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Abstract
Barriers, a common synchronization primitive in SPMD-
style programs, are used to partition a program into a se-
quence of parallel phases. Popular parallel programming
models, such as MPI and OpenMP, allow barriers to be tex-
tually unaligned. Textually unaligned barriers make it diffi-
cult for the programmer to understand the synchronization
phases in the program, and they can easily lead to synchro-
nization errors. In this paper, we present an interprocedu-
ral analysis for matching barriers in a program in order to
detect synchronization errors, or, if no such errors exist, to
determine the synchronization phases of the program. Our
analysis uses a combination of path expressions and inter-
procedural program slicing to match synchronizing barrier
statements. If the barrier matching succeeds, the analysis de-
termines the sets of barrier statements that synchronize to-
gether. A matching failure indicates the presence of a syn-
chronization error and the analysis constructs a counter ex-
ample to illustrate the error. We have implemented the anal-
ysis in an MPI checker tool for programs written in C and
successfully analyzed the synchronization structure of sev-
eral MPI benchmarks.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming

General Terms Verification

Keywords Barrier synchronization, static analysis, pro-
gram slicing, path expressions, MPI

1. Introduction
SPMD (Single Program Multiple Data) is a popular parallel
programming paradigm. Typically, SPMD-style programs
have a barrier synchronization primitive that can be used
to partition the program into a sequence of parallel phases.
When a thread reaches a barrier statement it cannot proceed
until all other threads have arrived at the barrier statement.
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Barriers are textually aligned if all threads must reach the
same textual barrier statement before they can proceed. A
barrier synchronization error occurs if a thread bypasses a
barrier, leaving the remaining threads stalled.

MPI [22] and OpenMP[14], two widely used parallel
programming models, place few or, in the case of MPI,
no constraints on the placement of barrier statements in
the program. Barrier statements may be textually unaligned
making it more difficult for programmers to understand the
synchronization structure of the program and, thus, easier
to write programs with synchronization errors. Textually
unaligned barriers also hinder concurrency analysis [6, 15,
10, 12, 13] because understanding which barrier statements
form a common synchronization point is a prerequisite to
analyzing the ordering constraints imposed by the program.
Some concurrency analyses therefore require barriers to be
named or textually aligned [12, 10, 13].

In this paper we present an interprocedural barrier match-
ing technique for SPMD-style programs with textually un-
aligned barriers. Barriers matching detects synchronization
errors by matching synchronizing barrier statements. If the
matching succeeds, the program is free of barrier synchro-
nization errors and a barrier matching function is computed
that maps each barrier statement s to the set of barrier state-
ments that synchronize with s for at least one instance of s. A
matching failure indicates a synchronization error for which
our analysis provides a counter example that illustrates the
error.

Barrier matching functions provide more information
than a verification of the program’s synchronization struc-
ture alone because they expose barriers that are textually un-
aligned. Programmers can use this information to improve
readability of their code by eliminating textually unaligned
barriers. The information can also be used to validate the
programmer’s mental view of the synchronization structure
of the program. Used in this way, barrier matching infor-
mation can aid in the detection of more subtle algorithmic
problems with the use of synchronization.

Figure 1 shows a sample SPMD-style program fragment
with two barriers. The function get rank() returns the unique
thread identifier of the calling thread. Get rank() is simi-
lar to the “MPI Comm rank()” library function in MPI and
corresponds to the “omp get thread num()” library function
in OpenMP. The barrier construct shown in the figure is
known as “#pragma omp barrier” in OpenMP and as the
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main(){ S2: if(x > 0){
int x=0; ...
int rank = get_rank(); } else {
... ...

S1: if(rank == 0){ barrier; //b2
... }

} else { }
...
barrier; //b1

}

Figure 1. Example program

“MPI Barrier(<communicator>)” function call in MPI. A
synchronization error occurs in the conditional S1 because
all threads except that with rank 0 reach the barrier b1 and
get stalled. However, the conditional S2 is free of errors be-
cause all threads agree on the value of x. Our barrier match-
ing analysis will report a matching error at barrier b1 and cal-
culate the matching function for barrier b2 as M(b2)={b2}.

To detect barrier synchronization errors and to compute
the barrier matching function, our analysis uses a combina-
tion of path expressions [24] and interprocedural slicing [9].
The analysis proceeds in three steps:

Step 1: Multi-Valued Expressions: In SPMD-style pro-
grams all threads execute the same program but they may
execute different program paths. The ability to determine
which program paths may be executed concurrently is a
key component in our analysis approach. Our analysis deter-
mines concurrent paths by computing the multi-valued ex-
pressions in the program. An expression is multi-valued if it
evaluates differently in different threads. If used as control
predicates, multi-valued expressions split threads into dif-
ferent concurrent program paths. In the example shown in
Figure 1, rank is a multi-valued variable while x is not. We
present a new interprocedural solution to the multi-valued
expression problem that is based on interprocedural program
slicing [9].

Step 2: Barrier Expressions: The next step consists of
constructing a barrier expression at each program point. A
barrier expression is a special form of a path expression [24]
that, for a given program point, describes the sequences of
barriers that may execute until a thread reaches that point.
Barrier expressions provide a compact representation of the
synchronization structure of the program.

Step 3: Barrier Matching: The final step uses the results
of the previous steps to match barrier expressions against
each other. We show that, for the program to be correct,
barrier expressions have to match at points where concur-
rent threads meet. We describe an efficient barrier matching
algorithm that, in case of a successful match, provides the
corresponding barrier matching function. A matching failure
indicates a synchronization error for which the analysis pro-
vides a counter example by constructing two program paths
that illustrate the error.

