
Ace: Linguistic Mechanisms for Customizable Protocols

Mukund Raghavachari Anne Rogers
Department of Computer Science AT&T Labs-Research

35 Olden Street 600 Mountain Avenue
Princeton University PO BOX636
Princeton, NJ 08540 Murray Hill, NJ 07974

mrmOcs.princeton. edu amrOreseasch. att. com

Abstract

Customizing the protocols used to manage accesses to
ditTerent data structures within an application can im-
prove the performance of shared-memory programs substan-
tially [10, 21]. Existing systems for using customizable pro-
tocols are, however, hard to use because they force programm-
ers to rely on low-level mechanisms for manipulating these
protocols. Since several shared-memory systems implement
protocols in software and can support customizable proto-
cols, the development of intuitive abstractions for the use of
application-specific protocols ia important.

We have designed a language, Ace, that integrates sup-
port for customizable protocols with minimal extensions
to C. Ace applications are developed using the standard
shared-memory model with a default sequentially consistent
protocol. Performance can then be optimized, with minor
modifications to the application, by experimenting with dif-
ferent protocoI libraries. In thw paper, we isolate the issues
involved in providing language support for using customiz-
able protocols and present novel language abstractions for
their easy use. We describe the implementation of a com-
piler and runtime system for Ace, and d~cuss the issuea in-
volved in their design. We also present measurements that
demonstrate that Ace hss good performance compared to
an efficient software distributed shared-memory system.

1 Introduction

Shared memory’s popularity as a parallel programming
model is due, in part, to the fact that the complexity of
communication is concealed from the programmer. This ab-
straction can simplify programming significantly, especially
for problems with irregular access patterns. Most shared-
memory systems, however, can suffer from decreased perfor-
mance because they use a single or a small number of tied
communication mechanisms to share data, inefficiencies oc-
cur when there is a mismatch between a program’s access
pattern and the system’s communication protocol. For ex-
ample, producer-consumer style sharing is not well-suited to

Permission to make digilal/hard copy of part or all this work for

personal or classroom usa is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tage, the copyright notice, the title of the publication and its date

aPPear, and nOtice is given that copying is by permission of ACM,
inc. To copy otherwise, to republish, to post on servers, or to

redistribute to lists, requires prior specific permission and/or a fee.

PPoPP ’97 Las Vegas, NV

@ 1997 ACM 0-89791 -906 -8/97 /0006,,. $3.50

an invalidation protocol [10].
Previous work has shown that by tailoring the proto-

cols used to handle accesses to data to the access patterns
of the data structures, the performance of shared-memory
programs can be improved substantially [10, 21]. It is imp-
ortant, therefore, for shared-memory systems to support
customizable protocols, that is, allow programmers the abil-
ity to optimize communication performance by managing
the protocols that are used for accesses to different data
within an application. Existing systems for customizable
protocols, such as Tempest [25], are hard to use because
they force programmers to rely on low-level mechanisms for
manipulating these protocols. Since several shared-memory
systems implement protocols in software and can support
customizable protocols [1, 3, 15, 18, 25], the development of
intuitive abstractions for the use of customizable protocols
is important.

We have designed a language, Ace, that integrates sup-
port for customizable protocols with minimal extensions
to C. Ace programmers use high-level abstractions to se-
lect the protocols associated with dtierent data structures.
Typically, a programmer will develop an application using
the standard sequentially consistent shared-memory model,
with locks and barriers for synchronization. Then, using
knowledge about the access patterns and consistency seman-
tics of data structures, programmers can optimize perfor-
mance by associating appropriate protocols with data struc-
tures. Ace has several novel featurea:

●

●

Complete separation of application and protocol wale:
Current systems for customizable protocols prwent a
hybrid shared memory/meeaage passing programming
model [25]. Since the communication code is often part
of the application code, programmers must reason ex-
plicitly about the complicated interactions between the
two portions. This error-prone process retarda appli-
cation development, because the application and the
protocols must be developed and teated as a monolithic
unit. In addition, the lack of separation between appli-
cation and communication code inhibits the creation of
protocol libraries. In our experience, encapsulation of
protocol code eases the use of customizable protocols
considerably.

High-level language abstmctions for associating proto-
wls with data structures: Current systems require pro-
grammers to associate protocols with pages and to

80

manage virtual memory explicitly. We provide an in-
tuitive abstraction, called spaces, for associating proto-
cols with data structures.

User-specified granularity: Current systems for cus-
tomizable protocols implicitly set the granularity of co-
herence of data b=d on multiples of a fixed cache-line
size. Often, assertions made by a programmer about
data are incorrect due to the presence of ~aise shar-
ing of protocols (Section 2.3). User-specified granular-
ity makes the granularity of coherence intuitive to the
programmer, and is a means of taking advantage of a
bulk transfer mechanism.

Eztensibiiity: Ace offers a clean interface for adding
new protocols to the system.

In this paper, we describe the design and implemen-
tation of Ace, and compare its performance with that of
CRL [14], an efiicient software distributed shared-memory
system (DSM). We isolate the issues involved in providing
language support, and present novel language abstractions
for the easy use of customizable protocols (Section 2). We
describe the implementation of a compiler and runtime sys-
tem for Ace, and discuss the issues involved in their de-
sign (Sections 3 and 4). Finally, we present measurements,
which demonstrate that Ace has good performance com-
pared to an efficient software DSM (Section 5).

