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Abstract  

Achieving optimal performance on heterogeneous computing sys-
tems requires a programming model that supports the execution of 
asynchronous, multi-stream, and out-of-order tasks in a shared 
memory environment. Asynchronous dependency-driven tasking is 
one such programming model that allows the computation to be ex-
pressed as a directed acyclic graph (DAG) and exposes fine-grain 
task management to the programmer. The use of DAGs to extract 
parallelism also enables runtimes to perform dynamic load-balanc-
ing, thereby achieving higher throughput when compared to the tra-
ditional bulk-synchronous execution. However, efficient DAG im-
plementations require features such as user-level task dispatch, 
hardware signalling and local barriers to achieve low-overhead task 
dispatch and dependency resolution. 

In this paper, we demonstrate that the Heterogeneous System 
Architecture (HSA) exposes the above capabilities, and we validate 
their benefits by implementing three well-referenced applications 
using fine-grain tasks: Cholesky factorization, Lower Upper De-
composition (LUD), and Needleman-Wunsch (NW).  HSA’s user-
level task dispatch and signalling capability allow work to be 
launched and dependencies to be managed directly by the hard-
ware, avoiding inefficient bulk-synchronization. Our results show 
the HSA task-based implementations of Cholesky, LUD, and NW 
are representative of this emerging class of workloads and using 
hardware-managed tasks achieve a speedup of 3.8x, 1.6x, and 1.5x, 
respectively, compared to bulk-synchronous implementations. 

CCS Concepts  

• Computer systems organization~Heterogeneous (hybrid) sys-

tems   • Computer systems organization~Single instruction, multi-
ple data   • Software and its engineering~Contextual software 
domains   • Software and its engineering~Runtime environ-

ments   • Software and its engineering~Concurrent programming 
languages   • Software and its engineering~Massively parallel sys-
tems   • Computing methodologies~Parallel programming lan-
guages 
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1. Introduction 

Many segments of the computing industry are shifting towards 
massively throughput-oriented processing, such as the capabilities 
provided by Graphics Processing Units (GPUs), because these de-
vices better leverage recent technology trends.  GPUs use data-par-
allel execution to amortize front-end hardware across many threads 
and avoid power-hungry speculations and large caches that are of-
ten used by CPUs.  As a result, GPUs better leverage the increasing 
transistor densities of Moore’s law [25] and integrated heterogene-
ous (CPU+GPU) systems are gaining popularity in large-scale 
computing, which require  high single-thread and multi-thread per-
formance.  

For applications with minimal inter-thread communication, us-
ing traditional bulk-synchronous execution models to evenly dis-
tribute and coordinate work across all threads is sufficient for good 
performance. However, for many applications that require exten-
sive inter-thread communication, bulk-synchronous execution 
leaves heterogeneous resources underutilized. For example, certain 
threads have to wait for others at the global barrier (e.g., GPU ker-
nel termination) before proceeding to the following execution. 

For applications with inter-thread dependencies, effective ex-
traction of parallelism can be achieved by structuring the computa-
tion as tasks represented by a Directed Acyclic Graph (DAG) [12].  
Within a DAG, nodes represent tasks and directional edges repre-
sent data dependencies. By understanding the inherent data depend-
encies described by an application’s DAG, the underlying execu-
tion environment can immediately execute independent tasks 
whenever they become available, leading to higher resource utili-
zation.  

In this paper, we demonstrate that the features provided by Het-
erogeneous System Architecture (HSA) facilitates the implementa-
tion of an asynchronous dependency-driven tasking model. HSA is 
empowered to capitalize on the application’s task parallelism by the 
virtue of features like: (1) a low-level runtime that natively supports 
low-latency task dispatch, and (2) hardware support for fine-grain 
task scheduling and management. Additionally, HSA’s user-level 
task dispatch and queuing capability allow applications to directly 
launch tasks onto hardware avoiding software management, such 
as a centralized task coordinator used by Ltaief et al. [22], and other 
overheads due to the traditional GPU software stack. HSA also in-
corporates a unified virtual address space and coherent shared 
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virtual memory across all the compute devices in the system. The 
unified virtual address space relieves the programmer from explicit 
data management across multiple devices and cache coherence en-
sures fast shared data access from different compute devices. 

We show the task dependency management and resolution 
mechanisms of HSA by developing parallel task-based implemen-
tations of three applications – (a) Cholesky Factorization [24], (b) 
Lower Upper Decomposition (LUD) [11][1], and (c) Needleman-
Wunsch (NW) [26]. Our results demonstrate that the task-based 
HSA implementations of Cholesky, LUD, and NW achieve 
speedups of 3.8x, 1.6x, and 1.5x, respectively, compared to their 
traditional bulk-synchronous implementations. 
 

To summarize, the contributions from this paper are: 

 We are the first to demonstrate an implementation of 
scalable tasking using the capabilities of HSA. 

 We implement three applications, Cholesky factoriza-
tion, LUD, and Needleman-Wunsch, with task depend-
encies on HSA without the schemes used by prior soft-
ware implementations. 

 Across the three evaluated applications, we demonstrate 
the HSA-based DAG implementations achieve up to 
3.8x, 1.6x, and 1.5x speedups versus bulk-synchronous 
implementations, respectively. 

The rest of the paper is organized as follows. Section 2.  dis-
cusses related work and Section 3.  introduces the three evaluated 
applications. Then Section 4.  describes the bulk-synchronous 
and DAG implementations of the applications and Section 5.  de-
tails the HSA implementation of fine-grain tasks. Section 6.  eval-
uates the tasking capabilities of HSA. We discuss future work and 
conclude the paper in Section 7.  