The verification of textually unaligned barriers and the re-
lated problem of determining multi-valued expressions were
first addressed by Aiken and Gay [1]. They developed a set
of inference rules implemented for Split-C [11]. Their rule

system cannot automatically handle procedures and assumes
user annotations to describe the effect of procedures. Our
barrier matching analysis detects the same class of synchro-
nization errors. However, we present an interprocedural so-
lution. Furthermore, in addition to verifying correct synchro-
nization, our analysis establishes the barrier matching func-
tions to expose the synchronization phases of the program
and the presence of textually unaligned barriers.

After detecting one synchronization error our analysis
continues to analyze the portions of the program that are
unaffected by the error. Thus, the analysis may report mul-
tiple synchronization error warnings for some areas of the
program and a matching function for others. The results of
our barrier matching analysis can be used to detect synchro-
nization errors, to expose textually unaligned barrier, and to
provide the input to a concurrency analysis.

We have implemented barrier matching as an MPI check-
ing tool as part of the Eclipse Parallel Tools Platform (PTP)
project (www.eclipse.org/ptp). We applied our checker to
MPI/C programs and have successfully analyzed the syn-
chronization structure of several MPI benchmarks.

In summary, the contributions of this paper are as follows:

• We present an interprocedural solution to the multi-
valued expression problem to determine the concurrent
program paths in an SPMD-style program.

• We introduce barrier matching as an interprocedural bar-
rier verification analysis.

• Our analysis goes beyond verification by computing a
matching function exposing textually unaligned barriers
in addition to the verification result.

• We have implemented an MPI barrier checking tool for
C and present an evaluation of the tool on a set of MPI
benchmarks.

The rest of the paper is organized as follows. Section 2
provides an overview of the barrier matching problem.
The interprocedural multi-valued expression analysis is de-
scribed in Section 3. Sections 4 and 5 describe the barrier ex-
pression construction and the barrier matching algorithm, re-
spectively. The experimental evaluation is presented in Sec-
tion 6. We present related work in Section 7 and conclude in
Section 8.

2. Barrier Matching Overview
Our analysis is applicable to SPMD-style programs with
barriers that may be unnamed and textually unaligned. The
goal of our analysis is to determine whether the barriers in
the program are well-matched, and if they are, to compute
the barrier matching function. The barriers in a program
are well-matched if all concurrent threads execute the same
number of barriers.

As commonly done for the analysis of sequential pro-
grams, we would like to formulate this problem as a path
flow problem over a graphical representation of the program,
such as the program’s control flow graph (CFG).

The CFG of a program is a directed graph G = (N, E)
with a set of nodes N that represent the program’s basic
blocks and a set of control flow edges E connecting the
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nodes. A program path is a connected sequence of nodes in
G. Figure 2(a) shows a program fragment in C and its control
flow graph is shown in Figure 2(b).

Sequential data flow problems are usually solved by com-
puting a solution over all paths in the CFG. There is an im-
portant distinction between an all-paths solution in a sequen-
tial program and the notion of all-paths in an SPMD-style
program. In SPMD-style programs, some of the program
paths may be concurrent while others may not be. Program
properties may hold for all concurrent paths, but not for all
program paths.

The CFG in Figure 2(b) illustrates this point. There are
three paths from node A to node G: P1: A B G, P2: A C D
F G, and P3: A C E F G. The number of barriers executed
along these paths differs: two barriers for P1 and one barrier
for P2 and P3. However, not all three paths are concurrent.
The predicate at node C is multi-valued creating two concur-
rent paths P2 and P3. The program is well-matched because
along the two concurrent paths the number of barriers is the
same.

To formulate a path problem in the presence of concurrent
paths we need additional mechanisms.

Definition 2.1. (Execution Trajectory) Given an SPMD-
style program, an execution trajectory T with respect to an
execution E of the program is the set of program paths from
start to exit that are executed by each thread in E.

Definition 2.2. (Concurrent Paths) Two program paths p1

and p2 with p1 �= p2 are called concurrent if there exists an
execution trajectory that contains both paths.

We can now define the barrier matching problem as a path
problem as follows:

Definition 2.3. (Barrier Matching Problem) Barriers in
an SPMD-style program are well-matched if for every set
of concurrent paths from program start to program exit the
number of barriers is same along each path.

Thus, a prerequisite to our analysis is the ability to deter-
mine the concurrent paths in the program. In many SPMD
programming styles, concurrent paths are not explicit in the
program text. They can be derived from the program points
at which concurrent threads split and the points at which they
meet again. To determine these concurrent split and meet
points we compute the multi-valued expressions in the pro-
gram as described in detail in Section 3.

2.1 Analysis Scope

Our analysis can handle programs with arbitrary control
flow. However, for structured programs (i.e., programs with-
out goto statements) we can often use simpler algorithms.
We can transform every program into a structured program
using goto elimination [7]. Whenever simpler algorithms for
structured programs are available we will describe both the
general algorithm for arbitrary control flow and the simpler
algorithm for structured programs.