In addition to examining the issue of language and com-
piler support of customizable protocols, a secondary goal
of this paper is to introduce a new method of implement-
ing iine-grained shared memory on distributed-memory ma-
chines. Previous research has concentrated either on using
virtual memory [4, 6, 18], or link-time object-code rewrit-
ing [28, 30] to implement shared memory. In contrast, we
leverage compiler technology to achieve high performance
with Ace. Without the use of customizable protocols, Ace’s
performance is comparable to that of CRL. Using customiz-
able protocols, Au outperforms CRL significantly. Ace
iS portable to any system that supports an Active Mes-
sages [32] mechanism.

1.1 Related Work

Tempest [25] provides support for developing application-
specific protocols, but forces programmers to use low-level
mechanisms such = explicit virtual memory management.
Tempest’s hybrid shared-memoryfmesaage-paasing model,
along with access fault control (the ability to specify pro-
tocols that execute on memory faults to data) Kinder the
creation of protocol libraries, and complicate application de-
velopment (See Section 2.1).

Munin [6] provides a fixed set of protocols that program-
mers can associate with data structures, but provides no fa-
cility for customization of protocols. In addition, the large
coherence unit of a page makes false-sharing and induced
sharing patterns [12] primary concerns. Chandra et al. [7]
study the performance of a hybrid protocol — a combination
of a software DSM and hardware shared memory. They do
not consider the use of customizable protocols in their sys-
tem.

Several other shared-memory systems offer a single or
few fixed protocols [4, 9, 18, 22, 14, 29, 28]. Shasta [28] sup-
ports fine-grain shared-memory by processing object files at
Iiik-time. However, much information that is available at
the language level is lost by link-time. For example, Shasta

attempts to merge (batch) redundant protocol actions by
checking if two accesses use offsets from the same base reg-
ister. Since type information is not available at link-time,
merging is safe only if the offsets are separated by less than
the lowest possible granularity of all data in the application.
At the language level, using type information, it is easier
to determine if two accesses belong to the same coherence
unit. Link-time optimizat ions and optimizers are also leas
portable than compilers.

Region-baaed systems, such as CRL [14], require pro-
grammers to insert annotations by hand. In CRL, shared
variables all have the same type — casts must be inserted
explicit ly where appropriate. The presence of compile-
time type chetilng makes Ace considerably easier to use.
Shasta, CRL, and Ace, are similar in that they support
user-specified granularity.

Teapot [8] is a system that facilitates the design of proto
cols. Teapot is complementary to Ace, and can be modified
to be used by Ace protocol designers.

Alewife [1], FLASH [15], SHRIMP [5] and Typhoon [25]
are architectures that provide some support for running
shared-memory protocols in software. We discuss how Ace
could be used on these architectures in Section 6.

2 Application-specific Protocols

In this section, we discuss various issues related to the use of
customizable protocols and the design of language abstrac-
tions to support them.

2.1 Encapsulation of Communication Complexity

For ease of use of customizable protocols, complete separa-
tion of application and protocol code is essential. Encap
sulation of protocols allows independent development and
testing of applications and protocols, and the creation of
protocol libraries. During the application development pro-
cess, programmers can use a standard protocol, and then
optimize performance by associating efficient protocols with
data structures. With protocol libraries, common protocols
such as update protocols, migratory protocols, etc. can be
reused by many applications.

To allow the encapsulation of protocol code, the appli-
cation/protocol interface must provide sufficient “hooks” to
allow the implementation of most common protocols. The
diverse nature of applications makes it difficult to predict
when protocol actions may be performed. For example, an
invalidate protocol requires invalidations to be performed
beforw writes. A dynamic update protocol propagates writes
automatically to sharers afier the write. Other protocols,
such as the data-race checking protocol proposed by Larus
et aL[16], can be executed either before or after accesses. It
is sometimes necessary to execute protocol actions at syn-
chronization points. For example, at barriers, a protocol
for split-phase memory operations, ss offered by Split-C[9],
must check that all outstanding memory operations have
completed. Certain static update protocols propagate up-
dates to remote cached copies of data at barriers.

Since protocols may have to be executed before and after
accesses, and at synchronization points, Ace provides full
access wntrol, the ability to specify the protocol actions
to be executed at each of these points. Previous systems,
such = Tempest, support access-jault control, the ability to
specify protocol actions that are executed when an access

to data faults in memory. To implement several common
protocols with access-fault control, protocol designers must
either violate the encapsulation of protocols or circumvent
the system in a complex and ad hoc manner.

For example, consider the implementation of a dynamic
update protocol that requires writes to be propagated after
each write. Using access-fault control, one might have the
protocol declare all data to be invalid, and fault on every
write. The problem with this approach is that the proto-
col handlers are executed before the write occurs. After the
write is performed, there is no way to return control to the
protocol so that the write can be propagated. While a pro-
tocol designer may be able to simulate full access control
by augmenting access fault control with hardware or soft-
ware mechanisms explicitly, the goal of an abstraction is to
conceal implementation details. Full access control, unlike
access-fault control, allows protocol designers to associate
handlers at appropriate points. The actual method of invo-
cation is transparent to the protocol designer.

2.2 Application/Protocol Interactions

To understand what abstractions allow programmers to ma-
nipulate protocols easily, we now consider issues relating to
how applications use protocols:

Associating Protocols with Data:
Protocols do not always operate on each logical datum inde-
pendently, but often handle a collection of data. For exsJu-
ple, a static update protocol collects ail writes to a particular
data structure, and then, propagates these updates at bar-
riers. One may also require separate instantes of the same
protocol to operate on different data structures (Section 3.3
provides an example). A language for a customizable pro-
tocoIs requires a mechanism for associating protocols with a
collection of data, such as a data structure. We address th~
issue by providing a high-level abstraction, called spaces. A
space manages a subset of the address space and handles all
allocations, accesses and synchronization to data within it.
To associate a protocol with a data structure, a program-
mer declares a space, associates a protocol with the space
(the default is a sequentially consistent protocol), and then
allocates aIl nodes of the data structure from that space.

