
Design and Evaluation of a Novel DataFlow based BigData
Solution

Yao Wu
ET International Inc.

Department of Electrical and
Computer Engineering,
University of Delaware,

Newark, DE
ywu@etinternational.com

Long Zheng
Department of Computer
Science and Engineering,

Shanghai Jiao Tong University,
Shanghai, China

longzheng@sjtu.edu.cn

Brian Heilig
∗

ET International Inc.
Newark, DE

bheilig@etinternational.com

Guang R. Gao
Department of Electrical and

Computer Engineering,
University of Delaware,

Newark, DE
ggao.capsl@gmail.com

ABSTRACT
As the attention given to big data grows, cluster comput-
ing systems for distributed processing of large data sets be-
come the mainstream and critical requirement in high per-
formance distributed system research. One of the most suc-
cessful system is Hadoop which uses MapReduce as pro-
gramming/execution model and takes disks as intermedia to
process huge volume of data. However, currently, it is a con-
sensus that Hadoop is not the final solution to BigData due
to MapReduce programming model, disk based computing,
synchronous execution model and the constraint that only
supports batch processing, and so on. A new solution, espe-
cially, a fundamental evolution is needed to bring BigData
solution into a new era.

In this paper, we introduce a new cluster computing sys-
tem called HAMR which supports both batch and stream-
ing processing. To achieve better performance, HAMR inte-
grates HPC approaches, i.e. DataFlow fundamental into a
big data solution. With more speicifications, HAMR is fully
designed based on In-Memory computing to reduce the un-
necessary disk access overhead; task scheduling and mem-
ory management are in fine-grain manner to explore more
parallelism; asynchronous execution improves efficiency of
computation resource usage, and furtherly makes workload
balance across the whole cluster better. The experimental
results show that HAMR can outperform Hadoop by up to
10x in the same cluster environment.

∗This author is the corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00.
http://dx.doi.org/10.1145/2712386.2712397.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design—
Distributed systems

General Terms
Algorithms, Design, Performance

Keywords
Dataflow, In-memory processing, Fine-Grain, Bigdata

1. INTRODUCTION
The MapReduce model has become widely popular in

cluster computing systems for processing a large volume of
data sets. As the most famous implementation of MapRe-
duce, Hadoop [16] achieves massively parallel computing
on distributed large data sets across vast clusters of com-
modity computers, while providing simple workflow expres-
sion, fault tolerance, and scalability. Nowadays, Hadoop
has evolved into an ecosystem including Hive, HBase, Pig,
etc. and has become a standard framework for the big data
industry. The Hadoop MapReduce is a prominent program-
ming model for batch processing, while it cannot fully meet
the demand of streaming and real-time requests. Due to the
on-disk feature, Hadoop performs poorly on iterative algo-
rithms which are very common in machine learning and data
mining.

In terms of these critical limitations, a couple of solu-
tions have been proposed to handle streaming processing e.g.
Storm and Spark [17]. However, none of the solutions pro-
vide a general framework supporting both batch and stream-
ing processing. Moreover, most of the existing cluster com-
puting systems still rely on the coarse-grain synchronization
i.e. barrier to coordinate between phases. Therefore, the
parallelism is limited and the computation resource tends to
be wasted.

In this paper, we present a new cluster computing frame-
work called HAMR which is a dataflow-based real-time in-
memory cluster computing engine. Comparing with existing

40

big data solutions, HAMR is designed as a big data process-
ing run-time and makes a breakthrough in task scheduling,
memory management, execution model, and programming
model. Based on dataflow technology, HAMR proposes a
radically different model from MapReduce for big data pro-
cessing and naturally supports streaming and real-time com-
puting. Therefore, HAMR fully supports Lambda big data
architecture [1] by using the same programming and process-
ing model in only one computing engine. In HAMR, data
drives and determines computation, which makes the sys-
tem more intelligent, efficient, and adaptive when process-
ing data. HAMR can be seamlessly integrated into Hadoop
ecosystem. By configuration, HAMR can use YARN as the
resource negotiator to allocate and monitor compute con-
tainers for flowlet tasks on machines in the cluster. Fur-
thermore, HAMR is implemented in Java to provide user-
friendly interfaces.

The main component in HAMR is the flowlet which repre-
sents each MapReduce phase. The flowlet API is also similar
to Hadoop MapReduce one for easy use. However, the inter-
nal mechanism is considerably different. The flowlet model
is developed from codelet execution model which is rooted
in dataflow technology. In each flowlet, there are a number
of flowlet tasks which execute a portion of work. Flowlet
tasks are scheduled asynchronously in a fine-grain manner.
Once the data for the flowlet task is available, it gets ready
and will be executed when the computation resources are
free. The flowlet execution model leads to better compu-
tation resource usage and workload balance. Moreover, the
data movement flows in memory among flowlets. It saves
unnecessary disk IO overhead. If the data is too large to fit
into memory, it will be partially spilled to disk. We evalu-
ate HAMR through eight big data benchmarks with different
properties. The experimental results show that HAMR can
outperform Hadoop by up to 10x for streaming and real-time
applications.

