
ARMI: An Adaptive, Platform Independent
Communication Library ∗

Steven Saunders
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112

sms5644@cs.tamu.edu

Lawrence Rauchwerger
Department of Computer Science

Texas A&M University
College Station, TX 77843-3112

rwerger@cs.tamu.edu

ABSTRACT
ARMI is a communication library that provides a frame-
work for expressing fine-grain parallelism and mapping it
to a particular machine using shared-memory and message
passing library calls. The library is an advanced implemen-
tation of the RMI protocol and handles low-level details
such as scheduling incoming communication and aggregat-
ing outgoing communication to coarsen parallelism when
necessary. These details can be tuned for different plat-
forms to allow user codes to achieve the highest performance
possible without manual modification. ARMI is used by
STAPL, our generic parallel library, to provide a portable,
user transparent communication layer. We present the ba-
sic design as well as the mechanisms used in the current
Pthreads/OpenMP, MPI implementations and/or a combi-
nation thereof. Performance comparisons between ARMI
and explicit use of Pthreads or MPI are given on a variety
of machines, including an HP V2200, SGI Origin 3800, IBM
Regatta-HPC and IBM RS6000 SP cluster.

Categories and Subject Descriptors
D.3.4 [Software]: Programming LanguagesProcessors; D.1.3
[Programming Techniques]: Parallel Programming; D.3.3
[Programming Languages]: Language Constructs and
Features; D.3.2 [Programming Languages]: Language
Classifications

General Terms
Languages

∗This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 9872126,
9734471,9975018, 0113971, 0103742, DOE grant B347886
and Hewlett Packard

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPoPP’03, June 11–13, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-588-2/03/0006 ...$5.00.

Keywords
RMI, MPI, Pthreads, OpenMP, RPC, run-time system, com-
munication library, parallel programming

1. COMMUNICATION MODELS
Communication is one of the most fundamental aspects

of parallel programming. Not even the most embarrassingly
parallel application can produce a useful result without some
amount of communication to synchronize results. Unfortu-
nately, expressing efficient communication is also one of the
most difficult aspects of parallel programming.

1.1 Shared Memory vs. Message Passing
The two most common models of communication in par-

allel programming are shared-memory and message passing.
In shared-memory, a group of threads share a global ad-
dress space. A thread communicates by storing to a loca-
tion in the address space, which another thread can sub-
sequently load. To ensure correct execution, synchroniza-
tion operations are introduced (e.g., locks and semaphores).
The shared-memory model is considered easier to program,
and is portable due to standards such as Pthreads [10] and
OpenMP [22]. Furthermore, machines that implement this
communication model do so by supporting it in hardware,
thus generating little overhead. Sometimes, however, its
lack of explicit data distribution mechanisms can hinder
scalability [21]. The biggest disadvantage of shared mem-
ory communication models has been its inapplicability to
very large machines. None of the largest massively paral-
lel machines produced today support a single address space.
Worth noting is the solution provided by the software dis-
tributed shared-memory (software DSM) model, which pro-
vides a software implementation of a global address space,
albeit with performance penalties.
In the message passing paradigm, a group of processes op-

erate using private address spaces. A process communicates
by explicitly sending a message to another process, which
must use a matching receive. Synchronization is implied
through the blocking semantics of sends and receives (e.g.,
a blocking receive does not return until the message has ar-
rived). Portability has been assured by the early adoption
of the Message Passing Interface, MPI-1.1 [16]. MPI is cur-
rently supported by nearly all machines and scales up to
massively parallel systems.
The message passing model is considered harder to pro-

gram, because all sends and receives must be explicitly pro-

230

grammed in matched pairs. Furthermore, the user must
keep track of the data distribution across the system, making
dynamic or irregular applications difficult to code. From a
practical, programming experience point of view, one would
favor shared-memory if it were available on all systems.
There is, however, another more subtle distinction be-