Changing Protocols:
As the execution of a program passes through ditferent
phases, the access patterns of its data structures may
change. It is sometimes necessary, for efficiency or correct-
ness, to change the protocol associated with a data struc-
ture. For example, in Water [31], the program alternates
between phsaea where intra-processor and inter-processor
calculations are made. We have found that shifting between
a null protocol for the intra-processor phase, and an update
protocol tailored to the communication pattern of the inter-
processor phase has a speedup of two over a sequentially
consistent execution (using Ace). Since each of these pro-
tocoIs make assumptions about the access patterns of their
phases, neither could be used independently for the whole
application.

Bennett et al. [3] have also found that data structure ac-
cess patterns can change over the course of an application.
As parallel applications become larger and more complex,
we believe that the changing of access patterns will be more
evident. Since the space abstraction is an indirection for as-
sociating protocols with data structures, changing the pro-
tocol of a data structure in Ace is as simple as changing the

protocol associated with its space, To our knowledge, no
other system offers this capability,

2.3 Granularity

The issue of granularity in a DSM is, in a sense, orthogonal
to the issue of using customizable protocols. The isauea and
solutions mentioned above apply equally to systems of page
or fine-grained granularityy. Fixed-size granularityy, however,
complicates the use of customizable protocols. Implicitly
assigning data to fixed-size coherence units forces program-
mers to worry about about false sharing of data, and createa
the problem of false sharing of ptvtowls. False sharing of
protocols can appear in two forms. First, data with diEer-
ent access pat tems may reside in the same coherence unit,
This problem can be solved by using the space abstraction
to locate data with different access patterns in diiTerent co-
herence units.

Second, a programmer may choose a particular protocol
based upon knowledge about the access patterna of each in-
dividual object. This knowledge may be rendered false if
multiple objects reside in a coherence unit. For example,
a programmer may make the wertion that each datum is
written only by a single processor. However, when many
data (written by different processors) are located in a sin-
gle coherence unit, a statement that is true of each of the
constituent data, may be false for the coherence unit as a
whole. Ace alleviates this problem by operating at user-
specified granularities. Data is shared using arbitrarily-sized
regions. Maintaining coherence at the gramdarit y of regions
diminishes the problems, such ss false sharing, of implicitly
associating coherence at fixed size, and provides an intuitive
mechanism for using bulk transfer.

2.4 Extensibility

In our experience, we have found producer-consumer proto-
cols to be common. While systems such as Midway [4] and
Munin handle these protocols in a fixed manner, the best
implementation (and semantics) of update protocols dtiers
for each application. For example, for certain applications,
the access patterns do not change after the first iteration of
a loop. In these cases, a static update protocol is most effi-
cient. In other cases, one may choose to implement updates
using dynamic updatea, pipelining, etc.

In general, we believe that it will be necessary, at times,
for a programmer to modify existing protocok- to suit an
application’s access patterns. A conscious goal in the design
of Ace, therefore, is to provide a clean mechanism for adding
new protocols to the system. While the difficult task of
writ ing protocols must be borne by the protocol designer,
systems such as Teapot [8], can be modified to be used with
Ace to alleviate this burden.

3 The Ace Language

In the previous section, we discussed issues relevant to the
design of a language for customizable protocols. In this sec-
tion, we describe the specific constructs in Ace that address
these issues. We outline the programming model of the lan-
guage in Section 3.1, discuss the protocol interface in Sec-
tion 3.2, and describe a sample Ace program in Section 3.3.

82

Table 1: Sample Ace declarations

shared int *x pointer to shared integer
shared int A[1O] array of ten shared integers
shared int * shared A[1O] array of ten shared pointers to

shared integers

Tab1e2: Ace Library routines

Ace Library Routines Description
Ace.GMlloc(spoce, size) All ocate anew region from space
AceJiewSpace(proto C02) Create a new space
AceJXmngeProtocol(space, protocol) Change the protocol of a space
Ace*ier(space) Execute a barrier operation with the

semantics specifiedby space
AceLock(region) Lockaregion
Ace.UnLock(reg ion) Unlock a region

3.1 Programming Model

.4ce is essentially Cwithrninor modifications and a set of
runtime libraries. The one additional construct in Ace is
that programmera must armotate global data with the key-
word shared. In addition, allglobal datamust deallocated
dynamically off the heap. Ace disallows arithmetic on point-
ers to shared data unless the result is dereferenced immedi-
ately. As a result, array references are allowed, but it is not
possible to generate a pointer that points into the middle
of a shared region (all pointers point to the base of shared
regions). Table 1 gives a few examplea of Ace declarations.
Table 2 lists the Ace library routines.

The execution model supports a single user thread per
processor (SPMD). Synchronization routines such as barri-
ers and locks are provided by protocols, with default routines
provided by the system. Spaces and Protowls are predeiined
types in Ace. Spaces are de~ed by calling Ace-?JewSpace.
The Ace.GHalloc routine is used to allocate shared data
regions from a space. If desired, programmers can use
the default space, which provides a sequentially consistent
invahdation-based protocol.

The protocol associated with a space can be changed
with the Ace-ChangeProtocol routine. The semantics of
the change are defined by the old protocol of the space. This
generally involves manipulating objects into a “base” state,
and then calling the initialization routine of the new pro-
tocol. For example, changing from the default protocol to
any other protocol results in all cached regions being flushed
back to their home processors.