The rest of the paper is organized as follows. Section 2
introduces the framework of HAMR and its dataflow-based
run-time design. Section 3 analyze the features of HAMR
and the benefits by apply them in the benchmarks. Section 4
describes the implementations of eight big data benchmarks
in the flowlet model. Section 5 reports the experimental
setup and results. Section 6 discusses the related work. Sec-
tion 7 summarizes the paper.

2. FRAMEWORK DESIGN
In this section, we introduce the components in the frame-

work of HAMR and focus on HAMR dataflow-based run-
time design.

As a Big Data solution, HAMR is designed to process vast
amounts of data in parallel on large clusters of commodity
hardware in a reliable, fault-tolerant manner. Fig. 1 shows
the overview of the system design.

The user interface is provided based on the execution
model of the system. The MapReduce phase style called
flowlet in HAMR is preserved in the model. According to
the parallelism and data dependencies, the programs are di-
vided and capsulated into a flowlet. Different from the exist-
ing MapReduce model, multiple flowlets in a single HAMR
job are organized as a Directed Acyclic Graph (DAG) to rep-
resent a complex workflow. There are four types of flowlets
that serve most purposes in the HAMR DAG workflow:

• Loader

In the starting phase in the workflow, the loader flowlet
tasks work to pull directly from multiple data sources
simultaneously. The data sources include but are not
limited to HDFS, HBase, local disks, distributed file
system, relational database, NoSQL database, message
broker, and other structured data sources.

• Map

Functionally, the map flowlet is similar to the map
phase in MapReduce. It consumes the key-value pairs
from upstream flowlets and produces new key-values
pairs to downstream flowlets. As shown in Fig. 1, a
map flowlet can connect to any types of flowlets instead
of only reduce in MapReduce.

• Reduce

The reduce flowlet is also similar to the reduce in
MapReduce. Unlike map, it must collects all key-value
pairs which are grouped by key after shuffling and then
process group by group.

• Partial Reduce

Different from reduce, partial reduce processes the avail-
able data immediately instead of waiting for the whole
data collection. It is extremely suitable for a computa-
tion having both commutative and associative proper-
ties. In such case, the computation can start early to
better overlap network latency and the memory usage
is compressed.

In-memory computation is supported by deploying buffers
between flowlets. By keeping intermediate data in memory,
disk spillover is reduced. In most cases the memory buffer
can be freed timely and reused after data processing, be-
cause computation is usually not very intensive in big data
applications and data flows out quickly. However, the data
may exceed the limit of the buffer for the reduce flowlet.
Similar to the reducer in MapReduce, the reduce flowlet
also internally forms a barrier waiting until the upstreaming
flowlets complete. Therefore, if the data flowing into the re-
duce flowlet is too large to fit into memory, it will be spilled
to local disks.

In addition, the system provides a very flexible input/output
way in that all flowlets can communicate with data sources
dynamically. Therefore, the data can be pushed out as soon
as possible. It eliminates the unnecessary data movement
and memory occupation in the long workflow. On the other
hand, flowlets can pull the data from the source when needed
during the workflow.

HAMR exhibits similar external functions like MapRe-
duce, but the run-time mechanism is completely different.
The execution is driven by dataflow technology which is
the fundamental breakthrough in the engine. The dataflow-
based run-time environment is established by scheduling the
current tasks of all flowlets in a data driven manner. The
scheduler schedules tasks to be executed asynchronously based
on required events which can be the availability of shared re-
sources including data and computation elements e.g. CPU
cores and memory. Such a fine-grain execution leads to ex-
plore maximum parallelism in a program. In the workflow
of the system, the downstream phases can start processing

41

Map1 Partial
Reduce 1

Mem Buffer

Map 2 Map N Reduce M

Mem Buffer Mem Buffer

Loader ……

Rational
DB HDFS Local

Disk
R H L

NoSQL
DB

R

Various Data Storage Systems

Others

Map1

Partial
Reduce 1

M
em

 B
uf

fe
r

Map N Partial
Reduce M

M
em

 B
uf

fe
r

……

Batch Processing Model SubSystem

Map 2Streamer

Loader

Stream Data
Input

Streaming Processing Model SubSystem

U
se

r I
nt

er
fa

ce

L

M

R

S

M

PR

M

……

C
on

cu
rr

en
t T

as
ks

 o
f P

ha
se

s
of

Lo

ad
er

, S
tr

ea
m

er
, M

ap
 a

nd
 P

ar
tia

l R
ed

uc
er

D
at

aF
lo

w
R

un
tim

e
En

v.
D

at
aF

lo
w

Ta
sk

 S
ch

ed
ul

er
D

at
aF

lo
w

Li

br
ar

y

C
om

pu
tin

g
R

es
ou

rc
e

--
 C

PU
 C

or
es

, M
em

or
y,

 S
w

ap
 D

is
k

DataFlow Based Execution Engine

Figure 1: HAMR System Design. Based on dataflow execution engine, HAMR supports both batch and
streaming processing on different data sources.

Node

Network

Node

Node Node. . .

�����

Node Runtime

Cluster

Bin Queue

Flowlet Graph Thread Pool

Scheduler

Figure 2: HAMR dataflow-based run-time system
design. The run-time on each node works collabo-
ratively to schedule the flowlet tasks based on the
availability of data and computation resources.

the data from upstream phases before upstream phases com-
plete. As a result, HAMR achieves high resource utilization
and balanced workload. Fig. 2 shows the dataflow-based
run-time design in the cluster environment.