2. Related Work 

We briefly consider related work in the area of tasking models and 
Directed Acyclic Graphs (DAG). 

2.1 Tasking Models 

There are many shared memory CPU tasking models including the 
widely-used pthreads model [28].  Most pthreads implementations 
rely on the operating system to schedule threads, resulting in rela-
tively long dispatch times.  Lower latency task dispatch can be 
achieved by dedicating persistent threads [32] to the task manager 
and execution threads. This reduces launch latency at the expense 
of dedicating resources.  Subsystems that use pthreads in this man-
ner include OpenMP [14], Cilk [16], Legion [23], HPX [21] and 
TBB [20]. When pthreads are used in a heterogeneous environ-
ment, a CPU thread is typically needed to manage the execution of 

GPU tasks. In contrast, our work does not rely on centralized task 
management. 

Several existing programming models and software packages 
support task management in their runtime or allow developers to 
describe their applications with DAGs. The recent OpenMP 4.5 
specification [27] allows for tasking with data dependencies speci-
fied as clauses on OpenMP pragmas. This new specification also 
allows for acceleration with target devices.  In addition, software-
based tasking models include PLASMA [2] and StarPU [6]. To our 
knowledge, there is no programming model that combines tasking 
with hardware-managed dependencies. 

A number of efforts exploring exascale computing have indi-
cated a strong need for advanced high-throughput tasking runtimes 
[3].  Many of these features can now be found in HSA such as task 
dependencies, shared memory between CPU and GPU, light-
weight signalling and GPU pre-emption.  

2.2 Directed Acyclic Graphs 

Bosilca et al. [9] discussed the use of DAGs to model asynchronous 
tasking. This model is widely discussed as alternative to the bulk 
synchronous model, especially for high-performance computing 
applications. Implementations or prototypes of DAGs can be found 
in Beltran et al. [15], Ltaief et al. [22] and Tomov et al. [31]. 

One major hindrance to the widespread adoption of task-based 
programming has been the dependency management, the burden of 
which completely lies on software today. To highlight the problem 
of task dependency management, we refer to the work by Ltaief et 
al. [22] where the authors implemented a Cholesky factorization 
algorithm using a global progress table to track and manage task 
dependencies. Tracking dependencies with a software-managed 
and centralized (global) progress table is feasible only for applica-
tions with a limited number of tasks. As the application scale out 
and the number of tasks increases, this centralized structure limits 
performance.  Even other runtimes that use distributed dependency 
management like work-stealing (e.g., Cilk [16]) use software 
threads for managing tasks, and thus encounter more overhead than 
a hardware solution. Bauer et al. [7] proposed warp specialization 
that uses GPU synchronization instructions to manage dependen-
cies across sub-computations. In this paper, we show how HSA-
capable hardware coupled with the low-level HSA runtime can be 
leveraged to manage task dependencies and scheduling.  

3. Application Case Studies 

3.1 Cholesky Factorization 

Cholesky factorization is used for solving a system of linear equa-
tions (see Figure 1). The implementation of Cholesky factorization 
in the MAGMA library involves the factorization of a symmetric 
positive-definite matrix into a lower triangular matrix and its con-

Table 1. Subroutines used by clMAGMA’s Cholesky Fac-

torization. 

Name Task Library Device 

SYRK Symmetric rank-k up-

date 

clBLAS GPU 

GEMM Matrix-matrix multi-

plication 

clBLAS GPU 

TRSM Solve triangular sys-

tem of equations 

clBLAS GPU 

POTRF Cholesky factorization LAPACK CPU 

 

//Blocked left looking Cholesky factorization algo-

rithm 

for blocks 1 to n: 

do 

 // Symmetric rank-k update 

 if(block > 1) SYRK(); 

 // Matrix-matrix multiplication 

 if(block > 1 & block < n) GEMM(); 

 // Cholesky factorization 

 POTRF(); 

 // Triangular solve 

 if(block < n) TRSM(); 

end do 

Figure 1. clMAGMA’s Cholesky factorization algorithm 



jugate transpose. These types of symmetric positive-definite matri-
ces are common in many high performance applications modelling 
real-world physical phenomenon. In essence, Cholesky factoriza-
tion represents a broader and important HPC application domain. 
Moreover, this algorithm has been well researched to explore and 
demonstrate the improved parallelism of task-based models [21]. 
The clMAGMA library [31] is the OpenCLTM implementation of 
MAGMA library. Cholesky factorization implemented in the 
clMAGMA library uses clBLAS [13] library calls and LAPACK 
[5] library calls. The clBLAS library is the OpenCL implementa-
tion of BLAS. Subroutines of clBLAS library run on the GPU 
whereas the LAPACK subroutines run on the CPU. Each loop iter-
ation uses three subroutines from the clBLAS library and one sub-
routine from the LAPACK library, as shown in Table 1. 

3.2 LUD 

Lower upper decomposition (LUD) is a numerical analysis tech-
nique to decompose a matrix into a lower triangular and upper tri-
angular matrix. Similar to Cholesky factorization, LUD is also a 
numerical analysis technique but unlike Cholesky that can only be 
used to factorize symmetric positive definite matrices, LUD 
doesn’t impose any such restrictions. We use the LUD implemen-
tation from Rodinia benchmark suite [11] as our reference imple-
mentation. This LUD implementation from Rodinia uses LUD al-
gorithm without pivoting. In addition, though the computation pat-
terns of LUD and Cholesky are somewhat similar, because LUD 
needs to generate both upper and lower triangular matrices, this 
leads to different generated DAGs and GPU resource utilizations 
from Cholesky (see Section 4. ). 