Similar to others [1, 5] we observe that programmers typi-
cally use synchronization in a highly structured way. We fol-
low the assumption, introduced by Aiken and Gay [1], that
correct parallel programs are also structurally correct. Infor-

rank=get_rank();
if (rank > n) {
      f(n);
      barrier;
}
if (rank <= n) {
      g(n);
      barrier;

rank=get_rank();
while (i++ < rank){
      f(n);
      barrier;
}

rank=get_rank();
if (rank > n){
      i = 0;
      while (i++ < 1) {
            f(i);
            barrier;
      }
} else {
      g(n);
      barrier;
}

(c) Structurally correct
      but not well−matched

(b) Structurally incorrect,
      not well−matched and
      producing a synchronization
      error

(a) Structurally

      but error−free
incorrect

}

Figure 3. Synchronization examples that produce synchro-
nization error warnings

mally, structural correctness means that a program property
holds for a program if it holds for every structural compo-
nent of the program, (i.e., every statement, expression, com-
pound statement, etc.). The assumption of structural correct-
ness simplifies the analysis in that we can break down the
verification problem for the whole program into a series of
smaller problems, one for each structural component.

More formally, we define structural correctness with re-
spect to a propertyP based on the abstract syntax tree (AST)
of a structured program as follows:

Definition 2.4. (Structural Correctness) Let T be the AST
of a structured program P , P is structurally correct with
respect to property P if each subtree of T is structurally
correct with respect to P .

The structural correctness assumption enables us to show
that the barriers in a program are well-matched by induc-
tively showing that the barriers in all subtrees of the pro-
gram’s AST are well-matched.

Structural correctness is sufficient but not necessary for
a program to be correct. However, we have yet to find a
realistic program that is correct but not structurally correct.

Our example from Figure 2 is structurally correct. Fig-
ure 3 (a) shows a code fragment that is structurally incorrect
because each conditional, if viewed in isolation, is incorrect.
However, the fragment is free of synchronization errors. Fig-
ure 3(b) shows an example of a structurally incorrect pro-
gram that also contains a synchronization error.

Our barrier matching analysis verifies that an SPMD-
style program is structurally correct and free of barrier syn-
chronization errors. However, our analysis may report spuri-
ous synchronization error warnings for structurally incorrect
programs, such as the example in Figure 3(a). Furthermore,
due to the conservative nature of static analysis, our analy-
sis may report spurious warnings in the presence of infea-
sible paths. For example, the code segment in Figure 3(c)
is structurally correct and free of synchronization errors.
However, our analysis assumes that any number of iterations
through the loop is feasible and would issue a warning. Spu-
rious warnings may also result from an overestimate of the
multi-valued expressions in the program. Such an overesti-
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φ(d) Modified dependence graph with φ−nodes and      −dependence edges

A1 A2 A3

B1 B2 B3 B4 C1 C2

get_rank()

print(m);rank == 0

(a) Example program

(c) Program Dependence Graph

(b) Control flow graph

A1 A2 A3 G

B1 B2 B3 B4 C1 C2

T TT T

T F F FT T

T T F F

get_rank()

rank == 0

m = g(m); barrier b3 m = g(m); barrier b4

print(m);

print(m);

T

F

F

A

B C

F

G

E

m = 0;
get_rank();
f(m) == 0

m = g(m);
barrier b1
m = g(m);
barrier b2

m = g(m);
barrier b3

m = f(m);
rank == 0

m = g(m);
barrier b4

print(m);

print(m);

entry

m = g(m); barrier b1 m = g(m); barrier b2 m = f(m);

f(m) == 0

f(m) == 0 print(m);

m = g(m); barrier b1 m = g(m); barrier b2 m = f(m);

m = g(m); barrier b3 m = g(m); barrier b4

(m)φ

D

T

T

F

F

(m)φ

G

D1 D2 E1 E2

E2E1D2D1

m = 0;
rank=get_rank();

if( f(m) == 0 ){
      m = g(m);
      barrier b1
      m = g(m);
      barrier b2
} else {

      m = f(m);
      if( rank == 0){
            m = g(m);
            barrier b3
      } else {
            m = g(m);
            barrier b4
      }
      print(m);
}
print(m);

m = 0;

m = 0;

Figure 2. Barrier program example. For illustration purposes we assume that function f and g are library functions free
of side-effects. (a) Example program (b) Control flow graph (c) Program dependence graph. Control dependence edges and
data dependence edges are represented by dashed lines and solid lines, respectively. (d) Modified dependence graph with φ
nodes and φ-dependence edges. Data dependence edges and φ dependence edges are represented by solid and dotted lines,
respectively. Slicing based on variable “rank” at node A2 is shown through shaded boxes.
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mate may be caused by an overly conservative handling of
pointers and array variables. We will discuss the impact of
pointer analysis further in Section 3.

Importantly, although possible due to the static nature of
the analysis, our evaluation in Section 6 shows that spurious
warnings are very rare and not a problem in practice.

We describe our analysis in the context of MPI programs.
Applying the analysis to OpenMP requires some adjust-
ments, not described here, to represent OpenMP’s concur-
rency constructs in the control flow graph and to account for
shared variables in the multi-valued expression analysis.

3. Multi-Valued Expressions
Multi-valued expressions are computed to determine the
concurrent paths in the program, or more specifically, to de-
termine the thread split and meet points. In addition to being
used as input to barrier matching, information about concur-
rent paths is useful by itself and can provide an important
tool for program understanding.

An expression is multi-valued if it evaluates differently
in different threads. Conversely, an expression that has the
same value in all threads is called single-valued.