In a HAMR cluster, each node maintains a distributed
dataflow-based run-time called flowlet run-time. Different
from other graph engines e.g. Dryad [10], the run-time on
each node includes the whole flowlet graph instead of sub-
graph. It brings in more balanced workload on each node.
The flowlet run-time schedules each flowlet task, which is
the finest granularity of parallelism in the run-time, to the
computation unit by the scheduling rules. Inside a flowlet
task, the instructions are executed sequentially. A flowlet
task run asynchronously without blocking until it completes.
Flowlet execution is event-driven which means only when
the required data and resources are available, the flowlets
receive all synchronized signal and can start execution.

Each flowlet can have one of the following three status:

• Dormant: Not yet receive all required data.

• Ready: Receive all the data required to execute a
flowlet task.

• Complete: No more data from upstream flowlets.

By the run-time coordination, a flowlet changes among the
three status according to availability of data and compu-
tation resources. Initially, only loader flowlet is ready and
others are dormant.

As shown in Fig. 2, HAMR run-time handles a queue
which stores received key-value bins in each node. Each bin
represents the minimum data required to enable a flowlet.
The scheduler fetches a bin from the queue and finds its
corresponding flowlet. If the flowlet is map or partial re-
duce, the status of the flowlet becomes ready. In the case
of reduce flowlet, it needs all data instead of only one bin
data produced by upstream flowlets i.e. must wait until all
its upstream flowlets complete. The completion message is
propagated from the beginning of the workflow i.e. loader to
downstream flowlets by each node collaboratively. When the
completion message arrives at the reduce flowlet, its depen-
dency is satisfied and it is ready to execute. The run-time
fires the ready flowlet once there is a free thread in the thread
pool. The output of a flowlet is buffered, partitioned, packed
into bins. The bins are sent out by shuffling. Note that the
partial reduce flowlet does not output until the completion
of its upstream flowlets. In the cluster, each node works on
a portion of the whole key space. If the key space can be
evenly divided by partition function, the workload tends to
be balanced.

According to the run-time design, the data propagates
among the flowlets in a streaming manner. Therefore, an
effective flow control mechanism is needed to coordinate the
data steam velocity in the flowlet graph. In HAMR, when

42

the output bin buffer of a flowlet is full which means its
downstream flowlets are not able to process the data in
time, the flowlet stops the current execution immediately
and will be scheduled in a later time. Furthermore, the num-
ber of concurrent loader tasks can be decreased to control
the amount of input data.

3. KEY FEATURES
In this section, we analyze three features of HAMR and

the benchmarks which take advantage of these features.

3.1 In-memory Computation
The reason why Hadoop is very popular and widely used in

BigData is that Hadoop can handle hundreds or thousands
of Gigabytes of data on the distributed cluster, which is
barely handled by the traditional methodology. However
in order to support such quantity of data, Hadoop adopted
the on-disk solution, which contains three aspects: 1) all
input data are firstly distributed stored in disk across the
cluster. 2) Each block will be processed separately by map
and the temperate out data need disks to store/transferring
to reduce phase. 3) If the processing logic contains multiple
jobs, data must be stored in disk to connect these jobs. In
a word, Hadoop realize processing large volume of data at
cost of using disks as intermediate storage/communication,
which leads to dramatic performance degradation.

The disk is designed for data persistence not for the tem-
porary store for computing. The role that disk play in
Hadoop actually is played by memory in traditional com-
puter computing model. The on-disk solution is a compro-
mise one when Hadoop was proposed. The BigData solution
still need in-memory technology to decrease or avoid the
disk overhead, further results in a significant performance
improvement.

In HAMR, data dynamically flow via memory in a fine-
grain manner from disk as input and finally to disk as out-
put. Traditional method to realize in-memory computation
is to implement mapping between memory and disk e.g.
Spark. All data is needed to load into memory before com-
putation. It wastes memory usage and is not scalable for
large data set. Besides, memory is precious resource in big
data computing not only for data storage but also data struc-
ture created during computation. Instead of cores, YARN
schedules the tasks based on available memory on nodes. On
the other hand, HAMR only loads a part of data set that is
required by current computation units into memory. Once
the computation for the data is completed, the result flows
away and the memory footprint is also vacuumed to load a
part of remaining data. All flowlets associate memory with
computation in a fine-gain manner. It utilizes memory in a
extremely efficient way.

Therefore, HAMR provide a in-memory solution to over-
come the existing on-disk one to eliminate the overhead
caused by IO access to disk. Besides, the in-memory method
is driven by data flow fundamental, which can utilize mem-
ory much more efficiently. Applications with multiple iter-
ations can get benefit from it, for example PageRank and
KCliques, which will be explained in Section 4.

3.2 Asynchronous Multi-Phase Support
In traditional control flow method, synchronization points

in form of barriers are imposed between computation el-
ements that have data dependency to achieve parallelism.

Algorithm 1 Flowlet-style K-Means Algorithm

1: Initialize parameters including input/output file path
and initial centroids.

2: TextLoader (loader): Automatically split and read text
files, producing 〈 line offset, line of text 〉 as the output
key-value pair to ClusterGen.

3: ClusterGen (mapper): For each movie, do clustering
based on its similarity with the centroids; output each
cluster in separate files; pass the similarity info to New-
CentroidGen.