Figure 2 shows the parallel patterns of the LUD implementation 
in Rodinia. Each loop iteration uses four subroutines. All the sub-
routines used in the algorithm are implemented using OpenCL and 
run on the GPU. Each iteration divides the matrix to be factorized 
into a diagonal tile, perimeter tiles (along vertical and horizontal 
directions) and internal tiles. Figure 3 shows the different types of 

tiles of the matrix in one iteration of LUD. The diagonal kernel op-
erates on the diagonal tile of the matrix. Similarly, the perimeter 
kernels operate on the perimeter tiles and the internal kernel oper-
ates on the internal tiles. The data dependencies are expressed as 
follows. In the ith iteration the diagonal kernel only accesses the 
elements on the diagonal tile. The perimeter kernels read the ele-
ments from both diagonal and perimeter tiles and update the ele-
ments on the perimeter tiles. The internal kernels read the elements 
from both perimeter and internal tiles and updates the elements of 
the internal tiles. In the (i+1)th iteration, the diagonal tile will move 
from the (i, i) tile position to the (i + 1, i + 1) position. After pro-
cessing the (i + 1, i + 1) diagonal tile, the associated perimeter and 
internal tiles will be processed. This will not include the tiles with 
indices (m, n) where m < i, n < i. Thus, the computation domain of 
LUD keeps shrinking across iterations while the last iteration only 
processes the last diagonal tile.     

 

3.3 Needleman-Wunsch 

Needleman-Wunsch (NW) is a global optimization method for 
DNA sequence alignment. The potential pairs of sequences are or-
ganized in a 2-D matrix. The NW algorithm in Rodinia fills the 
matrix with scores, which represent the value of the maximum 
weighted path ending at that cell. A trace-back process is used to 
search for the optimal alignment. A parallel Needleman-Wunsch 
algorithm processes the score matrix in diagonal strips of tiles from 
top-left to bottom-right. 

Figure 4 shows the tiled NW algorithm used in the Rodinia 
benchmark suite. In that implementation, there are two GPU ker-
nels used in the entire application, one for processing the top-left 
part of the matrix and the other for the down-right part of the ma-
trix. The two similar kernels are implemented using OpenCL and 
operates on the tiles of two matrix regions. For both kernels, each 
iteration of the algorithm updates the elements of a strip of tiles 
(along the north-east to south-west diagonal) after reading the 
north, west and north-west neighbors of that tile. The NW kernel 
tile which depends on its north, west and north-west neighbors are 
shown in Figure 5. Each iteration of the algorithm moves to the next 

 

Figure 3. The major data structure of LUD. A 2-D matrix 

is decomposed to multiple tiles. 

 

 

 

: The major data structure of LUD.  A 2-D matrix is de-

composed to multiple tiles. 

 

 

Figure 5. A 2-D matrix of Needleman-Wunsch tiles. The 

processing of a given tile will begin only when the pro-
cessing of its north, west, and north-west neighbours are 
finished. 

// Tiled LU decomposition algorithm 

for diagonal tiles 1 to n-1 

do 

 // kernel updating diagonal tile 

 diagonal(); 

 // kernel updating perimeter row tiles 

 perimeter_row(); 

 // kernel updating perimeter column tiles 

 perimeter_col(); 

 // kernel updating internal tiles 

 internal(); 

end do 

// kernel updating last diagonal tile 

diagonal(); 

Figure 2. LUD Algorithm 

// Tiled Needleman-Wunsch (NW) algorithm 

for diagonals 1 to n 

do 

 for all tiles in the diagonal 

 do parallel 

  // call NW kernel 

  nw(); 

 end do parallel 

end do 

Figure 4. Needleman-Wunsch (NW) Algorithm 



strip of diagonal tiles after updating the current strip of diagonal 
tiles. 

4. BSP vs. Asynchronous Task-based Execution 

Depending on the problem, developers often need to choose how to 
synchronize multi-threaded execution. One option is bulk synchro-
nization often using barriers.  This model allows programmers to 
easily reason about the program’s synchronization and communi-
cation. Another option is asynchronous task-based execution where 
data dependencies are explicitly identified. This requires the explo-
ration of more fine-grain control to manage data dependencies and 
may yield better performance.  

Valiant introduced the Bulk-Synchronous Parallel (BSP) pro-
gramming model for mapping high-level programs to hardware 
without losing the efficiency of the program [33]. In the BSP 
model, the application splits into a sequence of computation and 
communication stages (stages are called super-steps), with each 
computation stage parallelized into multiple threads. The commu-
nication stage acts as a synchronization point between successive 
computation stages. Most current GPU execution models follow 
the bulk-synchronous model where the computation is defined by 
kernels and implicit synchronization happens across kernel bound-
aries. 

The asynchronous task-based model represents an algorithm as 
a graph of inter-dependent tasks. Tasks are represented by the 
nodes of DAG and the dependencies are represented by the graph 
edges. A task is ready to be executed when all its dependent tasks 
are completed. Independent tasks of the DAG can be executed in 
parallel and synchronization across tasks is only needed for de-
pendent tasks. The BSP execution is actually a subset of task par-
allel execution that does not fully exploit the fine grained synchro-
nization and parallelization potential of task parallel execution.   

