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ABSTRACT

Molecular docking through Virtual Screening is an optimiza-
tion problem which can be approached with metaheuris-
tic methods. The interaction between two chemical com-
pounds (typically a protein or receptor and small molecule
or ligand) is measured with computationally very demand-
ing scoring functions and can, moreover, be measured at
several spots throughout the receptor. For the simulation of
large molecules, it is necessary to scale to large clusters to
deal with memory and computational requirements. In this
paper, we analyze the current landscape of computation,
where massive parallelism and heterogeneity are today the
main ingredients in large-scale computing systems, to en-
hance metaheuristic-based virtual screening methods, and
thus facilitate the analysis of large molecules. We provide a
parallelization strategy aimed at leveraging these features.
Our solution finds a good workload balance via dynamic as-
signment of jobs to heterogeneous resources which perform
independent metaheuristic executions under different molec-
ular interactions. A cooperative scheduling of jobs optimizes
the quality of the solution and the overall performance of the
simulation, so opening a new path for further developments
of Virtual Screening methods on high-performance contem-
porary heterogeneous platforms.
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1. INTRODUCTION

Metaheuristics are frequently used to solve NP-hard prob-
lems [31]. Some of these problems are in the field of Bioinfor-
matics, e.g., DNA analysis [23] or molecular docking [21]. Of
particular interest to us are Virtual Screening (VS) methods
[18], which are widely used to enhance the drug discovery
process by using computational tools to look for potential
drug candidates [29, 30]. Given a receptor protein, large li-
braries of small molecules (ligands) are explored to search
for the structures which best bind to the receptor, so gener-
ating an optimization problem. Metaheuristics can be used
to approach the optimum solution of the problem. A scoring
function is used for the fitness of the binding. The score is
calculated for several positions of the ligand in the neigh-
borhood of the spots in the protein, and it includes compu-
tations between pairs of atoms in the protein and the ligand
[29, 30].

Many metaheuristic methods are available, including Dis-
tributed metaheuristics (e.g., Genetic Algorithms, Scatter
Search, Ant Colony, Particle Swarm Optimization, etc) and
Neighborhood metaheuristics (e.g., Tabu Search, Hill Climb-
ing, Simulated Annealing, etc). The best metaheuristic to
deal with a particular problem is not clear, and thus ad-
ditional experiments need to be carried out with different
metaheuristics and hybridations of basic metaheuristics to
discover the best solution to the problem in hand. Addi-
tionally, for any particular metaheuristic, a tuning process is
traditionally conducted to select appropriate values of some
parameters in the metaheuristic. The experimentation with
several metaheuristics and their tuning process drastically
increases the computational cost.

Of particular interest to us is the parallelism nature that
many metaheuristics have by definition, especially those in-
spired by natural processes, such as genetic algorithms or
particle swarm optimization. They are population-based,
i.e., they maintain a collection of individual solutions to
evolve as the computation proceeds. These algorithms are
inherently stochastic, as they use randomization search tech-
niques. Their internal structure demands parallelization,
and so, abundant parallel versions have appeared recently
[2]. This kind of algorithm is better suited for the current
massively parallel landscape of computation.

Indeed, we are witnessing the steady transition to hetero-
geneous computing systems [1], with heterogeneity repre-
senting systems where nodes combine traditional multicore
architectures (CPUs) and accelerators (mostly Nvidia GPUs
[25] or Intel Xeon Phi cards [27]). Heterogeneity limits sys-



tem growth as it can no longer be addressed in an incre-
mental way. In particular, concepts like scalability, energy
barrier, data management, programmability and reliability
are becoming challenges for tomorrow’s cyberinfrastructures
[6]. The run-time system is still too immature to map pro-
cessors and computations efficiently. In the meantime, the
scientific community is focusing on the latest breakthroughs
in high performance computing together with specific fields
of interest (metaheuristics, image processing, computational
modeling, and so on). This results in a vertical approach
enabling remarkable advances in computer-driven scientific
simulations, the so-called hardware-software co-design [7].