tween these two paradigms. Programmers are aware of the
higher latency of MPI communication, and so tend to mini-
mize its impact by using a coarse grain parallelization/com-
munication model. This style tends to increase the critical
path of programs by the time it takes to communicate. Even
with non-blocking messages the tendency is to lower the fre-
quency of messages in favor of their length. One could argue
that MPI programs scale well if the ratio of data size/pro-
cessor stays above a certain value. However, if time to com-
pletion of an application of a fixed data size is the objective,
then it is imperative to uncover and exploit the maximum
amount of parallelism. This means that we need to exploit
finer grain parallelism (and communication) than the MPI
programming style is suitable for.
Most modern machines today, including the massively

parallel ones, consist of a network of nodes, where every
node is in fact a small parallel machine. This implies that
we need to exploit, concurrently, both coarse grain and fine
grain parallelism. However, the widely adopted solution to
writing portable code across platforms has been to use only
MPI, and to implement MPI on shared memory machines as
well. Indeed, almost all shared memory machines have very
efficient MPI implementations that can take advantage of
the shared memory communication medium. This approach
has the disadvantages of being still slower than native shared
memory communication and being harder to code. Another
serious, but maybe overlooked shortcoming of this approach
is that MPI programs are, by design of the programmers,
coarse grain and thus unable to exploit the fine grain paral-
lelism needed on each super-node of a large machine.
One-sided communication represents an improvement over

the MPI-1 standard in terms of programming productivity
because it combines some of the strengths of shared-memory
and message passing [25]. A set of processes operate using
private address spaces as well as sections of logically shared-
memory. A process communicates by putting information
into the shared-memory, which another process can subse-
quently get. Because puts and gets operate asynchronously,
and hence memory consistency is relaxed, synchronization
operations are introduced (e.g., a fence blocks processes until
all communication is complete). One-sided communication
preserves some of the ease of shared-memory programming
while maintaining the data distribution of message passing.
Although it is still not widely used, several common imple-
mentations include SHMEM, ARMCI [19], LAPI [24] and
the updated Message Passing Interface, MPI-2 [17]. Still,
when using one-sided communication, the tendency is to
write in coarse grain model (e.g., to copy-in/copy-out large
chunks of data for computation).

1.2 Remote Method Invocation
Remote method invocation (RMI) is a communication

model that works with object-oriented programs, where a
process communicates by requesting a method from an ob-
ject in a remote address space. It is currently most of-
ten associated with Java [12]. Synchronization is implied
through the blocking semantics of RMI requests (e.g., Java

RMI does not return until it completes [18]). RMI is related
to its function-oriented counterpart, remote procedure call
(RPC), which allows a process to request a function in a
remote address space.
RMI raises the level of communication abstraction by deal-

ing with methods, instead of directly accessing data and ex-
posing the underlying shared-memory or message passing
operations. However, it is generally associated with dis-
tributed applications, not high performance parallel appli-
cations [7, 8]. High performance run-time systems that do
support RMI- or RPC-related protocols include Active Mes-
sage [28], Charm++ [13], Tulip [1], and Nexus [7]. Whereas
Java RMI always blocks until completion to obtain the re-
turn value, many of the high performance implementations
never block and never produce return values. Here, the only
way to obtain the return value is through split-phase exe-
cution, where for example, object A invokes a method on
object B and passes it a callback. When object B completes
the RMI, it invokes object A again via the callback. Split-
phase execution helps tolerate latency, since object A can do
something else while it waits, but complicates programming.
RMI has several advantages over the previously presented

protocols. It gives the flexibility to either move data (as in
MPI) or work (methods) between processors, and thus can
be more adapted to the needs of the application. Further-
more it works well in an object-oriented environment and
places its user at a higher level of abstraction. Using an
RMI based communication package distances the program-
mer from the details of the communication implementation
and its associated cost, and allows for a finer grain program-
ming style. The flexibility and relative simplicity of RMI pay
off for any additional overhead associated with its use.