3.2 Protocol Interface

Ace supports fill access wntrol, the ability to specify pro
tocols that execute before and after accesses and at syn-
chronization points. A protocol designer writes functions
for each of these points — before write, after write, before
read, after read, barrier, lock, and unlock. If desired, null or
default protocol routines may be specified for these routines.
The protocol is then registered with the system by running
a Tcl/Tk [23] script. The script generates a system configu-
ration file that is used by the Ace compiler to determine the
protocols available and the names of the functions used by

Figure 1: Adding a protocol

the protocol. This scheme allows new protocols to be added
to the system easily. Currently, protocol libraries must be
explicitly linked in by the programmer. This process will be
automated in the near future.

Figure 1 gives an example of protocol addition. The
protocol writer specifies the name of the protocol, and at
what access and synchronization points protocol routines
must be invoked. The compiler derives the names of the
protocol routines by concatenating the name of the protocol
with the execution points (for example, Update-StartRead).
The last field specifies whether calls to the protocol can be
optimized (Section 4.2 discusses this parameter in greater
detail).

3.3 Example — EM3D

EM3D [9], an application with static access patterns, mod-
els the propagation of electromagnetic waves through three
dimensions. The data structure is a bipartite graph, with
directed edges between the two sets of nodes, E and E. In
each iteration, new E values are computed as a weighted
sum of neighboring H nodes, after which, new H values are

83

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

*include “ace .h”
Space eval = AceNewSpace (SC);
Space hval = Ace-NevSpace(SC) ;

/* Allocate regions from spaces and create graph */
MakeGraph();

Ace.ChangeProtocol (hval, Update);
AceXhangeProtocol(eval, Update);

/* Begin computation - iterate over nodes */
for (t = O; t < time-eteps; t++) {

all.compute (emodes, my-e-nodes, hval);
Ace-hrrier(eval);
all-compute (hmodes, my_haodee, oval);
Ace_Sarrier(hval);.

Figure 2: Sample code from EM3D

calculated from neighboring E nodes. Figure 2 shows code
for this application.

In our implementation of EM3D, we allocate two spaces,
one for E valuea, and one for H. The program was devel-
oped assuming the default sequentially consistent protocol.
Since EM3D is better suited to an update protocol, we ex-
perimented with a dynamic update library. In this protocol,
writes to a region are propagated to all sharers immediately.
To plug in this library, we changed the protocol of the two
spaces (lines 8-9, Figure 2), and liied in the update li-
brary. Using this protocol results in a speedup of 3.5 over
the intimation-baaed protocol.

We then experimented with a static update protocol.
The static protocol builds sharer lists during the fist it-
eration, and then, propagatea updates appropriately at
subsequent barriers (essentially Falaa6 et ol.’s protocol for
EM3D[1O]). We tested and debugged this protocol indepen-
dently by linking the protocol with short test programs that
exercised it. Again, the only changas necessary to use this
library were to call AceXlmugeProtocol and to link in the
new library. Since the barriers specify the space they op-
erate on, the underlying system invokes the static update
biu-rier handler routine automatically. This protocol results
in a speedup of about five over the invalidation-baaed pro-
tocol.

4 Ace Compiler and Runtime System

In this section, we describe the runtime system that is the
target platform for the compiler. We then describe the de-
sign and implementation of the compiler and its optimiza-
tion phases.

4.1 Runtime System

The programming model of the Ace runtime system is
region-based [27], and is similar to that of CRL [14]. We
use a system similar to CRL as the target of our compiler
because the CRL programming model has been shown to be
portable, and have good performance on distributed mem-
ory architectures [14]. We, therefore, expect the Ace run-
time system to be easily portable as well.

In the Ace runtime system, each shared region (created
by using Ace-G14slloc) is associated with a unique id. Be-
fore accessing any region, a processor must ensure that it is

Ace Primitives Description
ACE-MAP Map a region into local ad-

dress space
ACEJJNMAP Unmap a mapped region
ACEJ3TARTAEADSignal start of read on a re-

gion
ACEJZNDIWAD Signal end of read
ACE-START-HRITE Signal start of write on a re-

gion
ACE_ENDJWWTESignal end of write

Figure 3: Ace runtime annotations.

/* Factor a column */
void FactorColumm (int calno) {

addrees-t id = IIatrix [colno] -mr-sddress;
double *column, factor;
int i;
int column-length = Matrix [colno] +len;

1* Nap column and initiate write */
column = ACEMAP(id);
ACEJ3TART.URITS(column) ;

factor = sqrt (cOlumm[Ol);
for (i = O; i < column-length; 1++)

column[i] = columu[i] I factor;

/* Terminate write and un#ap colwan *I
ACEXNMIRITE(COIUMM);
ACEJJNF!AP(column);

}

Figure 4: An example of the use of the Ace runtime anno-
tations.

mapped. A map allocates memory for a cached copy of the
region (if necessary), and returns a pointer to the region.
Essentially, a map translates a unique Ace id into a local
pointer for the associated region. Accesses to regions use th~
local pointer. ACE-STARTREADand ACE-START-WRITEC&l

mark the beginning of reads and writes to a region. Sim-
ilar calls exist to signal the termination of these accesses.
Figure 3 summarizes the annotations required by the Ace
runtime system, and Figure 4 gives an example of its use.

The semantics of these primitives are, however, differ-
ent from those in a single protocol system such as CRL.
In Ace, invocation of these primitives on a region first
determines the space of the region, and then dispatches
the request to the appropriate protocol. The space of a
region is determined by looking up the id of the region
in a hash table. A space is implemented as a structure
that holds pointers to the appropriate protocol’s routines.
The protocol pointers in a space are set (reset) whenever
AceJJevSpace (Ace-ChangeProt ocol) k called. The struc-
ture also contains a pointer by which protocols may aaso-
ciate data with a space (for example, a static update pro-
tocol may wish to associate the sharer list for a particular
data structure with its space).