In this paper, we analyze several kinds of metaheuristics
with different algorithmic patterns as applied to Virtual
Screening on large-scale massively parallel and heteroge-
neous systems. Indeed, the volume of data and the process-
ing time are very high whenever virtual screening methods
target large, more complex scenarios, and large-scale compu-
tational systems should be considered. Therefore, the meta-
heuristics are designed to leverage multiGPU-based systems
that also contain multicore processors. Furthermore, the
GPUs in the system may have different computational ca-
pabilities, which introduces additional heterogeneity to that
inherent to the use of multicore together with GPU. We
therefore analyze the heterogeneity inside a node.

The rest of the paper is structured as follows. Section 2
describes the scoring problem we are working with and some
relevant knowledge about metaheuristics and Nvidia GPUs.
Section 3 shows our metaheuristic-based virtual screening
technique and its design for heterogeneous nodes based on
multicore processors and multiGPU. Section 4 describes the
conditions in which experiments are conducted, and Sec-
tion 5 shows the results of some experiments in a heteroge-
neous cluster, with nodes at different speeds and with dif-
ferent number of cores and GPUs, which are also of several
types. Finally, Section 6 summarizes the conclusions and
gives some directions for future work.

2. BACKGROUND

The principal characteristics of Virtual Screening methods
and of the application to them of metaheuristics are briefly
discussed here, together with those of the CUDA program-
ming model used for the development of metaheuristics in
multicore+multiGPU.

2.1 Virtual Screening

We draw on our description of the Virtual Screening (VS),
which was first given in [14, 32]. VS methods are compu-
tational techniques used in several scientific areas, such as
catalysts and energy materials [11], and mainly drug dis-
covery [19], where experimental techniques can benefit from
computational simulation.

VS methods search for libraries of small molecules that
can potentially bind to a drug target, typically a protein re-
ceptor or enzyme, with high affinity. They actually “dock”
small molecules into the structures of macromolecular tar-
gets (see Figure 1). Moreover, they look for (i.e., score)
the optimal binding sites by providing a ranking of chemi-
cal compounds according to the estimated affinity or scor-
ing [33]. In general, VS methods optimize scoring functions,
which are mathematical models used to predict the strength
of the non-covalent interaction between two molecules after
docking [17]. Indeed, these candidate molecules will con-

tinue the drug discovery process roadmap that goes from
in-vitro studies, to animal investigations and, eventually, to
human trials [9].

Figure 1: Binding two molecules; receptor (red) and
ligand (blue)

Although VS methods have been investigated for many
years and several compounds can be identified that evolve
into drugs, the impact of VS has not yet fulfilled all expec-
tations. Neither the VS methods nor the scoring functions
used are sufficiently accurate to identify high-affinity ligands
reliably. To deal with a large number of potential candi-
dates (many databases comprise hundreds of thousands of
ligands), VS methods must be very fast and still be able to
identify “the needles in the haystacks”. These techniques re-
quire hundreds of CPU hours for each ligand, even thousands
of CPU hours for each ligand when simulation strategies are
used to compute absolute binding affinities [35].

The relevant non-bonded potentials used in VS calcula-
tions are the Coulomb, or electrostatic, and the Lennard-
Jones potentials, since they describe very accurately the
most important short and long-range interactions between
atoms of the protein-ligand system. They are also the most-
time consuming calculations in VS methods. For example,
in Molecular Dynamics, the calculation of these kernels takes
up to 80% of the total execution time [20].

Within those VS methods, of particular interest to us are
protein-ligand docking [36, 16] techniques. Docking simula-
tions are typically carried out on the protein surface using
known methods like Autodock [24], Glide [12] and DOCK
[10]. This surface region is commonly derived from the po-
sition of a particular ligand in the protein-ligand complex,
or from the crystal structure of the protein without any lig-
ands. The main problem of many docking methods is that
they assume, once the binding site is specified, that all lig-
ands will interact with the protein in the same region and
completely discard the other areas of the protein.