1.3 Contribution
The communication library presented in this paper, adap-

tive RMI (ARMI), makes a number of contributions. First,
ARMI, provides a style of communication, RMI, that takes
advantage of the natural communication involved in object-
oriented programs, the method invocation. It raises the
level of abstraction of low-level message passing or shared-
memory communication styles, and hence allows for an eas-
ier parallelization. RMI also maintains data-hiding tech-
niques, such as encapsulation, whereas other models must
interface directly with data, bypassing the objects’ inter-
faces. ARMI supports both blocking RMI, to alleviate the
need for difficult split-phase execution, and non-blocking
RMI, for high performance. Since RMI’s do not require
matching operations as in message passing, incoming re-
quests are scheduled internally and advanced synchroniza-
tion mechanisms, similar to one-sided communication mod-
els, are provided.
Second, ARMI provides the definition and implementa-

tion of a framework for expressing fine-grain parallelism and
mapping it to a particular machine using shared-memory
and message passing library calls. ARMI handles low-level
details such as scheduling incoming communication and ag-
gregating outgoing communication. These details can be
tuned for different platforms to allow user codes to achieve
the highest performance possible without manual modifica-
tion. ARMI adapts its behavior to the underlying architec-
ture by using the native or lower level communication prim-
itives and employs aggregation and scheduling to coarsen
parallelism when necessary.

231

Third, ARMI serves as the run-time for the Standard
Template Adaptive Parallel Library. STAPL is a parallel
superset to the C++ Standard Template Library, and pro-
vides generic parallel containers and algorithms [23].

2. STAPL PROGRAMMING ENVIRONMENT
ARMI was originally designed as a communication infras-

tructure for STAPL, although it can also be used in any
parallel C++ programming environment. We briefly present
STAPL and illustrate its capabilities through an example.

2.1 Overview
STL, the C++ Standard Template Library, is a collection

of generic data structures with methods, called containers
(e.g., vector, list, set, map), and algorithms (e.g., copy, find,
merge, sort) [27]. Containers and algorithms are bound in
terms of iterators. An iterator provides an abstract interface
to a sequence of data, providing operations such as ‘deref-
erence current element’, ‘advance to next element’ and ‘test
for equality’. Each container provides a specialized iterator
(e.g., a vector provides a random access iterator, whereas a
list provides just a bi-directional iterator). Since each algo-
rithm is expressed in terms of iterators, instead of specific
container methods, the same algorithm codebase is able to
work with many different containers.
STAPL, the Standard Template Adaptive Parallel Library,

is a parallel superset of STL that provides consistent re-
sults with its sequential counterpart [23]. STAPL provides
a set of parallel containers, pContainers, and parallel algo-
rithms, pAlgorithms, that are bound in terms of pRanges.
The pContainers provide a shared-memory view of physi-
cally distributed data. The pRange presents an abstract
view of a partitioned data space. It provides a view of
the distribution, random access to elements in the distri-
bution, which is crucial for SPMD parallelism, and stores
data dependencies between the elements. The pAlgorithms
use pRanges to efficiently operate on data in parallel.

2.2 Programming Style
A STAPL user composes a program by specifying pCon-

tainers, initializing them as necessary, and then applying the
appropriate pAlgorithms. The provided pContainers and
pAlgorithms abstract any underlying communication. For
example, dereferencing an element of a parallel vector may
cause a remote miss, invoking an RMI to return the ele-
ment. Similarly, a parallel sort will perform the necessary
communication to permute the input to sorted order. If the
necessary container or algorithm is not implemented, a more
advanced STAPL user can implement their own.
The STAPL communication infrastructure, ARMI, pro-

vides a shared-object view of parallelism. Objects are dis-
tributed among the threads, where local communication oc-
curs via regular C++ method invocation, and remote com-
munication occurs via RMI. Because objects are conceptu-
ally shared, fine-grain parallelization is naturally express-
ible. For example, each element in the parallel sort can be
transferred individually, instead of hard-coding aggregation
at the user level with manual buffering.
A shared-memory system may be able to tolerate this high

level of fine-grain communication, whereas a message pass-
ing system will likely perform poorly. Applying aggregation
can reduce and even eliminate this performance degradation.
As such, carefully tuning ARMI allows a fine-grain parallel