Parallel programs typically contain multi-valued
seed expressions, such as library calls that return a
thread identifier (e.g., “MPI Comm rank” in MPI, and
“omp get thread num” in OpenMP). All multi-valued
expressions are directly or indirectly derived from these
initial multi-valued seeds. These dependence relationships
suggest that we may be able to solve the multi-valued
expression problem as a program slicing problem.

Program slicing was first introduced by Weiser [29].
Venkatesh [28] later defined a forward slice as follows: given
a program point p and a variable v, the forward slice is the set
of statements that are affected by the value of variable v at
point p. Ottenstein and Ottenstein [17] showed that we can
recast the slicing problem as a graph reachability problem
using the program dependence graph. The program depen-
dence graph contains nodes for all statements in the program
and two types of edges: data dependence edges and control
dependence edges. The forward slice for a node n that de-
fines a variable v is the set of nodes reachable from n in the
program dependence graph. Horwitz et al. [9] extended the
work by Ottenstein and Ottenstein on program dependence
graphs by developing an interprocedural solution to program
slicing. Their interprocedural extension of the program de-
pendence graph is called a system dependence graph.

Figure 2(c) shows the program dependence graph for our
example. The slice for variable rank at node A2, shown as
the set of shaded nodes, contains all nodes reachable along
control or data dependence edges.

Unfortunately, forward slicing overestimates the multi-
valued expressions. There is a subtle difference between the
dependence information used in traditional program slic-
ing and the dependence information needed for computing
multi-valued expressions. Figure 2 (c) illustrates this differ-
ence. Variable m is single-valued at node C and first be-
comes multi-valued at node F when the threads that split
at node C meet again. Variable m is single-valued at nodes
D and E because it has the same value for all threads that

Procedure MultiValuedSlicing
1. Build a CFG of the program
2. Insert φ nodes and φ gates
3. Build the system dependence graph as described in [9]

using φ edges in place of control dependence edges
4. Mark every multi-valued seed expression in the graph
5. Compute the interprocedural slice as the set of nodes

reachable from seed expressions using the algorithm in [9]

Figure 4. Algorithm MultiValuedSlicing

execute these nodes. However, the forward slice on rank in-
cludes nodes D and E because they are control dependent on
C2.

Thus, computing multi-valued expressions requires some
adaptations of existing slicing algorithms. Instead of control
dependence edges we need edges from multi-valued pred-
icates to the points where the values of variables that are
control-dependent on the predicates merge. In the example
in Figure 2(c), we need an edge from C2 to F.

This notion of value merge dependence can be found in
Static Single Assignment Form (SSA) [4]. SSA Form uses
φ-nodes to represent the new value of a variable at join
points where multiple definitions of the variable are merged.
In Figure 2(d) φ-nodes would be placed at nodes F and
G. Gated SSA form is a refinement of SSA in which each
φ-node is connected to the controlling predicate [27]. We
refer to such a predicate as the φ-gate and we call the edges
connecting a φ-gate with the corresponding φ-nodes “φ-
edges”. φ-edges are exactly the dependence edges we need
for our multi-valued slicing problem. Figure 2(d) shows a
modification of the program dependence graph from (c) with
φ-nodes and φ-edges.

For structured programs we can determine φ-gates and φ-
nodes directly from the nesting structure. In the general case,
the algorithm described in [27] can be used.

Based on the notions of φ-nodes and φ-gates we can
inductively define multi-valued expressions as follows:

Definition 3.1. (Multi-Valued Expressions) An expression
e is multi-valued if one of the following holds:
(i) e is a multi-valued seed (e.g., a thread library call that
returns a different value in each thread),
(ii) e is data-dependent on a multi-valued expression,
(iii) e is a φ-node with a multi-valued φ-gate.

We can now define multi-valued expression analysis as a
simple adaptation of program slicing. After replacing control
dependence edges with φ-edges we can use the existing
algorithm for interprocedural slicing developed by Horwitz
et al. [9] to compute the multi-valued expressions in the
program. Figure 4 shows an overview of this approach.

After computing the multi-valued expression slice we de-
termine the concurrent paths in the program by marking the
concurrent split and meet points in the graph. The concurrent
split points are determined as the φ-gates that are contained
in the slice. Similarly, the concurrent meet points result as
the φ-nodes contained in the slice.

198



3.1 Library Calls

Thread library calls may produce both multi-valued expres-
sions (such as MPI Comm rank in MPI), or single-valued
expressions (such as a broadcast). We assume that thread
library interfaces are annotated as either single- or multi-
valued. If no such annotations are available, we can con-
servatively treat all thread library calls as producing multi-
valued seed expressions. Other library function calls return
single-valued expressions.

3.2 Handling Pointers and Arrays

Pointers and arrays impact the multi-valued expression com-
putation by complicating the determination of accurate data
dependences. The program dependence graph has to safely
represent all possible data dependences in order for the
multi-valued expression slicing to be a safe approximation.
A simple conservative handling of arrays models each array
as a single object. Pointers can be modeled safely by treat-
ing every dereference of a pointer and every variable whose
address is taken as a multi-valued seed. A conservative slic-
ing computation overestimates the multi-valued expressions
in the program, which, in turn, can lead to spurious syn-
chronization error warnings. The accuracy of the slice can
be improved by applying a pointer analysis [2] prior to the
construction of the program dependence graph.

As our evaluation in Section 6 shows, for scientific SPMD
applications, simple pointer and array approximations often
suffice to avoid spurious error warnings.