BINDSURF [32] uses GPUs to overcome this problem
by dividing the whole protein surface into arbitrary indepen-
dent regions (or spots). Using the parallelism of GPUs, a
large ligand database is screened against the target protein
over its whole surface simultaneously, and docking simula-
tions for each ligand are performed simultaneously in all the



specified protein spots, resulting in new spots found after
the examination of the distribution of scoring function val-
ues over the entire protein surface.

2.2 Metaheuristics

There are many optimization problems of high computa-
tional cost which can not be solved by evaluating all the
possible solutions. Due to the high computational cost of
exact methods, the optimum solutions for those NP-hard
problems can be found for only very small instances, and
so they are traditionally approached through heuristics and
metaheuristics [4, 8, 13, 15, 22], which are tuned for the
problem in hand.

Metaheuristics include an abstraction layer that may pro-
vide a sufficiently good solution for an optimization problem,
especially with limited computation capacity or inexact in-
formation [3]. They reduce the search space, focusing only
on the most promising areas, and thus they cannot guaran-
tee the analysis of all possible solutions, which means that
they cannot guarantee to find the optimal solution. There
are many metaheuristic algorithms with different character-
istics [5] that can provide several good solutions to the same
problem. Among them, we highlight:

o Distributed metaheuristics search for solutions within
the whole solution space. These work with popula-
tions or sets of elements that are combined in order to
generate better solutions progressively. Some exam-
ples include Scatter Search, Genetic Algorithms, Ant
Colony and Particle Swarm Optimization.

e Neighborhood metaheuristics work with an element in
the solution space and search for better elements in its
neighborhood. Examples include Hill Climbing, Tabu
Search, Guided Local Search, Variable Neighborhood
Search, Simulated Annealing and GRASP.

Metaheuristics have been successfully applied to a wide
variety of application domains [31]. Of particular interest to
us are those that apply metaheuristics to the field of Bioin-
formatics; among them we highlight DNA analysis [23] or
molecular docking [21].

2.3 The CUDA programming model

We briefly introduce the CUDA programming model and
refer the reader to [25] for insights. Compute Unified Device
Architecture (CUDA) is a platform for Graphics Processing
Units (GPUs), covering both hardware and software. On the
hardware side, the GPU consists of N multiprocessors which
are replicated within the silicon area, each endowed with M
cores sharing the control unit, and of a shared memory (a
small cache explicitly managed by the programmer). Each
GPU generation has increased the CUDA Compute Capa-
bilities (CCC), as well as the number of cores and the shared
memory size (see Table 1). In conjunction with these devel-
opments, power consumption has been reduced by a factor
of 2 at each new generation.

The CUDA software paradigm is based on a hierarchy of
abstraction layers: the thread is the basic execution unit;
threads are grouped into blocks; and blocks are mapped
to multiprocessors. C language procedures to be ported
to GPUs are transformed into CUDA kernels, mapped to
many-cores in a SIMD (Single Instruction Multiple Data)
fashion (that is, with all threads running the same code but

having different IDs). The programmer deploys parallelism
by declaring a grid composed of blocks equally distributed
among all multiprocessors. A kernel is therefore executed
by a grid of thread blocks, where threads run simultane-
ously, grouped in batches called warps, which are the main
scheduling units.