program to efficiently exploit all possible parallelism on a
shared-memory system, and automatically coarsen the par-
allelism via aggregation for a message passing system. In
contrast, it is much more difficult for a library to attempt
to break apart a coarse-grain program into smaller chunks
for mapping on a shared-memory system.
Using STAPL, a programmer is able to program in the

easier shared-memory style, and expose as much parallelism
as possible by using a fine-grain parallelization style. ARMI
can be tuned to fully exploit the available parallelism in a
shared-memory system, and perform the appropriate amount
of aggregation in the message passing system. In addition,
in environments such as clusters of SMP’s, ARMI can em-
ploy mixed-mode communication by using shared-memory
within nodes and message passing between nodes. Such
systems may support lower aggregation settings within the
node, and higher settings between nodes.

2.3 Case Study: Parallel Sorting
To illustrate how different parallel programming models

affect communication, we consider a common parallel algo-
rithm for sorting: sample sort [2]. Sample sort consists of
three phases:

1. Sample a set of p−1 splitters from the input elements.

2. Given one bucket per processor, send elements to the
appropriate bucket based on the splitters (e.g., ele-
ments less than splitter 0 are sent to bucket 0). Be-
cause they are distributed based on sampled data, buck-
ets will have varying sizes, and hence sample sort is
highly dynamic.1

3. Sort each bucket.

Consider Figs. 1 and 2, which present implementations
using fine-grain shared-memory and coarse-grain message
passing. These fragments are for illustration only and do
not necessarily represent the best possible implementations.
Assume the input has already been generated and, for mes-
sage passing, distributed.
In general, shared-memory algorithms are sequential un-

til a fork (line 9), whereas message passing algorithms are
always in parallel. The shared-memory code uses a shared
STL vector to communicate splitters before forking (lines 6–
7), as opposed to the message passing library calls (lines 5–
6). Shared-memory must calculate each thread’s local por-
tion after the fork (lines 9-11), whereas in message passing,
data must be manually distributed a priori. Shared-memory
shares the buckets by locking each insertion to ensure mu-
tual exclusion (lines 13-15), and uses a barrier (line 17) to
ensure proper event ordering of the distribution and sort-
ing phase. Message passing buffers all the communication
to each destination locally (line 11), and performs a single
large communication phase (lines 13-18), which implicitly
ensures event ordering.
Neither implementation is optimal. Shared-memory makes

extensive use of locking (one lock per element), causing con-
tention on the buckets. Message passing performs compu-
tation and communication in separate phases, which elimi-
nates any communication/computation overlap and thus in-
creases the critical path of the code. These issues are not
1Most implementations oversample the input to increase the
chance of balanced buckets. We have removed this sub-step
for simplicity.

232

1 void s o r t (i n t ∗ input , i n t s i z e) {
2 in t p = // . . . number of threads , 0−p . . .
3 std : : vector<in t > s p l i t t e r s (p−1);
4 std : : vector < vector<in t > > buckets (p) ;
5 std : : vector<lock > l o ck s (p) ;
6 f o r (i n t i =0; i<p−1; i++)
7 s p l i t t e r s [p−1] = // . . . sample input . . .
8
9 // . . . fork p threads . . .

10 in t id = // . . . thread id . . .
11 f o r (i=s i z e /p∗ id ; i<s i z e /p∗(id +1) ; i ++) {
12 in t dest = // . . . appropriate bucket . . .
13 l o ck s [de st] . l o ck () ;
14 buckets [de st] . push back (input [i]) ;
15 l o ck s [de st] . unlock () ;
16 }
17 ba r r i e r () ;
18
19 s o r t (bucket [id] . begin () , bucket [id] . end ()) ;
20 }