4: NewCentroidGen (reducer): Get the new centroids
based on similarity info; pass the line offset of the new
centroid to corresponding node where the file including
the new centroid lives.

5: NewCentroidInfoGet (mapper): Read the new centroid
info from files according to the line offset; broadcast the
new centroid info to all nodes.

6: CentroidUpdate (mapper): Update new centroid info
locally in each node.

This coarse-grain parallelism brings in workload balance prob-
lem and computation resource under-utilization. Hadoop
uses a simple MapReduce programming model that splits
data processing into map and reduce phases in one job.
Moreover, a barrier exists between map and reduce phase
in a job. Reduce tasks can pull the data from map tasks
based on shuffle after the first map task is done. It effec-
tively hides the latency of network. However, the problem
is that the computation work of reduce tasks will not start
until all the data are ready for all the reduce tasks. As
a result, the precious computation resources are wasted by
waiting for the data that they don’t care about.

HAMR solves the problem by using data to drive the com-
putation. As a result, the unnecessary barriers can be re-
moved and each computation element works asynchronously
and adaptively to response to arriving data. Using in-memory
support we mentioned in Section 3.1, asynchronous compu-
tation can be realized by starting as soon as the data that
can trigger it is available in memory. This asynchronous
processing style tends to achieve better resource utilization
which will lead to better performance.

In Hadoop, each job only has two phases: map and reduce
and the order is also fixed: first map, then reduce. Thus,
many complex problems can not be implemented with a sin-
gle MapReduce job, but can be implemented in Hadoop by
chaining multiple MapReduce jobs together. It brings in
not only the overhead of creating and starting new jobs in
Hadoop but also extra disk IO. Besides, between jobs, there
is also a barrier to ensure data availability. Sometimes, this
barrier is not necessary, since following job may start as soon
as a part of data arrives.

However, HAMR employs much more flexible way to orga-
nize the computation phases: a chain of flowlets can be setup
in a job; one flowlet can to connect to any type of flowlet;
there are can be multiple flowlets flowing to one flowlet and
vice verse. With multi-phase support, a chain of jobs can be
packed into a DAG style job. It can be used to implement
some complex application that is not suitable for Hadoop
like graph problem. The barriers between jobs are automat-
ically removed since each phase in the big job works asyn-
chronously. In-memory flow style within the big job helps
to eliminate the unnecessary disk IO. Besides, multi-phase

43

implementation breaks MapReduce style and provides more
opportunities to achieve some optimizations e.g. data reuse.
If one data set requires two different of operations, HAMR
only needs to load data once and connect the loader to two
flowlets with different functions.

Therefore, HAMR provides an asynchronous multi-phase
solution to overcome the barrier in a job or between jobs
and eliminate the overhead caused by creating jobs and ex-
tra IO access to disk. Besides, the asynchronous multi-phase
method is driven by data flow fundamental, which can uti-
lize computation resource much more efficiently. Applica-
tions with multiple jobs can get benefit from it, for example
PageRank and KCliques, which will be explained in Sec-
tion 4.

3.3 Data Locality Awareness
Hadoop always tries to assign computation to the node

which is closest to the data in HDFS in order to save the
overhead of network transmission. However, this kind of lo-
cality exploration is limited and HAMR has more flexible
input and output which can be aware of locality. Each com-
putation node can only process and output if needed the
data on its local disk and output can happen not only in re-
duce as Hadoop does but also in map. The benefit is that it
is not necessary to deliver large data between two flowlets.
Instead, in the case that only a part of data is needed in
the downstream flowlet, small data e.g. index or identi-
fier is passed. When large data is needed again, by adding
new flowlet, go back to the node which the data resides in.
It not only save the overhead of network transmission but
also memory usage. K-Means and Classification are typical
benchmarks to show the locality advantage. Classification
is very similar to K-Means except that it does not generate
new centroids, so we do not provide flowlet-style Classifica-
tion algorithm here.

4. BENCHMARK ANALYSIS
In this section, we give a description of the benchmarks,

their input data set and their implementation in the HAMR
flowlet model. We implemented eight benchmarks in HAMR:
K-Means, Classification, PageRank, KCliques, WordCount,
HistogramMovies, HistogramRatings and NaiveBayes Train-
ing. The corresponding Hadoop implementation can be found
in Purdue MapReduce Benchmarks Suite (PUMA) [3] and
Intel HiBench [2] except K-Cliques which is implemented by
us.

• K-Means

K-Means is a useful data mining algorithm to clus-
ter input data into k clusters. K-Means improves the
clustering by iterating successively. Since each itera-
tion in K-Means algorithm is exactly the same, only
a single iteration is implemented and compared with
PUMA K-Means which is a single iteration K-Means
benchmark in Hadoop. The movie data is provided by
PUMA.

The flowlet style implementation of K-Means is shown
in Alg. 1. Hadoop version uses a single job to imple-
ment one iteration of K-Means and the intermediate
data are sorted and written to disks in map phase and
shuffled through network and merged in reduce phase.
This process causes big disk IO and network overhead

Algorithm 2 Flowlet-style PageRank Algorithm

1: Initialize parameters including input/output file path,
converge condition and max number of iterations.