In the succeeding sub-sections, we demonstrate the difference 
between the bulk-synchronous and asynchronous task-based imple-
mentations using the three benchmarks Cholesky factorization, 
LUD and NW. Our bulk-synchronous implementations always run 
only one type of kernel at a time. Additionally, the kernels are 
launched as large monolithic kernel as opposed to tiled versions 
used by the tasked-based implementation. This reduces the number 
of kernels launched thus bringing down the kernel launch overhead. 
For example, in Figure 6(a), even though the execution flow shows 
four xTRSM instances launched (second row of the figure), the 
xTRSM bulk-synchronous kernel is actually one large monolithic 
kernel that operates on four tiles. The same kernel launch semantics 
is applicable to all other figures showing bulk-synchronous execu-
tion. 

4.1 Cholesky Factorization 

4.1.1 Bulk-synchronous Design 

Figure 6(a) shows the bulk-synchronous implementation of Chole-
sky Factorization and highlights the inefficiency of the execution. 
The algorithm uses bulk-synchronization across all threads be-
tween the subroutine calls and thus only one subroutine can be ex-
ecuted at a time. The SYRK subroutine is dependent on the results 
from TRSM and SYRK subroutines of previous iterations. The 
GEMM subroutine is not dependent on SYRK subroutine but de-
pendent on GEMM and TRSM subroutines of previous iterations. 
Since GEMM and SYRK subroutines within a loop iteration are 
independent, both of these subroutines can be executed in parallel 
but the bulk-synchronous execution only allows the parallel execu-
tion of one kernel type at a time. Similarly, the POTRF subroutine 
only needs the diagonal blocks from the SYRK subroutine and can 
be executed in parallel with GEMM subroutine. This parallelization 
opportunity is also not exploited by the bulk-synchronous model. 

 

Figure 6. Cholesky Factorization Execution: a) Bulk-synchronous. b) DAG 



The bulk-synchronous model unnecessarily stalls parallel resources 
waiting for the last thread to complete, leading to underutilization. 

To summarize, while the bulk-synchronous model is easy to im-
plement, it does not fully utilize the available parallelism inherent 
in the application and requires long running tasks to achieve good 
performance. As an alternative, the dataflow programming models 
that support fine-grain tasks are emerging for heterogeneous sys-
tems. The next section describes one such dataflow model in detail. 

4.1.2 Asynchronous Task-based Design 

We use the parallel task-based Cholesky algorithm proposed by 
Ltaief et al. [22] for our asynchronous tasked-based implementa-
tion. As compared to the bulk-synchronous Cholesky factorization 
algorithm, the task-based Cholesky algorithm presents several ad-
ditional opportunities for parallel execution. The asynchronous 
task-based design identifies several individual tasks that are inde-
pendent and can be executed in parallel. For example, all instances 
of TRSM, GEMM, POTRF and SYRK kernels that are not inter-
connected can execute in parallel and in any order. As a result, the 
application can take better advantage of the available heterogene-
ous resources. 

The task-based Cholesky algorithm differs from the bulk-syn-
chronous Cholesky algorithm, as described in Section 4.1.1 in 
several important ways. Both use the exact same kernel functions; 
however the asynchronous task-based algorithm splits the data ma-
trix into a 5x5 grid of tiles. Tiling exposes the possibility of running 
computations on different data tiles in parallel. Finer tiling de-
creases the granularity of tasks, which leads to an increase in par-
allelizing opportunity depending on the overhead for launching 
tasks. We extract the OpenCL kernels from clBLAS library and use 
them directly as our task implementations. Hence, the TRSM, 
SYRK and GEMM tasks run the same code implemented by 
clBLAS library on the GPU. On the other hand, the POTRF task 
uses the LAPACK POTRF subroutine and executes it on the CPU. 

4.2 LUD 

4.2.1 Bulk-synchronous Design 

Figure 7(a) shows the bulk-synchronous implementation of LUD 
where each kernel execution represents a computation stage. There 
is an implicit global synchronization after each kernel execution 

that involves sending a completion notification to the host CPU be-
fore the host launches the next kernel. Although there is no depend-
ency across p_col and p_row, they are serialised because only one 
type of kernel is executed in our bulk-synchronous implementation. 
Thus the bulk-synchronous implementation utilizes the thread-
level parallelism within each kernel, but serializes execution be-
tween kernels. 

4.2.2 Asynchronous Task-based Design 

In addition to the intra-kernel parallelism utilized by the bulk-syn-
chronous implementation, the asynchronous task-based implemen-
tation exposes inter-kernel parallelism between tasks by explicitly 
identifying data dependencies. The bulk-synchronous implementa-
tion can be converted into an asynchronous task-based implemen-
tation by identifying the producer-consumer relationship between 
tiles. In particular, one iteration of the perimeter tile calculations 
depend on data from the diagonal and perimeter tiles. The elements 
in the diagonal tiles are last updated by the diagonal task of the 
current iteration whereas the elements of the perimeter tiles are up-
dated by the internal kernels from the previous iteration. In the task 
graph, this is represented as dependencies between the perimeter 
task and the diagonal and internal tasks.  Similarly, an internal ker-
nel tasks depends on data from both perimeter and internal tasks. In 
particular, an internal task is dependent on the perimeter tasks from 
the current iteration and the internal task from the previous itera-
tion. In addition, the internal task depends on the perimeter tasks 
that updated the tiles on its same row and column. Meanwhile a 
diagonal task only accesses elements from a diagonal tile, thus a 
diagonal task only depends on the internal task from the previous 
iteration. 

