n
t

SCC Size

(4) Google

10
0

10
1

102
103
104
105
10

6

10
7

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

S
C
C
 
C
o
u
n
t

SCC Size

(5) Pokec

10
0

10
1

102
103
104
105
10

6

10
7

10
0
10

1
10

2
10

3
10

4
10

5
10

6
10

7

S
C
C
 
C
o
u
n
t

SCC Size

(6) cage14

Figure 10: Distribution of SCC sizes of some graph instances that are used in our experiments.

working set size is proportional to the graph density, GPUs may
su�er higher degree of memory divergence and cache thrashing
with limited on-chip cache size. �is observation suggests us to
optimize cache behavior to further improve the performance of
GPU SCC detection. Note that real-world graphs are usually sparse
graphs, e.g., the largest density of the real-world graph instances
used in our experiments is 21, and therefore our GPU method can
achieve be�er performance than the CPU parallel implementation.

4.5 SCC Distribution
Fig. 10 shows the SCC structure of some graphs used in the exper-
iments. As mentioned, for the small-world graph instances, e.g.,
the �rst �ve graphs in Fig. 10, there is usually a single giant SCC
and many small-sized non-trivial SCCs. Although trivial SCCs are
the most frequent, they can be e�ciently handled by the Trim step.
For non-small-world graphs, e.g., cage14, the SCC related prop-
erty is quite di�erent. cage14 has only a single giant SCC, which
means its vertices are all strongly connected. In this case, GPU
implementations can easily exploit parallelism and achieve good
performance as shown in the previous GPU BFS work. �erefore
the major part that hurts performance is the large amount of small-
sized non-trivial SCCs. Our proposed implementation imports the
WCC method to e�ciently deal with this case.

5 RELATEDWORK
Parallel SCC detection is an important graph analysis algorithm
that has been intensively studied previously. Hong et al. [14] pro-
posed an e�cient parallel CPU SCC detection method speci�cally
for processing real-world graphs. �ey were the �rst to use WCC

method to handle power-law graphs, and got good speedup and
scalability on multicore CPUs. Our work employs the WCCmethod
on GPUs, and further optimizes the algorithm to leverage GPU’s
compute capability. Slota et al. [29] used another strategy to deal
with power-law graphs. �eir Multistep method combines BFS
and coloring-based methods and uses them in di�erent algorithm
steps. Barnat et al. [4] were the �rst to implement FB-Trim algo-
rithm onGPUs. �ey used synthetic graph instances as benchmarks,
and got dramatic performance speedup. However, their work did
not pay speci�c a�ention on dealing with the irregularity in real-
world graphs. Slota et al. [30] implemented their Multistep
method on GPUs to handle the large amount of small-sized SCCs
in real-world graph. Instead of using coloring algorithm, our GPU
implementation imports Hong’s WCC method to handle this prob-
lem. More importantly, our method enables adoption of di�erent
graph traversal strategies for di�erent algorithm phases.

Many other graph algorithms have been developed on GPUs.
Harish et al. [11] are the pioneers to implement GPU graph al-
gorithms. �ey developed topology-driven Breadth-�rst Search
(BFS) and shortest path algorithms. Hong et al. [13] proposed an-
other topology-driven BFS to map warps rather than threads to
vertices. Luo et al. [19] developed the �rst data-driven BFS on
GPUs. Merrill et al. [23] improved Luo’s work. �ey employed 1)
pre�x sum to reduce atomic operations and 2) dynamic load balanc-
ing to deal with scale-free graphs. �is implementation achieves
high throughput and good scalability. �e two major techniques
of their work are also applicable to our implementation, while
our work focuses more on the algorithm-speci�c re�nement, e.g.,
the speci�c strategies to alleviate side e�ects of GPU’s massive
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parallelism. Davidson et al. [9] developed a work-e�cient Single-
Source Shortest Path (SSSP) algorithm on GPUs. �ey improve
load balance by partitioning the work into chunks and assigns each
chunk to a thread block. �ese work demonstrated that with careful
mapping and optimizations graph algorithms can get substantial
performance boost on the GPU. Our work further enhances the
conclusion of previous practices, while we show the importance of
both algorithm-speci�c and architecture-speci�c optimizations for
graph analytics problems.

6 CONCLUSION
SCC detection is an important graph algorithm that has been ap-
plied in many application domains. To process large-scale graphs,
parallel SCC detection has been intensively studied in the past.
Meanwhile, GPUs have been broadly utilized to speed up com-
pute intensive kernels of HPC applications in the last decade. In
this paper, we explore the e�cient implementation of parallel SCC
detection on the GPU. Existing implementations achieve good per-
formance for synthetic graphs but work poorly when applied to
real-world graphs. We present a GPU SCC detection implementa-
tion that o�ers high performance for both synthetic and real-world
graphs. We propose a hybrid method and customize parallelism
strategies for di�erent algorithm phases. We also employ algo-
rithm extensions to handle the irregularity of real-world graphs.
Experimental results show that our proposed implementation sub-
stantially outperforms existing GPU implementations. �is work
helps us further understand graph algorithms on modern massively
parallel processors, and gives insight on the importance of both
algorithm adaptation and architecture-speci�c optimizations to
handle the data irregularity of real-world graphs and fully take
advantage of the underlying GPU hardware.

7 ACKNOWLEDGMENT
We thank the anonymous reviewers for the insightful comments and
suggestions. �is work is partly supported by the National Natural
Science Foundation of China (NSFC) No.61502514, No.61402488,
and No.61602501, and the National Key Research and Development
Program of China under grant No.2016YFB0200400.

REFERENCES
[1] 2011. �e University of Florida Sparse Matrix Collection. (2011). h�p://www.

cise.u�.edu/research/sparse/matrices/
[2] 2013. Koblenz network collection. (2013). h�p://konect.uni-koblenz.de
[3] Virat Agarwal, Fabrizio Petrini, Davide Pase�o, and David A. Bader. 2010. Scal-

able Graph Exploration on Multicore Processors. In Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 1–11.

[4] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceska. 2011. Computing Strongly
Connected Components in Parallel on CUDA. In Proceedings of the 25th IEEE
International Parallel & Distributed Processing Symposium (IPDPS), 544–555.
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