2: while not converge and less than max number of itera-
tions do

3: if 1st iteration then
4: EdgeFileLoader (loader): Read edge input file,

producing 〈 srcPage, dstPage 〉 as the output
key-value pair to HashJoinRed.

5: HashJoinRed (reducer): For each srcPage, col-
lect its dstPage list and save it into memory;
divide srcPage’s pagerank by its outdegree, and
send the average value to its dstPages.

6: else
7: EdgeLoader (loader): For each srcPage, load

its dstPage list from memory, calculate and
send its average pagerank to its dstPages.

8: end if
9: MergeRed (reducer): For each dstPage, sum the av-

erage pageranks from its srcPages and produce the
updated pagerank; compare the updated pagerank
with old one and save it into memory.

10: ContMap (mapper): Get the results of the compar-
ison and check it converges or not.

11: end while
12: Output the final pagerank to the output file.

that slows down the computation. On the other hand,
the flowlet style implementation only passes the data
location information between flowlets after processing
the real data. When the real data is needed again,
according to the data location information, route back
by shuffle function to the node which the data resides
in and work on the data. In K-Means problem, at
the expense of involving more flowlets, locality can be
explored and the disk IO and network overhead is re-
duced dramatically. Besides, it also saves memory by
storing the data location information instead of huge
real data.

• Classification

Classification classifies the movies into one of k prede-
termined clusters. As K-Means, it computes the cosine
vector similarity of a given movie with the centroids,
and assigns the movie to the cluster whose centroid it
is closest to. The difference is that K-Means needs to
produce new centroids for the next iteration and cen-
troids in Classification is fixed. The input data is the
same as K-Means.

The flowlet style implementation of Classification is
very similar to K-Means, so we do not show it. Classi-
fication also takes advantage of data locality awareness
feature by reading/writing the data directly from/to
local disk.

• PageRank

PageRank assumes that more important pages incline
to have more links from other pages. It counts the
number and quality of links to a page to make an esti-
mation of the importance of the page. The input data
are automatically generated Web data whose hyper-

44

Algorithm 3 Flowlet-style K-Cliques Algorithm

1: Initialize parameters including input/output file path
and K.

2: KCliquesLoader (loader): Stream input relationships
e.g. a knows b as key-value pairs to KCliquesGraph-
Builder.

3: KCliquesGraphBuilder (reducer): Store relationship in
internal data structures; when all data is ready in mem-
ory, call TwoCliquesGenerator.

4: TwoCliquesGenerator (loader): Generate potential 2-
Cliques from data structures; Stream 2-Cliques to
2CliquesVerify.

5: for I in 2 to K-1 do
6: ICliquesVerify (mapper): Take input I-Cliques

and validate; If valid, generate (I+1)-Cliques and
stream (I+1)-Cliques to (I+1)CliquesVerify.

7: end for
8: KCliquesVerify (mapper): Validate K-Cliques and out-

put K-Cliques if valid.

links follow the Zipfian distribution. HiBench provides
the input data generator for PageRank benchmark.

The flowlet style implementation of PageRank is shown
in Alg. 2. Hadoop version uses two jobs to implement
one iteration. HAMR version combines these two jobs
into one multi-phase job. By in-memory computation,
it eliminates the barrier and disk IO between jobs of
Hadoop. In the phase style implementation, when a
job i.e. an iteration completes, the intermediate data
is organized in a distributed manner into the memory
of all nodes. Instead of reading from disk, the follow-
ing job loads the data from memory. As a result, it
improves the performance tremendously.

• K-Cliques

K-Cliques is a map-reduce application that works us-
ing an iterative map-reduce strategy to find fully con-
nected sets of K vertices. A K-Clique query searches
the graph to identify all cliques of size K. The input
data is generated by R-MAT graph generator package.

The flowlet style implementation of K-Cliques is shown
in Alg. 3. As PageRank, K-Cliques also replaces jobs
in Hadoop with flowlets. Each flowlet works asyn-
chronously and computes in-memory. K-Cliques gets
the benefits from these features of HAMR in the same
way.

• WordCount

WordCount counts the total occurrences of each unique
word in input files. The input data is generated by

Table 1: Cluster Information.
of compute nodes 16

CPU Count 2
CPU Type Intel Xeon Processor E5-2620
CPU MHz 2GHz
Memory 32GB

Network Type 4x FDR InfiniBand
Local Disk Type SATA-III
of Local Disk 5

Algorithm 4 Flowlet-style NaiveBayes training Algorithm

1: Initialize parameters including input/output file path.
2: TextLoader (loader): Automatically split and read text

files, producing 〈 line offset, line of text 〉 as the output
key-value pair to IndexInstancesMapper.

3: IndexInstancesMapper (mapper): Parsing the line of
text and produce 〈 label, vector 〉 key-value pair to Vec-
torSumReducer.

4: VectorSumReducer (partial reducer): For each label,
sum up its vectors and output the sum vector; sum up
all feature weights in the sum vector and output the sum
weight per label; produce 〈 feature, weight 〉 key-value
pair to WeightSumReducer.

5: WeightSumReducer (partial reducer): For each feature,
sum up its weights and output the sum weigh per fea-
ture.

making multiple copies of a book.