4. Barrier Expressions
The next step of our analysis consists of constructing bar-
rier expressions. Barrier expressions are a special form of
Tarjan’s path expressions [24]. A path expression at a node
n in a CFG represents all paths from the beginning of the
program to node n. Path expressions are regular expressions
built using node labels as terminal symbols and the opera-
tors: · (concatenation), | (alternation), and � (quantification).
For example, in Figure 2 the path expression at node G is A
· ( B | ( C · (D | E) · F) · G.

Path expressions have been used to build data flow an-
alyzers by interpreting node labels as data flow functions,
path concatenation as flow function composition, alternation
as taking the meet of functions, and quantification as finding
the fixed point of a function [25].

A barrier expression is a path expression that uses barrier
statement labels instead of node labels as terminal symbols.
A barrier expression at a program point n represents the se-
quences of barriers that may execute along any path from the
beginning of the program to node n. If a barrier expression
B represents a barrier sequence b1, b2, ..., bn we say that B
“derives” n barriers.

We can obtain a barrier expression from a path expression
by replacing the node labels in the path expression with
barrier labels as follows. If a node n contains a sequence
of barriers b1, ..., bn we replace n with the concatenation
b1 · ... · bn. If n contains no barriers we replace n with the
empty symbol ∅. We assume that redundant empty symbols
are eliminated from the expression whenever possible to
improve readability of the expression. If we remember the

*

|

c|

c|Tmain = (Tp)* | ( b1  Tq)

Tp b1 Tq
[1] [1][2]

[1]

procedure main
if(single−valued) {

} else {
      if( multi−valued )
            barrier; // b1
      else
            q;
}

      while(single−valued) p ;

procedure p
if( multi−valued ) {
      barrier; // b2
      ......
      barrier; // b3
} else {
      barrier; // b4
      ......
      barrier; // b5
}

. .

c|

Tp = (b2 . b3 ) c| . b5)( b4 

b2 b3 b4 b5
[1] [1] [1] [1]

[2] [2]

[2]

procedure q
if( multi−valued ) {

} else {
      barrier; // b7
}

      barrier; // b6 c|

c|Tq = b6  b7

[1] b6 b7 [1]

[1]

Figure 5. Barrier trees. The fixed length cnt(t) for each
subtree t is shown within brackets.

sequence of ∅ eliminations, we can always translate a barrier
expression back to its original path expression, if needed.

Using Tarjan’s fast path algorithm [23] building bar-
rier expressions takes O(E log N) time. For structured pro-
grams, constructing barrier expressions can be done in linear
time over the program’s AST by following the nesting struc-
ture of the program.

To simplify the discussion we assume barrier expressions
are represented by their expression trees as shown in Figure
5. We refer to these tree representations as barrier trees.

To compute barrier trees for the whole program we com-
pute a separate barrier tree Tp for each procedure p. The tree
Tp represents the barrier expression determined for the exit
node of procedure p. A call inside p to another procedure q is
represented by the label Tq for the barrier tree for procedure
q. The whole program is thus represented by a set of barrier
trees and the tree set contains (B + C) leaf nodes, where
B is the number of barrier statements and C the number of
procedure call sites in the program. It follows that the size of
all barrier trees for a programs is O(B + C).

Figure 5 shows a program example consisting of three
procedures along with their barrier trees.

We complete the barrier tree construction by incorporat-
ing the information about concurrent meets from the multi-
valued expression slice. The alternation and quantification
symbols in a barrier tree corresponds to the meet nodes for
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conditionals and loops in the CFG of the program. We anno-
tate barrier trees by marking each alternation and quantifi-
cation symbol as concurrent if the corresponding meet node
in the CFG is marked as concurrent. In Figure 5, a marked
concurrent alternation is shown as |c. The resulting barrier
trees contain regular as well as concurrent alternation and
quantification symbols.

We can now restate the barrier matching problem from
Definition 2.3 in terms of barrier trees as follows: A barrier
tree t is well-matched if all concurrent barrier sequences that
can be derived from t have the same number of barriers.

5. Barrier Matching
We introduce the following terminology for barrier trees:

Definition 5.1. (Fixed-length Barrier Tree): A barrier tree
t is called a fixed-length tree if all barrier sequences deriv-
able from t have the same number of barriers.

A tree that is not fixed-length is called variable-length.
We can easily show by induction on the size of t that if t is
fixed-length then all subtrees of t are fixed-length.

Fixed-length provides a sufficient but not necessary con-
dition for a tree to be well-matched. In a fixed-length tree
all derivable sequences have the same number of barriers,
in a well-matched tree only the concurrent sequences are of
the same length. The relationship between fixed-length and
well-matched trees is captured in the following claim:

Claim 5.1. (Matching Conditions) A barrier tree t is well-
matched if and only if the following two conditions are
satisfied:
(1) t contains no concurrent quantification subtrees
(2) all concurrent alternations subtrees are fixed-length

Proof. Clearly, if any of the conditions (1) or (2) are vio-
lated, t cannot be well-matched. Conversely, assume t is not
well-matched, that is, t derives at least two concurrent bar-
rier sequences of different lengths. It follows that t must con-
tain concurrent subtrees that are not fixed-length. In other
words, there exists a variable-length subtree that is either a
concurrent quantification subtree violating condition (1), or
a concurrent alternation tree violating condition (2).