Figure 7(b) illustrates the task graph for a 3x3 tiled LUD execu-
tion. The task graph uses the same kernel functions from the bulk-
synchronous implementation, but the asynchronous task-based ker-
nels act as tasks that are operating on a single tile of the matrix. It 
can be seen from the task graph that the perimeter_row and perim-
eter_col tasks are only dependent on the diagonal tasks and can be 
executed in parallel. Additionally, the task graph shows several op-
portunities for diagonal, internal and perimeter tasks to execute in 
parallel. 

 

Figure 7. LUD Execution: a) Bulk-synchronous. b) DAG 



4.3 Needleman-Wunsch 

4.3.1 Bulk-synchronous Design 

The bulk-synchronous implementation of Needleman-Wunsch 
splits the execution into separate computational and communica-
tion phases.  The computation phase of NW executes matrix tiles 
in a diagonal-strip manner.  Each iteration will process one strip of 
tiles with a GPU kernel call. Different strips are processed in serial. 
As a result, the next strip of diagonal tiles will begin processing 
when the previous strip is complete. 

Figure 8(c) shows the task graph of 4x4 tiled NW algorithm. 
Since the same NW kernel operates on all tiles in this application, 
there is only one type of task in this task graph. Figure 8(a) shows 
the tiled 4x4 matrix along with the task numbers. The task number 
specify the tile on which that task is operating on. For example, task 
nw0 will operate on tile (0, 0) of the NW matrix, task nw1 will 
operate on tile (1, 0) and so on. 

4.3.2 Asynchronous Task-based Design 

From the task graph of NW, Figure 8(c), it can be seen that the NW 
task graph does not expose a lot more parallelism than its bulk-syn-
chronous implementation (Figure 8 (b)).  

However, the parallelization opportunity in NW comes from the 
ability to exploit more fine-grain parallelism when there is not 
enough tiles in a strip to fill the GPU. This allows us to process 
tasks across the boundary of original strips. For example, in the 
BSP implementation, one NW kernel instance operates on tiles (2, 
0), (1, 1) and (0, 2). Consequently, even if there is available parallel 
resource, nw6 task cannot start execution until the completion of 
the kernel operating on tiles (2, 0), (1, 1) and (0, 2). However, in 
our task implementation, nw6 task can start execution after the 
completion of tasks operating on tile (2, 0).  
 

5. Tasking on the HSA Platform 

5.1 Heterogeneous System Architecture (HSA) 

HSA is a standardized hardware and software platform supported 
by several industrial and academic partners [17].  Microprocessors, 
operating systems, and runtimes have recently become available to 
support HSA including the AMD FX-8800P APU [10].  The HSA 
standard specifies hardware requirements, such as shared coherent 

virtual memory, and provides a low-level runtime API with exten-
sive tasking capabilities. Our evaluations in this paper are based 
upon HSA v1.0, which was released in March 2015 [19].  

One of the primary benefits of the HSA programming environ-
ment is shared coherent virtual memory between the CPU and the 
GPU. This benefit improves usability and performance as com-
pared to previous heterogeneous programming environments by 
eliminating data copies and allowing memory pointers to be di-
rectly shared between heterogeneous components. The shared vir-
tual memory also eliminates the memory size limitation which 
manifests in discrete GPU systems. Hardware maintains coherent 
shared memory across GPU and CPU cache hierarchies, eliminat-
ing involvement from the programmer. 

HSA provides user-mode task queueing, where task data struc-
tures can be read or written to by the application, thereby enabling 
low-latency task dispatching. Furthermore, HSA provides scalable 
features including multiple task queues, ordered or out-of-order ex-
ecution of tasks within the same queue, and task signalling that can 
block kernel execution based on a set of dependencies. These de-
pendencies can be defined as a list of predecessor tasks that must 
all be completed (AND), a list of predecessor tasks where any one 
must be completed (OR), or any combination of dependencies.  
When its dependencies are satisfied, a blocked task will automati-
cally become eligible for execution without any additional software 
involvement. Both the structures to notify task completion and to 
track task dependencies are kept in shared memory and a dedicated 
hardware continuously monitors these shared memory locations to 
automatically detect resolve dependencies.  

Our DAG implementations use the HSA dependency manage-
ment feature to identify the set of dependent tasks when a task is 
placed on a task queue. To implement our particular DAGs we only 
need to specify AND dependencies. When a task is created (dis-
patched, but not necessarily executing), only the dependent (up-
stream) tasks are required in order to build the dependency list.  No 
consideration is required for downstream tasks. As a result, DAGs 
can be constructed dynamically but must be constructed in a top-
down fashion. 

To summarize, we use three HSA features to implement low la-
tency fine-grained tasking: 

1. Heterogeneous Uniform Memory Access (hUMA) ensures 
GPU and CPU share system memory, alleviating the pro-
grammer from explicitly managing data between disjoint 
memory spaces. 

Figure 8. NW Execution: a) Tiled matrix annotated with task numbers b) Bulk-synchronous execution flow c) DAG execution flow 



2. HSA user-mode queuing allows the programmer to specify 
the DAG using HSA queues without using system soft-
ware. 

3. Dedicated hardware monitors task dependencies, identifies 
the ready tasks, drains the HSA queue with ready tasks, 
and launches theses ready tasks without involvement from 
the programmer. 