3. METAHEURISTICS FOR VIRTUAL
SCREENING IN HETEROGENEOUS
SYSTEMS

Traditional parallel implementations are not always effi-
cient when ported to heterogeneous systems. They are often
inherited from scalable supercomputers, where all nodes in
the cluster have the same compute capabilities, and there-
fore lack the ability to distinguish computational devices
with asymmetric computational power. Differences are not
limited to fundamental hardware design (CPUs vs. GPUs),
but also occur within the same family of processors. For ex-
ample, the Kepler family (see Table 1) includes Tesla K20,
K20X and K40 models, endowed with 13, 14 and 15 mul-
tiprocessors, respectively (the K80 model even reaches 30
multiprocessors split into two chips). Here, we distinguish
two different aspects; the system itself, which may be hetero-
geneous or homogeneous, and the parallel algorithm which
can be also heterogeneous or homogeneous. This section
shows our proposal for metaheuristic-based virtual screening
applications that leverage massively parallel and heteroge-
neous systems. We introduce the reader to the design of our
virtual screening approach before presenting a homogeneous
parallel version of the algorithm. Finally, the heterogeneous
version is given.

3.1 Designing metaheuristics for VS methods

Our Virtual Screening technique divides the whole protein
surface into arbitrary and independent regions (or spots).
Spots are identify by finding out a specific type of atoms in
the protein. All these spots are independent from each other
and, thus, they offer great opportunities for data-based par-
allelization. Then, docking simulations for each ligand are
performed simultaneously at every protein spot. Actually,
the computation places copies of the same ligand at each of
those spots. These copies (a.k.a. individual or conforma-
tion) are different from each other as they have a different
position and orientation with respect to each spot. Indeed,
they search for an optimized conformation for both the pro-
tein and ligand and the relative orientation between them
such that the free energy (given by the scoring function) of
the overall system is minimized. For simplicity our VS tech-
nique uses a scoring function based on the Lennard-Jones
potential.

Algorithm 1 shows a generic template that we use to gen-
erate several metaheuristics for the virtual screening prob-
lem. Several authors agree [28, 34] that many metaheuris-
tics, particularly those based on populations, share six basic
functions (see Algorithm 1): Initialize, End condition, Se-
lect, Combine, Improve and Include. These functions are like
algorithmic templates in which the programmer can provide
different implementations, so obtaining different metaheuris-
tics. Population-based metaheuristics maintain and improve
multiple candidate solutions, often using population charac-
teristics to guide the search. Some examples of population-
based metaheuristics include evolutionary computation, ge-



Table 1: CUDA summary by generation, with Maxwell to increase the number of cores soon.

Hardware generation Tesla | Fermi | Kepler | Maxwell
and starting year 2007 2010 2012 2014
Multiprocessors per die (up to) 30 16 15 16
Cores per multiprocessor 8 32 192 128
Total number of cores (up to) 240 512 2880 2048
Shared memory size (maximum in kilobytes) 16 48 48 64
CUDA Compute Capabilities (CCC) 1.x 2.x 3.x 5.x
Peak single-precision performance (GFLOPS) 672 | 1178 4290 4980
Performance per watt (approx. and normalized) 1 2 6 12

netic algorithms, and particle swarm optimization.

Algorithm 1 Generic template for metaheuristic design
Initialize(S)
while no End(S) do
Select(S,Ssel)
Combine(Ssel,Scom)
Improve(Scom)
Include(Scom,S)
end while

Each of the functions in Algorithm 1 works with vari-
ous sets or populations (S, Ssel and Scom). S represents
the whole population of candidate solutions. In our case, a
candidate solution (or individual) is a conformation. Thus,
several individuals are selected (Ssel) to be combined, so
generating a new set of elements, Scom. Candidate solu-
tions can be also improved by applying a local search; i.e.
moving, translating and/or rotating with respect to each
spot.

3.2 Homogeneous parallelization strategy

Algorithm 2 shows the parallelization scheme we use to
leverage heterogeneous nodes with shared-memory multi-
processors and multiple GPUs. OpenMP is used to man-
age several CPU threads, where each thread is responsible
for controlling a GPU context. Then, each GPU calculates
the scoring function for a set of candidate solutions. In our
homogeneous implementation, those candidate solutions are
equally distributed among GPUs in form of CUDA thread
blocks. Actually, we identify each candidate solution to a
CUDA warp, and warps are grouped into blocks depending
on the CUDA thread block granularity.