Figure 1: Example of a shared-memory sample sort

1 void s o r t (i n t ∗ input , i n t l o c a l S i z e) {
2 in t p = // . . . number of processes , 0−p . . .
3 std : : vector<in t > s p l i t t e r s (p−1);
4 std : : vector<in t > bucket (p) ;
5 i n t sample = // . . . sample input . . .
6 Gather(&sample , . . . , s p l i t t e r s , . . .) ;
7
8 std : : vector < std : : vector<in t > > outBucket (p) ;
9 f o r (i =0; i<l o c a l S i z e ; i ++) {

10 in t dest = // . . . appropriate bucket . . .
11 outBucket [de st] . push back (input [i]) ;
12 }
13 f o r (i n t i =0; i<p−1; ++ i)
14 Send (outBucket [i] . . .) ;
15 f o r (i n t i =0; i<p−1; ++ i) {
16 Recv (tmp . . .) ;
17 bucket . i n s e r t (tmp . begin () , tmp . end ()) ;
18 }
19
20 s o r t (bucket . begin () , bucket . end ()) ;
21 }

Figure 2: Example of a message passing sample sort

intrinsic to the sample sort algorithm, only to the underlying
communication model and subsequent implementation. Im-
provements can be made at the expense of additional lines
of code, which are even further removed from the algorithm.
We now contrast these implementations with STAPL. Be-

cause STAPL provides a parallel superset to STL, it contains
a pAlgorithm for sorting, p sort, which a user can use di-
rectly. We illustrate a possible implementation of p sort in
Fig. 3. Note that additional code is used to wrap the algo-
rithm in a class. The heart of the algorithm (contained in
the execute method) is actually shorter than either of the
previous implementations.
The STAPL code maintains the shared-memory imple-

mentation’s fine-grain approach by sending each element as
it becomes available (lines 15–16). However, ARMI ab-
stracts the mutual exclusion, and so explicit locking op-
erations are removed. This allows the underlying imple-
mentation to aggregate requests as necessary, making the
code much closer to optimal. For example, a tightly-coupled
shared-memory machine may use a low aggregation factor,
whereas a large distributed memory machine may use a
larger setting, possibly even aggregating all messages, thus
becoming the coarse grained message passing implementa-
tion at run-time.

1 s t r u c t p so r t : pub l i c s t ap l : : p a r a l l e l t a s k {
2 in t ∗ input , s i z e ;
3 p so r t (i n t ∗ i , i n t s) : input (i) , s i z e (s) {}
4
5 void execute () {
6 in t p = s t ap l : : get num threads () ;
7 i n t id = s t ap l : : g e t t h r e ad i d () ;
8 s t ap l : : pvector<in t > s p l i t t e r s (p−1);
9 s t ap l : : pvector < vector<in t > > buckets (p ;

10 s p l i t t e r s [id] = // . . . sample input . . .
11 s t ap l : : rm i f en c e () ;
12
13 f o r (i =0; i<s i z e ; i ++) {
14 in t dest = // . . . appropriate bucket . . .
15 s t ap l : : async rmi (dest , . . . ,
16 &s t ap l : : pvec tor : : push back , input [i]) ;
17 }
18 s t ap l : : rm i f en c e () ;
19
20 s o r t (buckets [id] . begin () , buckets [id] . end ()) ;
21 }
22 }

Figure 3: Example of a STAPL sample sort

3. DESIGN
ARMI is composed of three main subsystems: object reg-

istration, communication and synchronization. This section
describes the fundamental requirements, the three subsys-
tems, details concerning data transfer and ARMI’s integra-
tion with STAPL.

3.1 Requirements for Parallelism
We recognize two fundamental types of communication in

a parallel program, regardless of programming model:

1. statement - a process needs to tell another process
something (e.g., a result or to perform some action,
as in a produce-consumer relationship). A statement
is asynchronous, meaning the sending process does not
necessarily need to wait for the receiving process to re-
ceive or process the information.

2. question - a process needs to ask another process for
something (e.g., a result, which may or may not be cal-
culated a priori). A question is synchronous, meaning
the sending process must wait for the receiving process
to process the information and reply.