4.2 Ace Compiler

We have implemented a compiler for Ace using the SUIF
compiler toolkit [33]. The first stage in the compiler is to
read a system configuration file that cent ains information

84

about the available protocols. The next step, which 1s rela-
tively straightforward, is to translate an Ace program into
the target runtime system format. Code for Ace annota-
tions is inserted around accesses to shared variables in the
intermediate representation of the program. Figure 5 delin-
eates the process for loads (stoma me handled in a similar
fashion), and gives an example of code generated from a Ace
code fragment.

As can be seen horn the example, considerable overhead
can be added for each access to shared memory. We have
implemented three optimizations to reduce the overhead of
calling Ace protocol routines. Note that the semantics of
certain protocols, for example sequentially consistent pro-
tocols, do not allow code motion or other such optimiza-
tion [20]. We allow protocol writers to specify, when regis-
tering a protocol, whether a protocol’s semantics allow op-
timization. This flag is used by the compiler to determine
whether art access can be optimized. A protocol is not opti-
mizable if accesses in the protocol must appear atomic with
respect to other accesses, or if the order of accesses between
synchronization points is important.

Since not all protocols allow optimizations, before any
optimization can be performed on a program, it is necessary
to determine, for each access, the set of spaces that are pos-
sibly associated with the data being accessed, and the set of
possible protocols of each space at that access. To determine
the set of spaces for each access, we perform global, inter-
procedural datallow analysis. Information is generated at
Ace.GHalloc calls and propagated to accesses. Concurrently,
we propagate information about the protocols associated
with spaces from Ace-NevSpace and Ace.ChangeProtocol
calls. We compose the set of possible spaces for an access
and the set of possible protocols for a space to derive the set
of possible protocols for each access.

We now describe the three optimization phases in the
Ace compiler. In all optimizations, code is never moved
paat synchronization calls.

Moving Calls out of Loops: Once the set of proto-
cols associated with each access is determined, we perform
loop invariance analysis (intra-procedural) on the arguments
of calls to protocol routines to identify the calls that can
be moved out of loops. ACE-MAPand ACESTART-*calls are
moved above a loop, while ACLEND.* calls are moved be-
low a loop. This optimization is performed only if all the
possible protocols of an access are optimizable.

Merging Redundant Protocol Calls: We perform avail-
able expression analysis on each basic block on the argu-
ments of ACE-MAPcalls. Consider two ACEJ4APcalls, Ikfl and
Mz. If the argument of Ml is the same as that of Mz and
is available at Ikfz, then we remove A4z and reuse the result
of Ml. Furthermore, if the protocol actions associated with
the two ACE-MAP’Sare both reads or both writes, we use the
highest ACE-START.*,and the lowest ACEXNO-*,and remove
the rest. 1 Figure 6 provides an example.

Avoiding Dispatching Overhead: If the compiler can
determine that there is a unique protocol associated with
an access, it replaces calls to Ace protocol dispatch rou-
tines (for example, ACE3TARTREAD)with direct calls to the
appropriate protocol routine. The compiler obtains infor-
mation about the name of the protocol routines from the
system configuration file. In addition, if a protocol defies

Table 3: Benchmarks used in experiments.
Name Inputs
Barnes-Hut [2] 16,384 bodies, 4 time-

steps, tolerance = 1.0,
eps = 0.5).

Sparse Cholesky(BSC) [26] Tk15.O
EM3D [9] 1000 E and 1000 H V12P

tices, 20%remote edges,
degree 10, 100 steps

Traveling Salesman(TSP) [13] 12 cities
Water 1311 512 Molecules, 3 stem

certain actions to be null, then calls to that protocol action
can be removed.

5 Experiments

In thw section, we use five benchmarks — Blocked Sparse
Cholesky (BSC) [26], Barnes-Hut [2], EM3D [9], ‘lYaveling
Salesman problem (TSP) [13], and Water [31] — to validate
the performance of our system. We first compare Ace’s
performance to CRL, an efficient software DSM. CRL has
been shown to have low overhead and have good perfor-
mance compared to Alewife, an architecture that supports
shared memory in haxdware [14]. Table 3 summarizes the
benchmarks used in the paper. The code for Barnes-Hut,
BSC, and Water are derived from the SPLASH [31] versions.
EM3D is derived from the Split-C [9] version.

We then show the benefits of using customizable proto-
cols for each of our benchmarks. Falsaii et al. [10] have
demonstrated previously that customizable protocols can
improve performance substantially in the context of two sys-
tems: a system that uses virtual memory protection mech-
anisms to support fine-grain shared-memory, and an all-
software system that inserts checks before each access that
cannot be determined to be a stack reference. We pro-
vide results for application-specific protocols with Ace to
demonstrate their usefulness for region-based DSMS. In ad-
dition, to our knowledge, we are the first to have studied
application-specific protocols for BSC, TSP, and Water.

Lastly, we compare the performance of the Ace compiler-
generated code with hand-written Ace runtime system code,
and analyze the effects of the compiler optimization. All
experiments were run on a 32-processor Thinking Machines
CM-5 (CMOST 7.3, Final 1 Rev 3) [17]. A processing node
in a CM-5 is equipped with a 33Mhz SPARC microprocessor,
a 64KB direct-mapped unified cache, and up to 128MB of
memory.2 Each application was compiled with gcc -02.