Algorithm 2 Scoring computation on a Parameterized
Metaheuristic for multicore+multiGPU
omp_set_num_threads(number_GPUs)
#pragma omp parallel for
for i=1 to number_GPUs do
Select_device(Devices[i].id)
Host_To_GPU(Scom,Stmp)
Conformations=Devices][i].conformations
threads=Devices[i]. Threadsblock
stride=Devices]i].stride
Calculate_scoring< Conformations/threads,threads>
(Stmp+Devices[i].stride)
GPU_To_Host(Scom,Stmp)
end for

Moreover, an additional structure called devices is created
to manage several configuration parameters. This structure
stores the number of conformations assigned to each GPU
and some GPU runtime parameters such as memory, grid
size, maximum threads per block, and so on.

3.3 Exploiting heterogeneity

With this scenario in mind, we introduce a heterogeneity-
aware parallelization of our VS methodology. Our departure
point is the parallelization strategy previously presented in
Algorithm 2, where independent candidate solutions are run
on different processors (in our case GPUs that have assorted
CUDA Compute Capabilities). Parallel runs do not incur
any communication overhead, and the final solution is cho-
sen from all independent executions, given the stochastic
nature of metaheuristics. The execution time of each inde-
pendent execution can differ, as it depends on (1) the un-
derlying GPU each metaheuristic instance runs on, which is
actually unknown at compile-time, and (2) the number of
candidate solutions (the same in principle for all processors,
but affected by GPU heterogeneity). Given that the slowest
GPU will determine the overall execution time, our mission
is to make use of the idle time offered by the most powerful
GPUs. Performance differences shown in the last two rows
of Table 1 lead us to believe that there is ample room for
improvement.

We have designed an implementation with two main fo-
cuses: (1) resources accounting through OpenMP processes
and (2) performance monitoring via OpenMP threads. First,
our algorithm defines a master thread which creates as many
OpenMP threads as GPUs available on a node, which is eas-
ily attained by querying the GPU properties at runtime (us-
ing cudaGetDeviceCount from the CUDA API) and NVML
(Nvidia Management Library). Secondly, a warm-up phase
is performed to establish performance differences among all
targeted GPUs, running the scoring function for a few can-
didate solutions. This phase measures, at run-time, the ex-
ecution time of a small number of iterations of the meta-
heuristic (five to ten) in order to detect these differences.
Importantly, at this stage, the algorithm is not trying to
solve the docking problem in any meaningful sense (five to
ten iterations is not enough to do this), but these runs allow
us to calculate the performance differences between GPUs.
The execution times in this warm-up phase on all GPUs are
reduced to obtain the maximum value using omp reduction.
Thus, the Percent parameter is eventually determined as

Ex.timegctuaiaru
Percent = - aome (1)
Ex.timesiowestaPU




The slowest GPU will have Percent = 1; a GPU two times
faster than slowest GPU would have Percent = 0.5, and
so on. Each OpenMP thread then calculates the number of
conformations it is in charge of for the simulation.

4. EXPERIMENTAL SETUP

Experiments have been conducted in two different hetero-
geneous systems based on multicore4+multiGPU configura-
tions. Below we show the main characteristics of these com-
putational systems along with the particular metaheuristics
we have used in our docking approach and a description of
the target datasets.