5.2 Asynchronous Task Management Interface (ATMI) 

The HSA runtime API is a low-level interface that is intended to be 
used by compiler and system runtimes to leverage the functionali-
ties of HSA-capable architectures. We developed ATMI on top of 
HSA, as a descriptive programming model to easily create and dis-
patch tasks, and manage task dependencies. The ATMI program-
ming model consists of standard data structures to specify task 
identities and its launch parameters (Figure 11). The launch param-
eter data structure also stores other task attributes like task depend-
encies (requires and needs any), stream object and a Boolean syn-
chronous flag. An ATMI task signature extends the GPU kernel 
declaration or a standard C function declaration by adding a launch 
parameter structure as its first argument. An example ATMI pro-
gram is shown in Figure 10, which corresponds to creating and dis-
patching dependent tasks, as depicted in Figure 9. An ATMI task 
may declare GPU kernels or standard C subroutines as its task im-
plementation via custom function attributes. We also developed a 
GCC compiler extension to handle the custom function attribute 
and generate the ATMI task definition, which contains correspond-
ing low-level HSA runtime code that invokes the corresponding 
task implementation. Thus, ATMI abstracts the HSA tasking capa-
bilities into a data structure that defines the launch parameters of 
user-defined kernels and their dependencies. Furthermore, ATMI 
eliminates the verbose prescriptive API of other task-based pro-
gramming models like OpenCL, thereby making the code much 
more readable. As a result, ATMI achieves the following objec-
tives: 
1. ATMI defines a simple descriptive task programming model. 

Programmers can write kernels using traditional shared 
memory arguments, and invoke them like any standard subrou-
tine. 

2. The backend HSA runtime code is automatically generated with 
our GCC compiler plugin.  

3. Constructing DAGs is highly simplified with ATMI because the 
programmer only needs to set relevant data structure fields in 
the launch parameters to denote the parent-child relationship.  

4. ATMI can be used as an intermediate target for other compilers 
that implement tasking and GPU acceleration without binding 
them explicitly to the HSA runtime, thereby allowing ATMI 
programmers to target different platforms in the future.   

5. The intermediate-to-advanced programmer can also provide 
any non-default launch parameter values to control the execu-
tion of the task.  
 
We used ATMI to implement all presented application designs. 

In the next few subsections, we explain the design of the HSA 
runtime code that gets generated from ATMI tasks. 

5.3 Task Creation and Dispatch 

Task dispatch in our implementation heavily uses the HSA runtime 
features [19]. An HSA task is encoded as a kernel dispatch packet, 
and a task dispatch is equivalent to a simple enqueue of the corre-
sponding kernel dispatch packet to an HSA queue. The HSA queue 
is a user-mode queue that can be read or written to by the applica-
tion, and is associated with the GPU of the system. Thus the entire 
packet creation and queuing operation happens in the user domain 
and does not require any system services, avoiding any protection 
domain crossing overhead.  

Every kernel dispatch packet has a completion signal associated 
with it. It is the responsibility of the GPU hardware to signal the 
completion of a task using the completion signal. Only the data 
structures used to represent completion signals are managed by the 
target runtime (e.g., ATMI) or the HSA programmer. ATMI uses 
reference counting to manage the signal data structures. However, 
unlike other software-based task completion detection techniques, 
completion signals are triggered by the driver as hardware inter-
rupts and software is not on the critical path for launching data-
dependent tasks. We will describe the role of this completion signal 
in managing task dependencies next.  

 

Figure 9. HSA Tasking: a) Example DAG. b) Task Queue Im-

plementation 

atmi_lparm_t lp_a, lp_b, lp_c; 

atmi_task_t *parents[2]; 

parents[0] = task_a(&lp_a, ...); 

parents[1] = task_b(&lp_b, ...); 

lp_c.num_required = 2; 

lp_c.requires = parents; 

lp_c.synchronous = true; 

atmi_task_t *c = task_c(&lp_c, ...); 

Figure 10. ATMI example to create and dispatch dependent tasks 

typedef struct atmi_lparm_s { 

    unsigned long    gridDim[3];      

    unsigned long    groupDim[3];     

    atmi_stream_t*   stream;          

    int              kernel_id;       

    bool             synchronous;     

    int              num_required;    

    atmi_task_t**    requires;        

    int              num_needs_any;   

    atmi_task_t**    needs_any;       

    atmi_lprops_t    properties;      

} atmi_lparm_t; 

typedef struct atmi_task_s { 

   atmi_state_t     state;     

   atmi_tprofile_t  profile;   

} atmi_task_t; 

Figure 11. ATMI Launch Parameters and Task Handle Struc-

tures 



5.4 Task Dependency Management 

The HSA API [19] defines barrier packets to specify and manage 
dependencies. Each barrier packet can have up to 5 dependency 
signals associated with it. The list of signals can be AND’ed or 
OR’ed. Our implementation uses the AND version of the barrier 
packet, which waits for all completion signals in its dependency list 
before any tasks enqueued after the barrier packet can make for-
ward progress. To support more than 5 task dependencies, barrier 
packets can be arranged in hierarchy and ordered sequentially in a 
single HSA queue.  The only overhead with this hierarchical ap-
proach is the processing time of the additional barrier packets by 
the dedicated hardware. 

We rely on the properties of kernel completion signals and HSA 
barrier packets to manage task dependencies without any user in-
tervention. We will explain our scheme with the help of a simplified 
top-down DAG shown in Figure 9(a). This DAG has three tasks A, 
B and C. Task C is dependent on both A and B. Tasks A and B do 
not have any dependencies and can start immediately. We create 
two kernel dispatch packets corresponding to tasks A and B and 
then enqueue them on two different HSA queues as shown in Fig-
ure 9(b). Since task C depends on tasks A and B, we first create a 
barrier packet connected to the completion signals of tasks A and 
B. This barrier packet is then enqueued to another HSA task queue 
after which the kernel dispatch packet for task C is enqueued. The 
result is the barrier packet forces the issuing of task C to respect its 
dependencies on A and B. While this example is a very simple 
DAG, the scheme can be extended to implement any complex DAG 
as long as the parent tasks are dispatched before the dependent child 
task. We leave other types of DAG construction to future work. 