We next describe an algorithm that determines whether a
tree is fixed-length using a linear-time bottom-up traversal
of the barrier trees. The traversal computes a barrier count
cnt(t) for each subtree t. If t is fixed-length cnt(t) is the
length of barrier sequences derivable from t. We use the
symbol � to denote a variable number of barriers. For all
integer numbers n: � + n = � and � + � = �.

For each procedure p with a barrier tree Tp, cnt(Tp) is
initialized as follows:

cnt(Tp) =
{

0 if Tp is empty
� otherwise

Note that Tp is empty only if procedure p contains no
barrier statements and no procedure calls.

The calculation of cnt(t) proceeds by applying the rules
shown in Figure 6 during a bottom-up traversal of t. It is easy
to show by induction on the size of t that the calculation rules

0

cnt (t) = cnt (t1) + 

If t is a concurrent tree, report warning

cnt (t) = 
if  cnt (t1) = cnt (t2) = nn

otherwise.
alternation tree, report warning

If t is a concurrent 

.

t1 t2

t1 t2

*

t1

b cnt (t) = 1

cnt (t) = 0

cnt (t) = cnt (t1) + cnt (t2)

Tp cnt (t) = cnt (Tp)

Barrier Tree t Fixed−length Calculation Rule

Figure 6. Fixed-length calculation rules

are correct, that is, cnt(t) = n with n �= � if and only if t is
fixed-length and derives n barriers.

To analyze the barrier expressions interprocedurally we
traverse the call graph bottom-up and calculate cnt(Tp) for
each procedure p. Recursion is handled safely through the
initialization of cnt(Tp). For a non-empty tree Tp, the initial
value� propagates throughout any recursive cycle, correctly
indicating that the number of barriers that result from recur-
sion is variable.

We use the fixed-length information to verify the match-
ing conditions from Claim 5.1 during a single traversal of the
barrier trees. At each visited concurrent alternation or quan-
tification subtree the two matching conditions are verified by
inspecting the computed cnt value. A synchronization error
warning is issued when one of the conditions is violated. If
no warnings were produced we have verified that the pro-
gram is free of barrier synchronization errors.

Figure 5 shows the computed cnt values in brackets next
to each barrier tree node. The computed counts show that
the trees TP and TQ are fixed-length and Tmain is variable-
length. The example is well-matched because all concurrent
alternation subtrees are fixed-length and there are no concur-
rent quantification subtrees.

The complexity of applying the fixed-length calculation
rules is linear, i.e., O(B + C).

5.1 Barrier Matching Functions

If no synchronization warnings are reported, we compute
the matching function M that maps each barrier statement
b to the set of barrier statements that synchronize with b, for
some instance of b. If b1 ∈ M(b2) we call the pair (b1, b2) a
matching pair.
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.

.

t1 = b1 ( b2. . ( b3 . b4 ))

.

. .

b5 b7 b8b6

t2 = ( b5 . b6 ) . ( b7 . b8 )

b2

b1

b3 b4

Figure 7. Two concatenation trees

Each verified concurrent alternation tree t = t1 |c t2 con-
tributes to the matching function by providing new matching
pairs that match barriers in t1 with the concurrently execut-
ing barriers in t2.

First, consider the case where t1 and t2 are simple con-
catenation trees, that is, t1 and t2 only contain concatena-
tion operations and all leaf nodes are barriers, as shown in
the example in Figure 7. Thus, t1 and t2 each derive a sin-
gle unique barrier sequence and, because t was verified, the
two unique sequences have the same length. Computing the
matching sets for the two trees is easy; we can match bar-
riers from t1 with barriers from t2 left-to-right, as they are
encountered during a depth-first traversal of the trees.

In more general terms, let Match(t1, t2) denote the query
to compute all matching pairs that result from matching bar-
riers in t1 with barriers in t2. We compute Match(t1, t2) by
simultaneously traversing the two subtrees in depth-first or-
der through a finite number of applications of a set of match-
ing rules shown in Figure 8. To model a depth-first traversal
each rule is associated with a state that denotes the current
direction of the traversal (upwards ↑ or downwards ↓). Each
matching rule transforms a directed query Match(t1, t2) into

Direc−
tion

Direc−
tion

t2: b2
Add matching set
{ (b1, b2) }

.

t1 t3

.

t2 t4

.

t2

t3

.

t3

t2t1

t1

1 t1: b1

Match( t1, t2 ) ActionsNo.

Match( t1, t3 )

Match( t3, t4 )

Match( t1, t3 )2

3

4

Figure 8. Barrier matching rules for concatenation trees

a new query with a new direction. Note that rules 1 and 4 are
the only rules that change direction.

To proof that the matching rules in Figure 8 correctly
compute the matching sets between t1 and t2 we make the
following claims.

Claim 5.2. Applying the matching rules from Figure 8 to
two equal-length concatenation trees t1 and t2 leads to a
complete depth-first traversal of t1 and t2.

Proof. It can easily be seen that rules 1 through 4 only pro-
duce moves in depth-first order. Furthermore, it can easily
be shown that for any combination of subtrees from t1 and
t2 there is a rule that applies. Thus, all nodes in t1 and t2
will eventually be visited, completing the depth-first traver-
sal.

Claim 5.3. Applying the matching rules from Figure 8 to
two equal-length concatenation trees t1 and t2 matches each
barrier leaf node in t1 with exactly one leaf node in t2, and
vice versa.