5.1 Ace VS CRL

To perform a fair comparison of the Ace and CRL runtime
systems, we use the same source files for Ace and CRL,
Barnes-Hut, TSP, and Water were taken from the CRL 1.0
distribution and ported to Ace by replacing CRL primitives
with the corresponding Ace calls. EM3D and BSC were
written using the Ace runtime system and converted to CRL
using the reverse process. We also do not use customized
protocols in this experiment, both systems run a sequentially
consistent invalidation-based protocol.

‘We do not use the vector units on the CM-5.
*A possible optimization is to allow protocol designers to specify

whether a protocol’s semantics allow reads and writes to be merged.

85

shared struct helloI

Tmnslationprowss~ lads: I
sharedint%vorld;

]%;

I. Fti baseof addresstobe loaded.Forexample,
forAM, it isA.

2. GenerateaACE_MAPcallon thebaseaddress
andstorwtheresultina temporyvariabletl.

3. ~erate a ACE.START.READCd on the
temporary tl.

4. Performthe appropriateload on tl intoanother
temporarytZ.Forexample,t2- W;].

5. -rate a ACE_ENI_READ cali on the
temporaq’ tl.

6. Store ti into the original destination of the
instruction.

aUi_b@ = ACE_MAP(X);
ACE_START_READ(SUif_tmP9);
suif_tmu8 = “(kit Wcauif_bnp9->world;
ACE_EI&I&iD(auif_tmP9); -

suif_trnp7 = 4;
suif_tm@l = ACE_MAP(Sui_tmp8);
ACE_START_WRITE(SUi_tU@1);
●suif_tmpl 1 = sui_tmp7;
ACE_ENO_WRITE(suif_tO@l);

Figure 5: Compiler-inserted annotations for ● (x->vorld) = 4

/* *Z = y; */

suif .tmp8 = y; suif Am@ = y;
suif .tmp9 = ACE-MAP(x); suif -tarp9 = ACE-MAP(x);
ACEd3TARTMlITE(suif -tmp9); ACE3TARTJtRITE(suif -tmp9);
*suif -tmp9 = suif -tmp8; *suif -tmp9 = suif .tmp8;
ACEXMMiItITE(suif -tmp9);
.

)* *x = ~; (z as live] */
suif -tmp7 = 4; suif -tmp7 = 4;
suif-tmpll = ACEXAP(suif-tmp8);
ACEJ3TARTMlITE(suif -tmpil);
●suif -tmpl 1 = suif -tmp7; ●suif Xmp9 = suif -tmp7;
ACEXNDJRITE(suif -tmpll); ACEXNDMRITE(suif -tmp9);

Figure 6: Example of removing redundant protocol calls.

86

= CRL
‘==Ace

(a)

8I o Ace (default)
- Ace(app.specific)

“ Bscncs-Hut BSC EM3D ‘fSP WateI
(W

Figure 7: (a) Ace runtime system versus CRL (b) Comparison of using a single (sequentially consistent) protocol and
application~speciiic protocols in Ace.

Figure 7a summarizes the results of our experiments.
The times for Barnea-Hut, EM3D, and Water are average
time per iteration. To avoid cold-start efkcts, we discard the
results of the first iteration. Each execution time reported
is the average of three runs. The reason for the performance
difference between Ace and CRL is a carefil redesign of the
sequential consistency protocol and a more efficient map-
ping teclmique. The effects of the mapping optimization me
most evident for fin~grained applications, such as Barnes-
Hut and EM3D. For a coarse-grained application, such as
BSC, the additional indirection in the dispatch of protocol
calls in Ace nullifies the effects of the runtime system opti-
mization.

5.2 Application-Specific Protocols in Ace

In this experiment, we use versions of our benchmarks writ-
ten directly for the Ace runtime system to study the bene-
fits of using application-specific protocols with region-based
DSMS (See Figure 7b). The speedups range from a factor
of 1.02 to 5 (average speedup is approx. 2). Barnes-Hut
uses a dynamic update protocol for bodies, and EM3D, a
static update protocol, similar to those described in Falsafi
et al [10]. In TSP, the improved performance is due to better
management of accesses to a counter that is used to assign
jobs to processors. In Water, we improve performance by
pipelining writes to a molecule during the inter-molecular
calculation phase, and using a null protocol during the intra-
molecular calculation phase. For BSC, we take advantage
of the fact that data are written only by the processors that
created them, The performance improvement is marginal
because, in BSC, the most important optimization is the use
of bulk transfer for the transport of blocks between proces-
sors. Since the Ace runtime system supports user-specified
granularity, the default protocol uses bulk transfer automat-
ically. Optimizations to other accesses do not tiect execu-
tion time greatly. Each of these protocols took from a couple
of hours to a day to implement.

5.3 Evaluating the Ace compiler

We compare the execution times of compiler-generated code
and code written directly for the runtime system for our
benchmarks. For each application, we use the protocols that

have the best performance. For the runtime system, we use
the same code used in the previous two experiments, that
is, code that an experienced programmer would write. In
Table 4, for each application, we show the execution time
of unoptimized compiler-generated code and the tied of
each optimization. We also provide the time of the best
implementation written for the runt irne system.

As can be seen from the table, the best compiler ver-
sions are 1.1- 1.3 times slower than the runtime system ver-
sions. Typically, the largest gains result from merging calls
together. In Block Sparse Cholesky, however, there is a huge
improvement of the compiled code that can be attributed to
the loop invariance optimization. ThM is largely due to the
presence of several heavily used loops that calculate various
matrix products. In EM3D, the static update protocol sets
most of its handlers to be the null handler. During the di-
rect dispatch optimization, the compiler removes dispatches
to these handlers (most of which occur in a tight kernel)
which results in a significant performance improvement.