In either case, the receiver may not necessarily expect the
communication, as in a dynamic or irregular program. Each
communication type can also be abstracted to handle multi-
ple processes at once, making a statement a broadcast (i.e.,
tell many processes something) and a question a reduction
(i.e., ask a question and tabulate the answers)
Closely related to communication is synchronization, which

also has two fundamental forms [5]:

1. mutual exclusion - operations to ensure modification to
an object are performed by one process at a time. This
is explicit in shared-memory (e.g., locks), and implicit
in message passing, because all memory is private to a
process.

2. event ordering - operations to inform a process that
computation dependencies are satisfied. This is ex-
plicit in shared-memory (e.g., semaphore signal and
wait operations), and implicit in message passing, via
the semantics of message sending and receiving.

233

Cleanly expressing these types of communication and syn-
chronization are requirements for a parallel programming
model’s success. Shared-memory and message passing both
fulfill all of them, albeit in somewhat different ways. One
of ARMI’s goals is to raise the level of abstraction of these
issues, yielding a clean interface that lends itself to efficient
implementation with either underlying model.

3.2 Object Registration
ARMI provides SPMD, shared-object parallelism. Each

C++ object is associated with a single thread. Threads
may share an address space (e.g., OpenMP), have separate
address spaces (e.g., MPI), or a mixture of the two (e.g.,
mixed-mode MPI with OpenMP). Regardless of the granu-
larity and sharing, we name the unit of execution a thread.
Upon startup, all threads begin executing the same code in
parallel, similar to SPMD MPI.
The shared-objects used in communication are distributed

among threads, with each thread owning a local representa-
tive. Shared-objects are globally identified by an rmiHandle,
while their local objects are identified by a thread id and
rmiHandle. As such, all objects that are communication tar-
gets must be registered with ARMI to obtain an rmiHandle,
which allows for proper translation to the local objects.
Since each thread owns its local object, it is not necessary
for a thread to use RMI to access it.

3.3 Communication
Threads independently access other threads’ local objects

via RMI. ARMI defines two basic forms of RMI, which map
directly to the two fundamental types of communication.

1. void async rmi(dest, handle, method, arg1...)

makes a statement. The call issues the RMI request
and returns immediately. Subsequent synchronization
calls, such as rmi fence, may be used to wait for com-
pletion of requests. Because it returns immediately,
it is possible to aggregate multiple requests together,
coarsening outgoing communication as necessary for a
given machine.

2. rtn sync rmi(dest, handle, method, arg1...)

asks a question. The call issues the RMI request and
waits for the answer. Since it waits for a return value,
it is not possible to aggregate multiple sync rmi’s, al-
though a single sync rmi may be transferred within an
aggregated group of async rmi’s.

The additional information required compared to a regu-
lar C++ method invocation is minimal. Only dest is com-
pletely new, which specifies the destination thread. Whereas
regular C++ method invocation uses object references or
pointers, ARMI uses rmiHandle’s to facilitate proper trans-
lation between threads. The method is a C++ pointer to
a method defined by the object registered with the given
rmiHandle. Since ARMI currently only supports an SPMD
style of execution, this call-by-name model is possible, be-
cause all threads have a copy of all the code. Finally, the
necessary arguments are specified. Because ARMI makes
extensive use of C++ templates, the full type safety of reg-
ular method invocation is preserved.
Because sync rmi blocks until it obtains the return value,

it does not fully leverage the case when the return value is
desired, but there is additional work to perform. As such, we

have augmented the interface with a modified sync rmi that
immediately returns an opaque handle. This handle can be
checked periodically to see if the return value has arrived
yet, and return the data to the user. Such a prefetch-style
interface provides further opportunities to overlap commu-
nication and computation.
ARMI also incorporates many-to-one and one-to-many

communication to support common collective communica-
tion patterns.

1. void broadcast rmi(handle, method, arg1...)

makes a statement to all threads. The call issues an
RMI request from one thread, to be executed by all
other threads.

2. void reduce rmi(handle, method, input, output)

asks a question on all threads and collects the results
(i.e., a reduction). The call issues the RMI request and
waits for the answer.