5.5 Task Scheduling and Execution 

The task dependencies are managed with the help of completion 
signals and barrier packets. Once the task dependencies are speci-
fied and packets enqueued to HSA queues, the underlying hardware 
is responsible for triggering the completion signals, resolving the 
dependencies, and scheduling the tasks. On the GPU, HSA-com-
patible hardware is responsible for analysing the packets enqueued 
on the HSA queues.  Hardware is also responsible for signalling the 
completion of a task using its completion signal and for draining 
packets from HSA queues in FIFO fashion. When the head of HSA 
queue has a barrier packet, the hardware evaluates the packet’s de-
pendency signals and checks for the completion of the packet. 
Younger packets on the queue are not processed till the completion 
of the older barrier packet. Since a barrier packet can only stall the 
launch of a single queue, the hardware is free to launch independent 
tasks from other queues. This dynamic load balancing leads to max-
imum utilization of available parallel resources of the GPU. 

Conceptually, the same approach can be used for launching 
tasks on CPU. However, in our implementation, CPU kernels run 
on separate persistent pthreads and use the hsa_signal_wait API 
call provided by HSA runtime [19] to wait for the completion of 
dependent tasks. 

To summarize, we use HSA API calls, packets, and signals as 
well as the underlying hardware support to execute asynchronous 
tasks on all the CPU and GPU cores of the APU. After the host code 
specifies the dependencies and launches the tasks, the HSA runtime 
and hardware dynamically track and manage dependencies, and 
schedule tasks to provide load balancing and correct dataflow exe-
cution without any user intervention. 

6. Results 

This section demonstrates the HSA capabilities of fine-grain task-
ing. The execution times for the asynchronous task-based imple-
mentations of all three applications are compared against their bulk 
synchronous counterparts. Both implementations avoid copying 
data between the CPU and GPU by using HSA’s shared coherent 
address space. Thus comparing execution times demonstrates the 
low overhead tasking capability of HSA versus the conventional 
bulk-synchronous execution. 

We use an AMD FX-8800P APU [10] to evaluate tasking capa-
bilities of HSA. This APU has 8 GPU cores and 4 CPU cores. The 
CPU runs at 3.7GHz and the GPU runs at 720MHz. This APU sup-
ports HSA features [17] such as pageable shared virtual memory, 
user mode queuing and signalling. Each ATMI application uses 24 
HSA queues, with each queue having the capacity to hold up to 
128,000 tasks.  

6.1 Cholesky Factorization 

Figure 12 shows the speedup of the Cholesky asynchronous task-
based implementation versus the Cholesky bulk-synchronous im-
plementation. The same clBLAS kernels are used for both the bulk-
synchronous and asynchronous task-based implementations.  These 
kernels are optimized for 128x128 tile size, so we fixed the tile size 
to 128x128 for all input matrix sizes. For smaller input matrices, 
the asynchronous task-based implementation experiences signifi-
cant speedup−3.8x for the 1k x 1k matrix. These impressive 
speedups are due to a combination of the heterogeneous parallelism 
and the task parallelism available in the Cholesky asynchronous 
task-based implementation. Previously, Section 4.1  identified 
that the POTRF tasks in Cholesky executed on the CPU.  In the 
asynchronous task-based implementation, these CPU tasks can run 
in parallel with independent GPU tasks (SYRK, GEMM, and 
TRSM).  Meanwhile in the bulk-synchronous implementation, the 
POTRF tasks serialize execution to a single CPU thread. In addi-
tion, the asynchronous task-based implementation exposes more 
task parallelism across GPU task types, which increases GPU re-
source utilization for the smaller inputs when the parallelism within 
a single task type is minimal. At larger input sizes, the asynchro-
nous task-based implementation of Cholesky achieves at least a 
speedup of 1.5x.  At these larger inputs, even the bulk-synchronous 
tasks occupy all the GPU resources when the GPU task types are 
executing.  However, the asynchronous task-based implementation 
also allows the CPU and GPU tasks to execute simultaneously, 
whereas the bulk-synchronous implementation always serializes on 
the CPU POTRF tasks.  

 

Figure 12. Cholesky Speedup 
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6.2 LUD 

Next we evaluate the performance of the bulk-synchronous and 
asynchronous task-based implementations of LUD. To avoid per-
formance variation that could be introduced by using different 
types of kernels, the exact same GPU kernels from Rodinia are used 
for both the bulk-synchronous and asynchronous task-based imple-
mentations. Only three out of the four kernels used in the Rodinia 
implementation are easy to adapt to different tile sizes. In addition, 
some kernels do not support arbitrary sizes due to hardware re-
source limitations. For example, the kernels extensively use the lo-
cal data store (LDS) for better data reuse and low latency and 
workgroup-level synchronization for its correct operation. In the 
case of a diagonal task, any tile size larger than 32x32 will require 
more LDS than available on a single GPU compute unit. So we had 
to fix the diagonal kernel to operate on a 32x32 tile and force the 
diagonal task in our implementation to operate on a single tile of 
32x32 elements. 