One important parameter in the slowdown in the com-
piled code can be attributed to a greater number of ACEJ4AP
calls. For EM3D, the runtime system version performs
ACEJUP calls on each processor’s data before entering the
main computation loop, and uses the results inside the loop.
The compiler was unable to determine that this optimization
is possible. Further experiments revealed that the major
component of the slowdown was a result of the extra ACE-MAP
calls within the computation loop. On systems with a map
call (the CM-5 does not support it), one could eliminate the
use of ACE-HAPcalls by ensuring that copies of data have the
same address on every processor. This optimization would
reduce the discrepancy between the compiler and runtime
system performance significantly.

The current compiler is overly conservative in performing
optimizations. For example, while alias information is avail-
able, the merging calls phase does not use this information
while deciding when two calls can be merged. In addition,
non-concurrency analysis [19] could be used to determine
when more aggressive opt imizat ions are possible. For examp-
le, this analysis could be used to derive more precise kill set
information, which could allow for more aggressivemerging
of protocol calls.

87

Table 4: Effects of compiler optimizations on benchmarks. All times in seconds.

Optimization Barnes-Hut BSC EM3D TSP WATER
Base case 6.12 20.39 0.29 1.34 1.78
Loop Invariance (LI) 6.03 5.60 0.26 1.16 1.76
LI + Merging Calls (MC) 4.75 4.61 0.25 1.05 0.73
LI + MC + Direct Calls 4.60 4.50 0.17 1.05 0.71
Hand-optimized 3.’74 4.18 0.13 0.80 0.63

6 Discussion

A goal in the design of Ace was to allow protocol design-
ers the ability to take advantage of emerging architectures.
For example, on Typhoon, which provides hardware support
for acceaa-fault control, protocol designers could implement
certain protocols by registering null handlers with the Ace
system and appropriate system handlers wit h Typhoon at
protocol initialization time. Accesses to data structures w-
sociated with thtxw protocols will be handled by the hard-
ware mechanism automatically. Depending on the charac-
teristics of the protocol, designers could choose to use the
hardware or software mechanism. Similarly, on FLASH[15],
one can use this mechanism to choose between custom and
system protocols. Separating application and protocol views
permits the use of hardware mechanisms by protocols, inde-
pendent of application code.

In the paat, the use of customizable protocols has mainly
been studied in a pragmatic sense. However, a theoretical
evaluation of the ramifications of mixing several consistency
models is needed. For example, it is possible to have two
spaces, where acceaseJ to each of the spaces are sequentially
consistent, but the combined set of accesses is not sequen-
tially consistent [11]. While in our experience, the protocol
to associate with a data structure is intuitive, a theoretical
framework of correctness would be useful.

We found custom protocol development to be relatively
easy compared to writing general purpose protocols such as
the sequentially consistent invalidation-based protocol. The
difficulty in general-purpose protocols is that all possible
state transitions must be handled. In custom protocols, of-
ten several assertions can be made that reduce the state
space of the protocol. As a result, fewer situations need to
be considered by the programmer. For example, in certain
dynamic update protocols, a writer need not acquire exclu-
sive access before proceeding with a write, as long as the
result of the write is propagated to all sharers. Protocol
development would also be facilitated by the creation of a
library of protocol building blocks (for example, a routine
for invalidating a cache block). We are currently attempting
to isolate the primitives needed for such a library.

7 Conclusions

We have designed a language that allows programmers to
use customizable protocols intuitively. It provides complete
separation of application and protocol code, high-level lan-
guage abstractions for associating protocols with data struc-
tures, user-spaded granularity, and can be extended eaa-
ily with new protocols. We have implemented a compiler
that automatically generates annotations similar to that of
region-based systems, such aa CRL. We have developed op
timizations to improve the performance of the compiler, and

found that Ace performs well compared to handwritten,
region-based code. The performance of Ace applications
is enhanced significantly by the use of customized protocols.

Acknowledgments

We wish to thank the W~onain Wmd Tunnel(WWT)
project, led by M. Hill, J. Larus, and D. Wood, for pro-
viding access to the CM-5 at the University of W~onain-
Madison. We wish to thank the National Center for
Supercomputing Applications at the University of Illinois
(UrbanwChampaign) for the use of their CM-5. We would
like to thank A. Appel, C. Dunworth, J. R.eppy, and R.
Samanta for their helpful comments on earlier drafts of the
paper. Mukund Raghavachari was supported by a Princeton
University Research Board Fellowship.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Agarwal et al. The MIT Alewife machine. In Pro-
ceedings of Workshop on Scalable Shad Memory Mul-
tiprocessors, 1991.

J. Barnes and P. Hut. A hierarchical O(N log N) force
calculation algorithm. Nature, pages 446-449, Dec.
1986.

J. K. Bennett, J. B. Carter, and W. Zwaenepoel.
Munin: Distributed shared memory baaed on type-
speciiic memory coherence. In Symposium on Princi-
ples and Practice of Pamllel Programming, pages 168-
176, 1990.

B. Bmahad, M. Zekauskq and W. A. Sawdon. The
Midway distributed shared memory system. In Pro-
ceedings of COMPCON’93, pages 528-537, 1993.

M. Blumrich et al. Virtual memory mapped network
interface for the SHRIMP multicomputer. In Prowxxt-
ings of the 21st Annual International Symposium on
Computer Architectu~, pages 142-153, Apr. 1994.

J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Impl-
mentation and performance of Munin. In Symposium
on Operating Systems Principles, pagea 152–164, Oct.
1991.