As currently defined, these operations are globally collec-
tive, in that all threads must perform the operation before
any thread will release and continue. However, there is no
fundamental reason a subset of threads could not option-
ally be specified and used. The subset could be defined in a
style similar to MPI communicators, where threads explic-
itly register themselves with a given subset group, allowing
for straightforward implementation via MPI. Alternatively,
subsets could be expressed by mathematical functions (e.g.,
every odd numbered thread). We are currently incorporat-
ing such advanced facilities into future versions of ARMI.

3.4 Synchronization
ARMI also addresses both fundamental forms of synchro-

nization. To ensure mutual exclusion, methods invoked by
RMI execute atomically. Hence, a method invoked by multi-
ple threads in parallel preserves thread-safety by acting as a
monitor. In cases where additional RMI operations are used
within the remotely invoked method, everything before the
operation is atomic, as well as everything after the opera-
tion. We recognize that full atomicity may not be necessary
for correct execution in all situations. As such, we are ac-
tively pursuing multi-threaded implementations (e.g., using
a communication thread to support a set of computation
threads) that can relax constraints at run-time.
Event ordering is supported in two ways. The rmi wait

operation is provided to allow a thread to wait for the next
incoming RMI before proceeding. The rmi fence operation
is provided to allow threads to wait until all other threads
have arrived and completed all pending RMI communica-
tion. The rmi fence is a significant advancement compared
to a typical barrier. Specifically, whereas a barrier simply
blocks until all threads have arrived, rmi fence continues to
poll for incoming RMI requests while it waits. This allows
for straightforward implementation of master-slave compu-
tations, where the slaves wait at the fence while the master
dictates work via RMI. There is no limit to the amount of
work performed within rmi fence, and received requests are
able to issue additional requests to other threads, allowing
for extremely complicated communication patterns to oc-
cur. In the master-slave example, originally only one thread
may be the master. As the computation progresses however,
the master thread may change, multiple threads may act as
masters, or threads may act as masters and slaves, both del-
egating and receiving work. Since rmi fence guarantees not

234

to return until all communication is complete, it handles the
termination detection scheme that would often be overlayed
for such algorithms. Section 5.3 details the performance of a
parallel algorithm for detecting strongly connected compo-
nents in a graph that makes use of these advanced facilities
of rmi fence.

3.5 Data Transfer
In ARMI, only one instance of an object exists at once,

and it can only be modified through its methods. The gran-
ularity of data transfer is the smallest possible, the method
arguments, and arguments are always passed-by-value to
eliminate sharing. As such, ARMI avoids data coherence
issues common to some DSM systems, which rely on data
replication and merging. In effect, RMI transfers the compu-
tation to the data, allowing the owner to perform the actual
work, instead of transferring the data to the computation.
To support message passing as an implementation model,

ARMI requires each class that may be transfered as an ar-
gument to implement a single method, define type. This
method defines the class’s data members in a style similar
to Charm++’s PUP interface [13]. Each data member is
defined as local (i.e., automatically allocated on the stack),
dynamic (i.e., explicitly allocated on the heap using malloc

or new), or offset (i.e., a pointer that aliases a previously
defined variable; for example, STL vectors often maintain
a dynamic begin pointer, and an offset end pointer, alias-
ing the end of the currently used space). This method may
then be used as necessary to adaptively pack, unpack, or
determine the type and size of the class based on ARMI’s
underlying implementation.
Fig. 4 demonstrates a simple example. The objectA class

contains two locally defined variables, an array of doubles
and an objectB. The objectB class stores a local integer size
and a dynamically allocated integer array of that size. The
typer is used during packing. If objectA is being transferred
as an argument, ARMI will internally create a typer and
call the define type method (line 4). On line 6, typer will
recursively call the define type for objectB (line 13), to
ensure the entire object is correctly packed.