4.1 Hardware environment

Tables 2 and 3 show the characteristics of the two com-
putational systems in which experiments were conducted.

e Jupiter: is a system with two hexa-cores (12 cores)
Intel Xeon E5-2620 at 2 GHz and 32 GB of RAM.
The compiler used is gcc version 4.6.3 with the -O3
flag. The node has six GPUs. Two GPUs are NVIDIA
Fermi Tesla C2075 with 5375 MBytes of Global Mem-
ory and 448 cores (14 Streaming Multiprocessors y 32
Streaming Processors), and four are NVIDIA GPUs
GeForce GTX 590 with 1536 MBytes of Global Mem-
ory and 512 CUDA cores. Table 2 gives a full descrip-
tion of Jupiter.

e Hertz: has four Intel Xeon E3-1220 processors run-
ning at 2 GHz and plugged into a dual-channel moth-
erboard endowed with 8 Gigabytes of DDR3 mem-
ory. The node includes two GPUs. The faster is
an NVIDIA Tesla Kepler K40c with 2880 cores (15
Streaming Multiprocessors and 192 Streaming Proces-
sors) running at boost clock of 0.88 GHz, giving a raw
processing power of up to 5068 GFLOPS. The mem-
ory speed is 3 GHz with a 384-bit memory bus width
that provides a bandwidth of 288 GB/sec. The mem-
ory size is 12 GB of GDDR5 with ECC capabilities.
The slower GPU is a GeForce GTX 580 with 1536
MBytes of Global Memory and 512 CUDA cores. Ta-
ble 3 gives a full description of Hertz. We use gcc
4.8.2 with the -O3 flag to compile on the CPU, and the
CUDA compiler/driver/runtime version 6.5 to compile
and run on the GPU.

4.2 Benchmarking

4.2.1 Metaheuristics

The metaheuristic template shown in Algorithm 1 allows
experimentation with several basic metaheuristics and com-
binations/hybridations of them. In order to have a reduced
experimentation space and because we are not interested
here in the comparison of different metaheuristics but in
the exploitation of the parallelism when applying the meta-
heuristics to Virtual Screening, we consider four metaheuris-
tics of different characteristics for comparison purposes. The
performance and efficiency are evaluated for each, so that
conclusions on the whole multicore+multiGPU schema can
be drawn.

Table 4 summarizes some parameters for the four meta-
heuristics considered in our experimental section. The first
metaheuristic (M1) is a Genetic Algorithm with a popula-
tion of 64 individuals for each spot in the receptor. Elements

are selected for combination from the best ones, and no local
search is included to improve the conformations. The second
metaheuristic (M2) is also an evolutionary method but, in
this case, its computation is closer to that of a Scatter Search
algorithm. It works with a reference set of the same size as
M1, and all the elements are improved after they have been
generated initially, or by combination, through local search
in the neighborhood of each element to obtain better solu-
tions. The third metaheuristic (M3) is similar to the second,
but with a less intensive local search process. This allows us
to analyze the influence of the improvement in the overall
performance of the execution. The last metaheuristic (M4)
is a neighborhood metaheuristic in which local searches are
conducted in the candidate solutions for a large initial set.
The search is conducted at each spot by changing the posi-
tion and orientation of the conformations. The population
based metaheuristics (M1, M2 and M3) select the best con-
figurations from those in the reference set and those gener-
ated by combination and improvement to enter the reference
set for the following computation step. M4 applies only one
step, and so there is no selection of elements after improving.

4.2.2 Datasets

We test our designs using a set of benchmark instances
from the well-known Protein Data Bank [26]. Surface screen-
ing was performed over the proteins 2BSM and 2BXG. The
two crystal structures of HSA (Human Serum Albumin)
were taken from the RCSB Protein Data Bank as the dock-
ing template structures. Table 5 shows the size of each com-
pound.