Proof. Claim 5.2 implies that each leaf node will be matched
at least once. Let {b1, b2)} be one of those matches for leaf
node b1 in tree t1. Thus, rule 1 has just been applied and the
direction is upwards. For b1 to be involved in a subsequent
match, direction would have to be changed again in order
to descend to another leaf node in t2. Hence, rule 4 would
have to be applied. However, rule 4 can only be applied to
both subtrees simultaneously. Hence, b1 cannot be matched
with another leaf in t2. The analogous argument shows that
b2 cannot be matched against additional leaf nodes in t1.

Direc−
tion

Direc−
tion

Match( t1, t3 );
Match( t1, t4 )

Match ( Tp, t2 );
Push t1 onto
LeftStack

t3 = pop( LeftStack );

Match( t3, t2 )

t1

t1

t3 t4

t2

t2

t3

t2

t2

ActionsNo.

5

Match( t1, t3 )

7

6

8

t1: Tp

t1: Tp

Match( t1, t2 )

Figure 9. Barrier matching rules for alternation and proce-
dure calls

201



Claims 5.2 and 5.3 imply that for two concatenation trees
t1 and t2 the matching rules match each barrier in t1 cor-
rectly with a barrier in t2.

In general, the subtrees t1 and t2 of a verified concurrent
alternation tree do not only contain concatenations but also
alternations and leaf nodes that denote procedure calls. Fig-
ure 9 shows the extensions of the matching rules that handle
these cases. For each matching rule in Figure 9 there exists
a symmetric counterpart, not shown here, where the roles of
t1 and t2 are interchanged.

Alternation (rule 6) is handled by proceeding with two
traversal sequences, one along each subtree of the alterna-
tion. The queries along the left subtree are resolved first be-
fore proceeding to the right subtree.

Procedure call leaf nodes (rule 7) are handled by contin-
uing the traversal at the appropriate callee. To remember the
correct call node when returning in the upwards direction, a
stack is maintained for each traversal (LeftStack and Right-
Stack).

To compute the complete matching function M for the
entire program, the matching rules in Figures 8 and 9 are
applied for each verified concurrent alternation subtree.

Consider now the complexity of applying the matching
rules. There are O(B + C) nodes in the barrier trees for the
entire program so that the number of different queries that
can be generated is O((B + C)2). Repeated processing of
the same query in the same direction is redundant and would
only reproduce the same matches. We can avoid redundant
re-traversals by maintaining a visited flag for each pair of
trees. Using visited flags we can ensure that the rules are
applied to each pair of trees at most twice (once in each
direction) so that the overall complexity of applying the
matching rules is O((B + C)2).

Applying the matching rules to our example from Fig-
ure 5 produces Match queries for the three fixed-length con-
current alternation subtrees in Figure 5. The matching func-
tion results as follows: M(b1) = {b6, b7}, M(b2) = {b4},
M(b3) = {b5}, M(b4) = {b2}, M(b5) = {b5}, M(b6) =
{b1, b7}, and M(b7) = {b1, b6}. Matching sets containing
more than one element indicate the presence of textually un-
aligned barriers.

5.2 Counter Example

If the fixed-length calculation rules from Figure 6 reveal a
synchronization error we construct a counter example to il-
lustrates the error. Assume t is an error tree, that is, t is either
a concurrent quantification tree or a variable-length concur-
rent alternation tree. The counter example for t consists of
two concurrent program paths that include different numbers
of barriers.

We construct the counter example by extracting appropri-
ate barrier sequences from the error tree t and then expand-
ing these sequences into program paths. If the error tree t
contains alternations it represent multiple barrier sequences
and extracting a single sequences requires making a selec-
tion at each alternation point. The kind of selection depends
on the characteristics of the error tree.

Consider an error tree t that is a concurrent quantification
tree, that is, t = (t1)� with cnt(t) = �. Any sequence

selected from t1 exemplifies the error because the sequence
is cyclic. Thus, we extract a sample sequence from t1 by
arbitrarily selecting one of the alternatives at each alternation
operation.

Now consider an error tree t that is a concurrent alter-
nation tree, that is, t = t1 |c t2. We select four sequences
from t, the shortest and the longest barrier sequence from
each subtree t1 and t2. Among the four choices we obtain
at least two sequences that have a different number of bar-
riers because t1 and t2 are not equal-length. We construct
the shortest (longest) barrier sequence from a subtree during
a bottom-up traversal. The traversal recomputes the count
values cnt using the calculation rules from Figure 6. How-
ever, when encountering an alternation subtree t we select
the alternative with the lower (higher) barrier count and re-
compute the barrier count for t by copying the barrier count
from the selected alternative.

It remains to expand the selected barrier sequences into
program paths. This expansion is done by reversing the
transformations that were performed when first constructing
the barrier expression from the corresponding path expres-
sion.

6. Experimental Evaluations
We have implemented multi-valued expression slicing
and barrier matching for MPI/C programs as part
of the Eclipse Parallel Tools Platform (PTP) project
(www.eclipse.org/ptp). The analysis was built on top of the
open-source CDT (C Development Tool) in Eclipse that con-
structs ASTs for C programs.

MPI offers the concept of communicators to
limit the scope of a barrier to a specific subset of
the executing threads. The default communicator is
MPI COMM WORLD which includes all MPI threads.
To handle MPI-style communicators our tool analyzes the
program separately for each communicator.

Our current implementation treats pointers conservatively
– every dereference of a pointer and every variable whose
address is taken, except function parameters, is considered to
be multi-valued. Function pointers are currently not handled.
Aliases of communicators are handled by conservatively as-
suming separate communicators. In most cases a simple An-
derson’s style pointer analysis [2] would have been suffi-
cient to accurately determine the aliases of communicators.
However, our experimentation shows that even a conserva-
tive handling of pointers does not produce spurious warnings
for our benchmark set.