Figure 13 compares the performance of task parallel LUD im-
plementation against the bulk-synchronous reference implementa-
tion from Rodinia. The asynchronous task-based LUD achieves 
better performance by allowing independent tasks to execute con-
currently leading to effective utilization of available parallel hard-
ware resources. However, this scheme works well only if there is 
availability of unused execution resources. For small input matri-
ces, the kernels used by the bulk synchronous implementation are 
small and use only a subset of execution resources available in the 
GPU. The asynchronous task-based implementation increases the 
utilization of available hardware resources for small matrices by 
allowing concurrent execution of independent tasks. Hence, the 
greater speedup with the asynchronous task-based implementation 
for small matrices. However, for large input matrices, the kernels 
launched by the bulk synchronous implementation are large leaving 
no unused hardware resource. Thus the parallel task implementa-
tion cannot significantly increase performance versus the bulk syn-
chronous implementation. 

Even for large input matrices, fine grained tasking can still im-
prove performance by launching tasks faster than the bulk synchro-
nous design. The bulk synchronous implementation has to notify 
the host CPU of kernel completion after which the host will launch 
the next kernel to the GPU. This represents the communication 
stage of the BSP model where the execution resources are kept idle. 
However, for task-based implementation, the communication stage 
is completely removed and the next task is launched immediately 
when execution resources are available. The modest performance 
gain of task-based implementation over bulk synchronous for large 
matrix sizes comes from this removal of communication stage 
overhead in task-based implementation. 

We also performed a task size sensitivity study to determine the 
optimal tile sizes for different input matrices. Table 2 shows the 
tile sizes of different tasks for various input matrices. The diagonal 

tile is fixed to 32x32 elements. Different perimeter_row tasks op-
erate on 32x32 and 128x32 tiles and different row perimeter_col 
tasks operate on 32x32 and 32x128 tiles. Internal tasks operate on 
32x32, 32x128, 128x32 and 128x128 tiles. We report the task size 
sensitivity study results by changing the maximum tile size in one 
dimension. The diagonal, perimeter and internal tile sizes as dis-
cussed above represents the task size 128 in the table. 

It can be seen that the asynchronous task-based implementation 
is significantly faster than the bulk synchronous implementation for 
small input matrix sizes across all task size. For the 1k x 1k input 
matrix, the asynchronous task-based implementation is almost 50% 
faster than its bulk-synchronous counterpart for all task sizes. Over-
all, we see that the 320 task size performs best, so that is the size 
we selected for the results showed in Figure 13.  

6.3 Needleman-Wunsch 

As discussed in earlier sections, the NW task graph does not expose 
more parallelism than its BSP implementation. Instead the oppor-
tunity to improve performance in this application comes from the 
ability to immediately fill available execution resources with fine-
grain parallel tasks. Figure 14 shows performance of task parallel 
NW against bulk synchronous implementation. The basic tile is the 
32x32 element which is a limitation imposed by the NW kernel 
from the Rodinia implementation. The task size is increased by in-
creasing the number of tiles in a task as opposed to increasing the 
tile size of a task.  

The bulk-synchronous model allows the execution of only a sin-
gle instance of a kernel at a time. Consequently, this model unnec-
essarily stalls parallel resources while waiting for the last thread in 
that kernel to complete, leading to idling of these resources. This is 
the only opportunity that the asynchronous task-based implemen-
tation of NW has to increase performance over the bulk-synchro-
nous Rodinia implementation. The idling of resources only be-
comes significant at larger kernel sizes when the entire kernel can-
not fit in the available parallel hardware resources. Consequently, 
the asynchronous task-based implementation shows a performance 
advantage for these large input matrices (Figure 14). 

7. Conclusion 

Asynchronous task-based programming models are capable of ef-
ficiently utilizing the resources in a heterogeneous computing sys-
tem. However, supporting task-based applications require certain 
hardware features to achieve low-overhead task dispatch and de-
pendency resolution. Heterogeneous System Architecture (HSA) 

 

Figure 13. LUD Speedup 
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Table 2. LUD DAG vs. Bulk-Synchronous Speedup across 
multiple Task and Input Sizes 

Input size 
Task size 

128 320 640 1280 2560 6400 

.5k x .5k 1.37 1.39 1.33 1.36 1.38 1.31 

1k x 1k 1.42 1.47 1.51 1.49 1.52 1.50 

1.5k x 1.5k 1.48 1.58 1.62 1.57 1.55 1.53 

2k x 2k 1.40 1.57 1.62 1.50 1.50 1.48 

2.5k x 2.5k 1.37 1.63 1.63 1.56 1.49 1.49 

 



significantly advances the performance and usability of task-based 
programming models. We evaluate the capabilities of HSA for fine-
grain task management by implementing three well-known appli-
cations using asynchronous tasks: Cholesky factorization, Lower 
Upper Decomposition (LUD) and Needleman-Wunsch (NW). We 
demonstrate that HSA’s native support for dynamic scheduling al-
lows for the execution of high-volume, fine-grain tasks. 

Going forward, we would like to focus on tools like ATMI to 
adapt to more scenarios with fine-grain tasking beyond the static 
task graphs evaluated in this paper. We would also like to port ex-
isting tools and compilers that expose asynchronous tasks to HSA 
and leverage its low-overhead automatic scheduling of tasks. In ad-
dition, we would like to compare our HSA implementations to 
other software implementations and fully evaluate the benefits of 
hardware managed tasking. Finally, we plan to explore various task 
queue scheduling policies and low-latency launch mechanisms. 
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Figure 14. Needleman-Wunsch Speedup 
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