S. EXPERIMENTAL RESULTS

Given that our techniques establish the experimental setup
dynamically, results shown below are platform dependent.
Therefore, we provide an exhaustive analysis on the two
heterogeneous systems previously described. Tables 6 and 7
show the execution time and relative speed-up factor among
different implementations and metaheuristic configurations
for each target dataset on Jupiter (PDB:2BSM, Table 6, and
PDB:2BXG, Table 7). They show the execution times for
OpenMP implementations as a starting point for our im-
provements. Moreover, they also show the execution times
for the different configurations on an homogeneous system,
which means only the 4 Geforce GTX 590 are used. This
homogeneous execution reports a factor of up to 92x speed-
up, which situates this problem as being very interesting for
execution on multiGPU systems. Heterogeneous systems
are targeted here with the inclusion of 2 Tesla C2075. The
heterogeneous system is analyzed with a homogeneous algo-
rithm (considering that all the GPUs have the same com-
putational capability) and with a heterogeneous algorithm
which balances the execution at runtime. Although GTX590
and Tesla C2075 are different GPU cards, their computa-
tional capabilities are pretty much the same. Actually, both
are based on the same architecture, code-named Fermi, but
with different number of streaming multiprocessors. There-
fore, we report here minimal differences between the homo-
geneous and heterogeneous versions (up to 6% gains). Fi-
nally, comparing Tables 6 and 7 we see that the speed-up
increases with the problem size, and so the multiGPU ver-
sions prove to be scalable. PDB:2BXG dataset is almost 2.7
times larger than PDB:2BSM and the maximum speed-up
factors reported for both cases are 63.82x and 92.26x.



Table 2:

Hardware resources and experimental setup on Jupiter.

Vendor and type Intel CPU Nvidia GPUs
Family E5 Family Fermi Fermi
Class Xeon Tesla GeForce
Model E5-2620 C2075 GTX 590
Year 2012 2012 2011
Cores per multiprocessor (does not 32 32
Processing Number of multiprocessors apply) 14 16
elements Total number of cores 6 448 512
Clock frequency (MHz) 2000 1147 1215
Maximum Per multiprocessor (does 1536 1536
number of Per block not 1024 1024
GPU threads Per warp apply) 32 32
Register file 32-bit registers (per multiprocessor) 32768 32768
SRAM memory | Shared (only GPUs) (32 KBLID | 16 or 48 KB | 16 or 48 KB
(per multiproc. | L1 cache and 48 or 16 KB | 48 or 16 KB
on GPUs) (Shared + L1) 32 KB L1I) 64 KB 64 KB
L2 cache (shared by 256 KB 768 KB 768 KB
L3 cache all cores) 15 MB (does not apply)
Size (Megabytes) 32143 5375 1536
Speed (MHz) 2x666 2x1566 2x1707
DRAM Width (bits) 256 384 384
memory Bandwidth (Gigabytes/sc.) 42.66 144 163.85
Technology DDR3 GDDR5 GDDR5
CUDA Compute Capabilities (d.n.a.) 2.0 2.0
Table 3: Hardware resources and experimental setup on Hertz.
Vendor and type Intel CPU Nvidia GPUs
Family E3 Family Kepler Fermi
Class Xeon Tesla GeForce
Model E3-1220 K40c GTX 580
Year 2011 2014 2011
Cores per multiprocessor (does not 192 32
Processing Number of multiprocessors apply) 15 16
elements Total number of cores 4 2880 512
Clock frequency (MHz) 3100 745 1544
Maximum Per multiprocessor (does 2048 1536
number of Per block not 1024 1024
GPU threads Per warp apply) 32 32
Register file 32-bit registers (per multiprocessor) 65536 32768
SRAM memory | Shared (only GPUs) (32 KB LID | 16 or 48 KB | 16 or 48 KB
(per multiproc. | L1 cache and 48 or 16 KB | 48 or 16 KB
on GPUs) (Shared + L1) 32 KB L1I) 64 KB 64 KB
L2 cache (shared by 256 KB 1536 KB 768 KB
L3 cache all cores) 8 MB (does not apply)
Size (Megabytes) 7964 11520 1536
Speed (MHz) 2x666 2x3004 2x2004
DRAM Width (bits) 256 384 384
memory Bandwidth (Gigabytes/sc.) 21 288.38 192.4
Technology DDR3 GDDR5 GDDR5
CUDA Compute Capabilities (dn.a.) 2.0 2.0




Table 4: Algorithm parameters for the four metaheuristics.