It is very simple benchmark which can be implemented
in two phases. The implementation in HAMR is sim-
ilar to that in Hadoop. However, instead of using re-
duce as Hadoop, HAMR can apply partial reduce to
increase the count as soon as the occurrence of the
word. It eliminates the unnecessary waiting for aggre-
gation.

On the other hand, by using Combiner in Hadoop,
the intermediate data is so small that the disk IO and
network overhead can be almost overlapped by compu-
tation. As a result, performance gap between HAMR
and Hadoop diminishes.

• HistogramMovies

HistogramMovies produces a histogram of movie data
based on the average rating of movies. The movies
data can be downloaded from PUMA website as shown
above. This benchmark is very similar to WordCount
and can not fully utilize the features of HAMR. The
performance improvement is limited.

• HistogramRatings

HistogramRating is very similar to HistogramMovies
and produces a histogram of the user ratings. The in-
put data is the same as HistogramMovies. It is very
similar to HistogramMovies, so the performance im-
provement can not be guaranteed.

Table 2: Performance comparison between IDH 3.0
and HAMR. The unit of execution time is second.

Benchmark Data Size IDH 3.0 HAMR Speedup
K-Means 300GB 5215.079 505.685 10.31

Classification 300GB 2773.660 212.815 13.03
PageRank 20GB 2162.102 158.853 13.61
KCliques 168MB 1161.246 100.945 11.50

WordCount 16GB 89.904 75.078 1.20
HistogramMovies 30GB 59.522 34.542 1.72
HistogramRatings 30GB 66.694 252.198 0.26

NaiveBayes 10GB 263.078 108.29 2.43

45

• NaiveBayes Training

According to the Mahout implementation in Intel Hi-
Bench, NaiveBayes Training benchmark trains the Naive
Bayesian trainer. The input data are generated doc-
uments whose words follow the Zipfian distribution.
HiBench provides the input data generator for this
benchmark.

The flowlet style implementation of NaiveBayes Train-
ing is shown in Alg. 4. It is implemented by a single
job with three flowlets that replace two jobs in Hadoop
version. The intermediate data is also small. As ex-
plained in WordCount, such benchmark can not take
much advantage of the features of HAMR. The perfor-
mance improvement is also limited.

5. EXPERIMENT
In this section, we evaluate the performance of eight bench-

marks on HAMR and compare it with Intel Distribution for
Apache Hadoop Software (IDH) 3.0. Section 5.1 introduces
our experimental environment. Section 5.2 reports our ex-
perimental results.

5.1 System Specification
We did the experiments on a 16 nodes cluster and Table 1

shows the cluster information in detail.
IDH 3.0 is installed on the cluster. IDH 3.0 improves

Hadoop performance by optimizations for Intel Xeon pro-
cessors and other Intel products. Except that, IDH 3.0
does not make any performance optimizations on Apache
Hadoop. The main difference between IDH 3.0 and previ-
ous versions is that it integrates YARN aka MRv2 which
manages compute resources to applications more efficiently
than MRv1. Besides, IDH 3.0 supports Lustre, but we still
use HDFS for Hadoop input and output. One node is config-
ured as NameNode and ResourceManager. Other 15 nodes
are configured as DataNode and NodeManager. Therefore,
there are 15 nodes executing the MapReduce program in
parallel.

HAMR is also deployed on the cluster. Input and output
data is distributed between the local disks of each node and
the engine reads and writes from the local disks. In order to
make a fair comparison with IDH, 15 nodes are configured
to run the HAMR instance.

5.2 Experimental Result
In this section, we report and analyze the experimental

results based on the features of HAMR.
Fig. 3 shows the speedup HAMR achieved comparing with

IDH 3.0. Table 2 gives the performance numbers of all
benchmarks. Note that the input graph of K-Cliques is small
(218 vertices and 7612608 edges) that may limit parallel IO
advantage of Hadoop. However, because all of the clique

Table 3: Performance of HAMR using Combiner.
The unit of execution time is second

Benchmark Data Size HAMR Speedup
HistogramMovies 30 GB 33.234 1.79
HistogramRatings 30 GB 215.911 0.31

information must fit into memory in reduce phase, Hadoop
quickly runs out of memory for larger graphs. HAMR solves
this problem by building the graph into memory distribut-
edly (We create one JVM per node instead of one JVM per
task as Hadoop, so in the same node all tasks can share mem-
ory.) and making a fine-grain processing on each clique in-
dependently. This kind of distributed memory will be build
into HAMR as a component called key-value store. The
optimization will be also make on the key-value store e.g.
using efficient underlying data structure.

In Fig. 3(a), the performance of the four benchmarks
boosts at least 6x by our engine. As expected in Section 3,
these four benchmarks take advantage of engine features
that beat Hadoop. We can see that the applications which
are complex i.e. iterative and multi-phase are more likely
to make use of the features of HAMR. For example, HAMR
should be good at machine learning and graph algorithm.