We evaluated our MPI barrier checker on a set of MPI
benchmarks, listed in Table 1. None of these benchmarks
have any known synchronization errors so the main pur-
pose of our experimentation is to determine whether our
checker tool generates spurious synchronization error warn-
ings when applied to realistic applications.

Armci 1 is an AggregateRemote Memory Copy Inter-
face. FFTW 2 is a C subroutine library for computing the
Discrete Fourier Transform (DFT). MPB (MIT Photonic

1 http://www.emsl.pnl.gov:2080/docs/parsoft/armci
2 http://www.fftw.org
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Benchmarks Armci FFTW MPB ParMetis SBLAS Skampi Tcgmsg
# Source lines 19413 67901 8027 579167 4090 15430 3885
# Procedures 445 558 148 338 71 402 84
# Barrier statements 44 6 3 67 24 3 6
# Communicators 1 1 2 67 1 3 2
# Nodes in barrier trees 2936 579 450 1014133 3297 628 1290
Size of the largest matching set 1 1 2 1 1 1 1
Fraction of multi-valued predicates in barrier trees 0 0 14.3% 0 0 0 0

Table 1. MPI benchmark programs and their barrier checking results

Bands) 3 computes the band structures (dispersion relations)
and electromagnetic modes of periodic dielectric structures.
ParMetis 4 is a parallel library that implements a variety of
algorithms for partitioning unstructured graphs and meshes,
and for computing fill-reducing orderings of sparse matri-
ces. SBLAS is a set of single precision Basic Linear Algebra
(BLAS) subroutines. Skampi 5 is a suite of tests designed to
measure the performance of MPI. Tcgmsg is an MPI version
toolkit for writing portable parallel programs using MPI. Ta-
ble 1 lists the sizes of these benchmarks and the number of
barrier statements in each benchmark.

Armci, FFTW, MPB and sBLAS use the global
communicator MPI COMM WORLD, which includes all
processes. Tcgmsg uses two distinct communicators
MPI COMM WORLD and TCGMSG Comm. Although
TCGMSG Comm is an alias of the default communica-
tor MPI COMM WORLD, we conservatively treat it as a
separate communicator. ParMetis refers to communicators
through pointer dereferences, and Skampi refers to commu-
nicators through function calls. We conservatively treat each
textual communicator in ParMetis and Skampi as a separate
communicator.

Our prototype was capable of verifying the synchroniza-
tion structure in all benchmarks without producing spurious
error warning. The size of the largest matching set provides
information about textually unaligned barriers. The size of
the largest matching set is one for all benchmarks except
MPB. Thus,the barriers in all benchmarks except MPB are
textually aligned.

7. Related Work
The most relevant previous work on verifying barrier syn-
chronization is the work by Aiken and Gay on a barrier in-
ference rule system [1]. Their analysis detects the same class
of synchronization errors as ours, however, they require user
annotations to handle procedures and their analysis does not
explicitly compute the matching function among barriers.
There have been other approaches to verifying synchroniza-
tion in parallel programs using model checking [21, 20]. The
techniques based on model checking do not share the as-
sumption of structural correctness but they are more expen-
sive resulting in scalability problems. There have also been

3 http://ab-initio.mit.edu/wiki/index.php/MPI Photonic Bands
4 http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
5 http://liinwww.ira.uka.de/ skampi/

some efforts on static checking of shared memory programs.
One such example is Calvin [8], which is based on automatic
theorem proving.

Other related work includes barrier optimization ap-
proaches that optimize the usage of barriers [5, 26, 16] by
eliminating unnecessary barriers or optimizing the place-
ment of barriers. Some research work identifies commu-
nication patterns, such as send/receive pairs, for MPI pro-
grams [19].

The multi-valued expression problem has first been ad-
dressed by the inference rule system by Aiken and Gay [1].
Aiken and Gay suggest to introduce a single qualifier as was
done in the Titanium language [18] to explicitly describe ex-
pressions that are single-valued.

There has been a large of body of work on concurrency
analysis of parallel programs, including SPMD programs
[3, 6, 15]. Concurrency analysis uses the synchronization
constructs in the program to determine which portions of
the program may execute in parallel. Some concurrency
analyses focus on analyzing the barriers in the program to
establish concurrency information [10, 12, 13]. However,
these approaches do not verify the correctness of barrier
synchronization.

8. Conclusions
We present in this paper a new approach to verifying bar-
rier synchronization that uses a combination of program slic-
ing and path expressions. Our analysis computes barrier ex-
pressions as a compact representation of the synchroniza-
tion structure of the program and as a foundation to barrier
matching. The presented barrier matching analysis computes
the synchronizing barrier statements in addition to the veri-
fication result. Information about synchronizing barriers can
be used to identify and eliminate textually unaligned barri-
ers. Our analysis is practical and scales well to large applica-
tions. We implemented the analysis in a MPI barrier check-
ing tool and successfully analyzed a number of realistic MPI
benchmarks.

We are currently working on completing out MPI checker
tool with a more comprehensive alias analysis and a graph-
ical user interface to visualize the analysis results. So far
we have used our path expression based approach to model
barrier synchronization. In the future we plan to extend this
work to analysis point-to-point message passing communi-
cation.
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