Metaheuristic | Initial population (S) | % of elements to be selected for Ssel | % of elements to be improved
M1 64*spots 100% 0%
M2 64*spots 100% 100%
M3 64*spots 100% 20%
M4 1024*spots does not apply 100%

Table 5: Number of atoms of the benchmark com-
pounds from Protein Data Bank site.

Compounds Atoms
2BSM Receptor 3264
2BSM Ligand 45
2BXG Receptor 8609
2BXG Ligand 32

Tables 8 and 9 show the execution time and relative speed-
up factor for the different implementations and metaheuris-
tic configurations considered, for each target dataset on
Hertz (PDB:2BSM, Table 8, and PDB:2BXG, Table 9). The
GPU heterogeneity in this system is higher than in the pre-
vious one. There are two GPUs with different architectures
(Fermi and Kepler) and with different CUDA compute ca-
pabilities (2.0 and 3.5). Thus, our heterogeneous algorithm
offers better results in general, reaching up to 1.56x speed-
up factor compared to a homogeneous approach. The over-
all results also improve, and the speed-up factors reported
here with two GPUs are equivalent to those reported with
6 GPUs in Jupiter.

The performance advantage of using GPUs for the docking
problem is proven in all cases experimented. This advantage
is bigger the larger the number of atoms in the receptor pro-
tein. Our CUDA implementations take advantage of data-
locality through tilling implementation via shared memory,
which benefits the receptor scalability.

Finally, we report higher speed-up ratios whenever we in-
crease either the level of intensification in local search or the
size of the reference set. Metaheuristics M2 and M3 contain
different values for local search in the neighborhood of each
conformation with the same number of initial elements. In
all the executions with the two compounds, more intensive
searches provide higher speed-up ratios, and they are even
higher in multiGPU environments. The M4 metaheuristic
studies the extreme case in which only local search is ap-
plied on a very large number of elements, achieving the best
speed-up ratios in comparison with the distributed meta-
heuristics.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we present a parallelization strategy of a
Virtual Screening method tailored for heterogeneous and
massively parallel systems. Virtual screening methods are
computational techniques that aid the drug discovery pro-
cess but they are very computational demanding applica-
tions. Heterogeneity may limit acceleration and waste en-
ergy unless programmers develop smarter applications to
control those features wisely on the road towards an opti-
mal performance. In a multicore+multiGPU environment,

the capacity of the different computational components in
the system is exploited with an implementation in which
some parts of the computation are carried out on the CPU
side while the most costly parts are assigned to the GPUs.
Furthermore, the heterogeneity of the system is exploited at
two levels: CPU-GPU heterogeneity and heterogeneity due
to GPUs with different characteristics, including different
architectures, number of cores and compute capability.

A metaheuristic-based solution for virtual screening is used
as the case study. In that way, metaheuristics of different
types (distributed and neighborhood metaheuristics) are ap-
plied to the solution of this novel problem where a scoring
function is optimized. The efficient exploitation of the het-
erogeneous system gives as a result high speed-ups, which
are more important for larger problems. Our strategy is par-
ticularly useful for non-deterministic algorithms and stochas-
tic behaviors where real-time constraints must be fulfilled.

For future work and in order to deal with larger prob-
lems or for better solutions with limited execution times, it
could be convenient to adapt our virtual screening method
to more complex systems comprising several computational
nodes working together with the message-passing paradigm,
and each node with several computational components, e.g.,
multicore, heterogeneous GPUs and MICs. Moreover, vir-
tual screening is still at a relatively early stage, and we ac-
knowledge that we have tested a relatively simple variant of
the algorithm. But, with many other types of scoring func-
tions still to be explored, this field seems to offer a promising
and potentially fruitful area of research.
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