Fig. 3(b) shows the speedup of another four benchmarks
which are simple and IO intensive use case. Hadoop are very
good at such applications. We can see that the speedup de-
creases. Note that for HistogramRating Hadoop is even 3x
faster than HAMR. The reason is that the performance of
HAMR will degrade when key space produced by input data
distributes extremely unevenly and meanwhile flow control
happens. If key space is not evenly distributed, by shuffle it
is possible that few computation node will process most of
the workload. When the workload beyond the computation
capacity of that node, flow control will occur to slow or stop
loading data. Though busy nodes still keep busy to make
the data flow fluently, the nodes which process the rare keys
are likely to wait for work. The worst case is that the nodes
handling rare keys do not work until other nodes finish deal-
ing with popular keys. It brings in severe under utilization
of the computation resources. On the other hand, Hadoop
is not suffered by data distribution problem, because of its
distributed IO on map input splits and the barrier between
map and reduce phase to ensure whole data availability. In
HAMR, it will be helpful to design more powerful loader
that can cut the whole input data into splits and randomly
select splits for further processing in the following flowlets.
Moreover, the contention on shared variables also harms the
performance. Especially for HistogramRating, the number
of the shared variables is very small i.e. five rates. In the
partial reduce flowlet, all threads (32 threads) atomically
update only one variable on each node (By shuffling, five
rates are distributed to five nodes in the cluster.). There-
fore, severe memory contention happens. This problem will
be solved in HAMR run-time design by enforcing serializa-
tion on the variable access using a single thread each time.

We also implemented combiner in HistogramMovies and
HistogramRatings. Table 3 shows the performance with
combiner. We can see that combiner does not help a lot
in the speedup comparing with Hadoop. The main contri-
bution of combiner in Hadoop is to reduce the intermediate
data. As a result, it saves disk IO overhead and network
transmission overhead. However, in HAMR, data is kept in
memory and flowing away as soon as possible. There is no
disk operation involved and network overhead is overlapped
by the computation. Thus, the features of HAMR limits the
function of combiner. On the other hand, combiner helps
flow control. That is the reason why HistogramRatings im-
proves more that HistogramMovies by using combiner.

46

0! 5! 10! 15!

Baseline!

K-Means!

Classification!

Pagerank!

K-Cliques!

(a) The speedup of dataflow inspired computation en-
gine on four benchmarks which takes advantage of its
features.

0! 0.5! 1! 1.5! 2! 2.5! 3!

Baseline!

WordCount!

HistogramMovies!

HistogramRatings!

NaiveBayes!

(b) The speedup of dataflow inspired computation engine on
four benchmarks which are IO intensive i.e. that can make
use of batch processing of Hadoop.

Figure 3: Performance comparison between IDH 3.0 and HAMR.

6. RELATED WORK
As driven by industrial requirement, cluster computing

system for distributed processing of large data sets is draw-
ing more and more attention. One of the most famous works
on this topic is Hadoop[16] which uses a very simple pro-
gramming model called MapReduce. Disk based Hadoop is
designed to process the data in a batch manner. The over-
head of disk IO and network can largely be hidden by over-
lapping shuffle with computation. Hadoop performs well in
offline processing cases. Hadoop is continually evolving gen-
eration by generation. Based on more sophisticated schedul-
ing strategy YARN can make use of computation resource
more efficiently. Now Hadoop forms an ecosystem which
provides a lot of powerful tools e.g. HBase, Hive, Mahout
and etc.. It seems that no one can replace but only integrate
into Hadoop ecosystem.

Although Hadoop is the most popular and widely used
bigdata solution, there are several alternatives that provide
some advantages. Spark[17] is a scalable cluster computing
environment which aims to fast processing by supporting in-
memory computation. It is designed for the workload which
is iterative and reuses the data multiple times. The data
is cached in distributed memory over all nodes and paral-
lel operations are performed on it. Twister[8] enhances the
typical MapReduce computation by efficient supporting for
iterative applications. It selectively caches the intermediate
data into the distributed memory for the next iteration.

Different from Hadoop, Spark, and Twister which are de-
signed for offline data processing, Storm[4] aims to real-time
processing for steams of data based on a graph of compu-
tation. In Storm, a topology is created to represent the
problem into multiple stages where data streams are got
processed. The worker nodes are statically assigned a sub-
set of topology. S4[14] is another cluster computing platform
that supports distributed stream processing.

Since MapReduce is only able to design a simple com-
putational pattern, GraphLab[12] and Dryad[10] use graph
based on data dependency to explore parallelism in complex
distributed algorithm design. By efficiently and intuitively
expressing solutions, they are very suitable for graph prob-
lem and machine learning algorithm.

Our dataflow-based bigdata solution called HAMR is dif-
ferent from all the cluster computing systems above. It is
based on the codelet execution model[18] that roots in the

classical dataflow model originally proposed by Dennis[6].
The codelet execution model is a hybrid model which incor-
porates the advantages of macro-dataflow[13] and the Von
Neumann model. The codelet execution is driven asyn-
chronously by events which can be data dependency and
resource requirement. All codelets are organized as a DAG
based these relations. Inside a codelet, the program is exe-
cuted in a control flow manner. The codelet execution model
provides an opportunity to maximize the parallelism while
minimize the overhead of resource utilization. As multi
and many-core systems are becoming popular, codelet based
execution model is drawn more and more attention. The
works based on the codelet model include ParalleX execution
model[9], SWift Adaptive Runtime Machine (SWARM)[11],
TIDeFlow[15], FreshBreeze[7] and Habanero[5].

