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Abstract
Many HPC applications require dynamic load balancing to
achieve high performance and system utilization. Different
applications have different characteristics and hence require
different load balancing strategies. Invocation of a subopti-
mal load balancing strategy can lead to inefficient execution.
We propose Meta-Balancer, a framework to automatically
decide the best load balancing strategy. It employs random-
ized decision forests, a machine learning method, to learn a
model for choosing the best load balancing strategy for an
application represented by a set of features that capture the
application characteristics.

1. Introduction
HPC applications are increasingly becoming complex and
frequently use dynamic structures and adaptive refinement
techniques. Such complex techniques introduce load im-
balance and therefore, require dynamic load balancing to
achieve good performance. Different applications have dif-
ferent characteristics requiring the use of different load bal-
ancing strategies. Optimal strategy depends on a complex
combination of various application characteristics making it
difficult to select the best one. Further, load balancing algo-
rithms have also grown in number making this choice harder.
Using a load balancer that is not well suited for the applica-
tion will result in loss of performance. Typically, the run-
time behavior of the application depends on the problem be-
ing simulated and the machine characteristics. As a result,
choosing the load balancing strategy that gives the best per-
formance becomes difficult. Most commonly, the application
programmer decides which load balancer to use and when to
do load balancing based on some educated guess. This may
result in a suboptimal solution.
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We propose an introspective run-time system component
called Meta-Balancer to automate the decision of choosing
the best load balancing strategy for an application. Previ-
ous works (Pearce et al. 2012; Siegell and Steenkiste 1996)
proposes models to predict load balancing period based on
the cost benefit of load balancing and (Pearce et al. 2012)
predicts load balancing strategy but from a limited set. In
constrast our work proposes a framework that makes a se-
lection from six different strategies and uses machine learn-
ing technique to do so. Meta-Balancer continuously moni-
tors the application and based on the observed characteristics
automatically selects the load balancing strategy. Random-
ized decision forests, a machine learning method, is used to
learn a model for choosing the best load balancing strategy
for an application represented by a set of features that cap-
ture the application characteristics. Meta-Balancer is imple-
mented on Charm++ runtime system and takes advantage of
its support for load balancing.

2. Meta-Balancer Strategy Selection
Meta-Balancer framework monitors the application and sys-
tem characteristics by automatically collecting statistics
about it. It then chooses the load balancing strategy based
on the observed characteristics. It is implemented as a part
of the Charm++ runtime system. Meta-Balancer consists
of two major components, namely, asychronous statistics
collection and decision making module for the ideal load
balancing strategy.

2.1 Meta-Balancer Statistics Collection
Meta-Balancer collects load and communication informa-
tion about the application frequently. These statistics are col-
lected at the iteration boundary. The load balancing frame-
work in Charm++ automatically collects the load and com-
munication at each PE and stores it in a distributed manner.
The Meta-Balancer uses some of the information stored in
the load balancing framework. The statistics that are col-
lected are normalized and used as features for the random
forest machine learning technique.
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Train Accuracy: 100.00 %
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Test Accuracy: 82.35 %
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Figure 1: Accuracies on the training and test set along with
confusion matrix.

2.2 Load Balancing Strategy Selection
There are a number of load balancing strategies in Charm++.
These strategies handle load imbalance for different applica-
tion characteristics. When no load balancing is required, we
refer to it as NoLB. The strategies used are:
GreedyLB: A strategy that uses greedy heuristic to assign
heaviest tasks onto least loaded processors iteratively.
RefineLB: A strategy that incrementally transfers the load
away from the overloaded processors.
MetisLB: A strategy that passes the load information and
the communication graph to METIS graph partitioner.
ScotchLB: A strategy that uses SCOTCH graph paritioning
library to make load balancing decisions.
HybridLB: A hierarchical strategy in which at each level of
the hierarchy, the root node performs the load balancing for
the processors in its sub-tree.
DistributedLB: A refinement based distributed load balanc-
ing strategy that does probabilistic work transfer.

2.3 Load Balancing Strategy Selection Using Machine
Learning

Machine learning techniques have been used to do pattern
recognition. These techniques operate by building a model
from a sample input set and learn to predict the outcome.
We use a supervised random forest technique to predict the
load balancing strategy. In supervised learning algorithms,
the tool is presented with example inputs and their desired
output.

A benchmark, called lbtest, was used to generate the
training set for the random forest. This benchmark was run
with different parameters to generate different configura-
tions. For each configuration, all the load balancers were
run to identify the best performing load balancing strategy.
For the training set, the statistics collected were used as in-
put features to the machine learning algorithm. The desired
output for the training is the best performing load balancing
strategy.

3. Experiments
The benchmark used for the strategy selection is lbtest. It
was run on Blue Waters, a hybrid XE/XK system located
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Figure 2: Performance of Lassen using the trained model

at NCSA.More than 200 samples were collected to generate
the training set for the machine learning model. The samples
were divided into training and test set and the learning algo-
rithm was given the training set and evaluated on the test set.
The expected outcome is the best performing load balanc-
ing strategy. Figure 1 shows the performance of the machine
learning model in predicting the expected outcome. We can
see that it is able to achieve an accuracy of 82%. The confu-
sion matrix shows how the expected outcome varied.

We used the trained model on a new application, Lassen,
which is a LLNL proxy app to study detonation shock dy-
namics, to predict the ideal load balancing strategy. Figure 2
shows the total application time with NoLB, worst, best and
the predicted load balancing strategies. Meta-Balancer ac-
curately predicts the best performing load balancer for 128
cores to be GreedyLB and for 1024 to be DistributedLB. For
256 and 512 core runs, the predicted (GreedyLB) is very
close to the best performing load balancing strategy (Dis-
tributedLB). The predicted load balancing strategy gives an
improvement ranging from 30% to 100%.
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