R. Chandra, K. Gharachorloo, V. Soundararajan, and
A. Gupta. Performance evaluation of hybrid hardware
and software dktributed shared memory protocols. In
International Conference on SuperComputing, 1994.

S. Chandra, B. Richards, and J. Larua. Teapot: Lan-
guage support for writing memory coherence protocols.
In Conference on Programming Language Design and
Implementation, pages 237-248, May 1996.

88

[9] D. Culler et al. Parallel programming in Split-C.
In Proceedings of Supercomputing ’93, pages 262-273,
Nov. 1993.

[10] B. Falaafi, A. Lebeck, S. Reinhardt, I. Schoinaa, M. Hill,
J. Larus, A. Rogers, and D. Wood. Application-specific
protocols for user-level shared memory. In Proceedings
of Supercomputing ’94, pagee 38(3-389, Nov. 1994.

[11] M. Herlihy and J. M. Wing. Linearizability: A
correctness condition for concurrent objects. ACM
Transactions on Programming Languages and Systems,
12(3):463492, July 1990.

[12] L. Iftode, J. P. Singh, and K. Li. Understanding ap-
plication performance on shared virtual memory sys-
tems. In Procedtngs of the International Symposium
on Computer Amhitectum, pages 122–133, 1996.

[13] K. Johnson, J. Adler, and S. Gupta. CRL 1.0 Software
Distribution, August 1995. Available on World Wide
Web at www.pdos.lcs.mit. edu/crl.

[14] K. Johnson, F. Kaaahoek, and D. Wallach. CRL: High-
performance all-software distributed shared memory.
In Symposium on Opemting Systems Principles, Dec.
1995.

[15] J. Kuakin et al. The Stanford FLASH multiprocessor.
In Proceedings of the 21st Annual International Sym-
posium on Computer Architecture, pages 302–313, Apr.
1994.

[16] J. R. Larus, B. Richards, and G. Viswanathan. LCM:
Memory system support for parallel language imple-
mentations. In Proceedings of Symposium on Architec-
tuml Support for Progmmming Languages and Opemt-
ing Systems, pages 208–218, 1994.

[17] C. Leiserson et al. The network wcldtecture of the
Connection Machine CM-5. In Symposium on Pamilel
and Distributed Algorithms, pages 272–285, June 1992.

[18] K. Li and P. Hudak. Memory coherence in shared vir-
tual memory systems. ACM %nsactions on Computer
Systems, 7(4):321-359, Nov. 1989.

[19] S. Masticoia and B. Ryder. Non-concurrency analysis.
In Symposium on Principles and Pmctice of Pamllel
Progmmming, pagea 129-138, May 1993.

[20] S. Midkiff and D. Padua. Issues in the optimization
of parallel programs. In International Conference on
ParaUei Processing - Voi H, pages 105-113, 1990.

[21] S. Mukherjee, S. Sharma, M. Hill, J. Larus, A. Rogers,
and J. Saltz. Efficient support for irregular applica-
tions on distributed-memory machines. In Symposium
on Principles and Pwctice of Pamllel Progmmming,
1995.

[22] R. S. Nikhii. Cid: A parallel, shared-memory C for
distributed-memory machines. In Languages and Com-
pilers for Parallel Computing, pages 376-390, Aug.
1994.

{23] J. K. Ousterhout. Tcl and the 2% T’oolkit. Professional
Computing Series. Addison-Wesley, 1994.

[24] S. Reinhardt. Tempest interface specification. Tech-
nical Report TR 1267, Computer Science Department,
University of Wisconsin, Madison, WI, Feb. 1995.

[25] S. Reinhardt, J. Laws, and D. Wood. Tempest and
Typhoon: user-level shared memory. In Proceedings of
the 21st Annual International Symposium on Computer
Architecture, Apr. 1994.

[26] E. Rothberg. Exploiting the memory hiemrchy in
sequential and parallel sparse Choiesky factorization.
PhD thesis, Stanford University Department of Com-
puter Science, Jan. 1993.

[27] H. S. Sandhu, B. Gamsa, and S. Zhou. The Shared
Regions approach to software cache coherence on mul-
tiprocessors. In Symposium on Principles and Pmctice
of Pamllel Progmmming, pages 229-238, May 1992.

[28] D. J. Scales, K. Gharachorloo, and C. Thekkath.
Shasta A low-overhead software-only approach for
supporting fine-grain shared memory. In Proceedings of
Symposium on Architectuml Support for Programming
Languages and Opemting Systems, pages 174-185, Oct.
1996.

[29] D. J. Scales and M. S. Lam. The design and evalu~
tion of a shared object system for distributed memory
machines. In Proceedings of Symposium on Opemting
Systems Design and Implementation, Nov. 1994.

[30] I. SC.hoinm, B. I%&&, A. Lebeck, S. Reinhardt,
J. Lams, and D. Wood. Fin~grain access control for
distributed shared memory. In Conference on Architec-
tuml Support for Progmmming Languages and Opemt-
ing Systems, pages 297–307, Nov. 1994.

[31] J. Singh, W.-D.Weber, and A. Gupta. SPLASH: Stan-
ford parallel applications for shared memory. Computer
Architecture News, 20(1):5-44, 1992.

[32] T. von Eicken, D. Culler, S. Goldstein, and K. Schauser.
Active Mesaages: a mechanism for integrated commun-
ication and computing. In Proceedings of the Inter-
national Symposium on Computer Architecture, pages
256-266, May 1992.

[33] R. Wilson et al. The SUIF compiler system: a par-
allelizing and optimizing research compiler. Technical
Report CSL-TR-94-620, Computer Systems Lab, Stan-
ford University, Palo Alto, CA, 1994.

89