We extend the codelet execution model from multi and
many-core system to cluster system. By taking the advan-
tage of the codelet model, our cluster computing system
achieves better task synchronization and resource utiliza-
tion than other systems. As a result, it provides better per-
formance. Besides, we extend traditional MapReduce pro-
gramming style to more flexible multi-phase DAG style that
is able to implement an complex problem in a more efficient
way. Our bigdata solution also uses other the technology
e.g. in-memory computing. As a result, it is suitable for
both batch and real-time processing.

7. CONCLUSION
In this paper, we propose a new cluster computing system

i.e. HAMR. It incorporates HPC technology into big data
scenario to achieve better performance. Dataflow-based run-
time efficiently schedules the data processing in a fine-grain
manner. In-memory computing is supported in HAMR to
reduce unnecessary disk IO. The experimental results show
that HAMR can achieve up to 10x speedup comparing with
Hadoop. Moreover, HAMR supports multi-phase complex
workflow and can seamless integrate into Hadoop ecosystem.

During writing this paper, HAMR is making a great progress.
More useful features e.g. key-value store and master-slave
mode are developed with performance optimization. Flowlet
scheduling and flow control mechanism are also improved.
More user-friendly APIs are designed. In further, HAMR
will provide higher level interactive interfaces like SQL. Equipped
with these features, HAMR will become a powerful big data

47

engine for both batch and streaming processing.

8. ACKNOWLEDGMENTS
This work is supported by ET International Inc.

9. REFERENCES
[1] http://lambda-architecture.net/.

[2] https://github.com/intel-hadoop/hibench.

[3] https://sites.google.com/site/farazahmad/
pumabenchmarks.

[4] http://storm.apache.org.

[5] R. Barik, Z. Budimlic, V. Cavè, S. Chatterjee,
Y. Guo, D. Peixotto, R. Raman, J. Shirako,
S. Taşırlar, Y. Yan, et al. The habanero multicore
software research project. In Proceedings of the 24th
ACM SIGPLAN conference companion on Object
oriented programming systems languages and
applications, pages 735–736. ACM, 2009.

[6] J. B. Dennis. First Version of a Data Flow Procedure
Language. In Programming Symposium Lecture Notes
in Computer Science, volume 19, pages 362–376.
Springer, 1974.

[7] J. B. Dennis. Fresh Breeze: a Multiprocessor Chip
Architecture Guided by Modular Programming
Principles. ACM SIGARCH Computer Architecture
News, 31(1):7–15, 2003.

[8] J. Ekanayake, B. Zhang, T. Gunarathne, S. Bae,
J. Qiu, and G. Fox. Twister: A Runtime for Iterative
Mapreduce. In Proceedings of the 19th ACM
International Symposium on High Performance
Distributed Computing (HPDC-10), pages 810–818,
Chicago, Illinois, USA, June 20-25, 2010.

[9] G. R. Gao, T. Sterling, R. Stevens, M. Hereld, and
W. Zhu. Parallex: A study of a new parallel
computation model. In Proceedings of IEEE
International Parallel and Distributed Processing
Symposium (IPDPS-07), pages 1–6, Long Beach, CA,
USA, March 26-30 2007.

[10] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly.
Dryad: Distributed Data-Parallel Programs from
Sequential Building Blocks. In ACM SIGOPS
Operating Systems Review, volume 41, pages 59–72,
2007.

[11] C. Lauderdale and R. Khan. Towards a Codelet-based
Runtime for Exascale Computing: Position Paper. In
Proceedings of the 2nd International Workshop on
Adaptive Self-Tuning Computing Systems for the
Exaflop Era (EXADAPT-12), pages 21–26, London,
United Kingdom, March 3, 2012.

[12] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Distributed
Graphlab: A Framework for Machine Learning and
Data Mining in the Cloud. Proceedings of the VLDB
Endowment, 5(8):716–727, 2012.

[13] W. A. Najjar, E. A. Lee, and G. R. Gao. Advances in
the Dataflow Computational Model. Parallel
Computing, 25(13):1907–1929, 1999.

[14] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari. S4:
Distributed Stream Computing Platform. In The 10th
IEEE International Conference on Data Mining
Workshops (ICDMW-10), pages 170–177, Sydney,
Australia, December 13, 2010.

[15] D. Orozco, E. Garcia, R. Pavel, R. Khan, and G. R.
Gao. TIDeFlow: The Time Iterated Dependency Flow
Execution Model. In Proceedings of the 1st Workshop
on Data-Flow Execution Models for Extreme Scale
Computing (DFM-11), pages 1–9, Galveston, TX,
USA, October 10, 2011.

[16] T. White. Hadoop: The Definitive Guide. O’Reilly,
2012.

[17] M. Zaharia, M. Chowdhury, M. J. Franklin,
S. Shenker, and I. Stoica. Spark: Cluster Computing
with Working Sets. In Proceedings of the 2nd USENIX
Workshop on Hot Topics in Cloud Computing
(HotCloud-10), pages 10–16, Boston, MA, USA, June
22-25, 2010.

[18] S. Zuckerman, J. Suetterlein, R. Knauerhase, and
G. R. Gao. Using a ”Codelet” Program Execution
Model for Exascale Machines: Position Paper. In
Proceedings of the 1st International Workshop on
Adaptive Self-Tuning Computing Systems for the
Exaflop Era (EXADAPT-11), pages 64–69, San Jose,
CA, USA, June 5, 2011.

48