1 c l a s s objectA {
2 double a [1 0] ;
3 objectB b ;
4 void d e f i n e t yp e (s t a p l : : typer& t) {
5 t . l o c a l (a , 1 0) ;
6 t . l o c a l (b) ;
7 }
8 }
9

10 c l a s s objectB {
11 in t s i z e ;
12 in t ∗ array ;
13 void d e f i n e t yp e (s t a p l : : typer& t) {
14 t . l o c a l (s i z e) ;
15 t . dynamic (array , s i z e) ;
16 }
17 }

Figure 4: Example of the define type interface

3.6 Integration with STAPL
Fig. 5 shows the layout of STAPL’s basic components,

with an arrow representing a usage relationship. ARMI
serves as the bottom layer, and abstracts the actual par-
allel communication model utilized via its RMI interface.

pAlgorithms pContainers
pRange

Pthreads OpenMP MPI Native

User Code

ARMI

Figure 5: Basic STAPL Components

A pContainer is a distributed data structure. Although
the user/programmer sees a single object, at run-time the
pContainer creates one sub-pContainer object per thread in
which to actually store data. The pContainer’s main job
then is to maintain the consistency of the data it stores as
the user invokes its various methods. Three remote commu-
nication patterns result:

1. access - a thread needs access to data owned by an-
other thread (e.g., the dereference operation for a vec-
tor). The sync rmi handles this pattern.

2. update - a thread needs to update another thread’s
data (e.g., the insert operation). The async rmi han-
dles this pattern.

3. group update - a thread needs to update the overall
structure of the container (e.g., the resize operation).
The broadcast rmi handles this pattern.

Since pContainers’ methods use ARMI internally to im-
plement these communication patterns, they effectively ab-
stract the underlying communication seen by the user. An
efficient library supporting both shared-memory and mes-
sage passing might need to provide two versions of each
container, one for shared-memory and the other for message
passing. STAPL needs just one version of each pContainer
by pushing the details and decision between shared-memory
and message passing into the communication library. ARMI
also helps facilitate an easier implementation by relaxing the
constraint of matching sends and receives in message pass-
ing.
A pAlgorithm expresses a parallel computation in terms of

parallel task objects. These objects generally do not use
ARMI directly. The specific input data per parallel task

are defined by the pRange, just as iterators define the in-
put to an STL algorithm. Intermediate or temporary results
that are used across threads can be maintained using pCon-
tainers within the parallel task. As their methods are
used to modify and store the results, the pContainers will
internally generate the necessary communication.
In the event that pContainers do not offer the necessary

methods, RMI communication between parallel tasks is
necessary. Three common communication patterns result:

1. data parallel - the same operation needs to be applied
in parallel, possibly with a parallel reduction at the
end. A large percentage of STAPL algorithms uti-
lize this pattern. For instance, in a find, each thread
searches its local data for an element. Since multiple

235

threads may find a match, a reduction is used to com-
bine the results (i.e., thread 0’s result has precedence
over thread 1’s, etc.). The reduce rmi handles this
pattern.

2. event ordering - computation dependencies must be
satisfied. A small percentage of algorithms utilize this
pattern, with master-slave computations being a com-
mon example. For instance, during a sequential depth-
first search on a distributed graph, one thread be-
gins the search on its local vertices while the other
threads wait at an rmi fence. As the search pro-
gresses to remote vertices, RMI can be used to tell
the owning threads to continue the search on their lo-
cal data. Parallelism may be exploited by performing
several searches from different starting vertices, which
is equally easily handled by ARMI.

3. bulk communication - a large number of small messages
are needed. A small percentage of algorithms utilize
this pattern, with sorting being a common example.
The async rmi operation handles this pattern via its
automatic aggregation settings.

Each level of STAPL serves to further remove the user
from the underlying communication. ARMI provides the
fundamental abstraction between shared-memory and mes-
sage passing. The pContainers build upon this to create
distributed data structures with a shared-memory interface.
The pAlgorithms use pRanges, pContainers, and RMI when
necessary, to create useful parallel algorithms. The user
combines pContainers and pAlgorithms to write a program,
without worrying about the underlying communication.

4. IMPLEMENTATION
We have currently implemented ARMI using two different

underlying programming models: Threads (shared-memory)
and MPI (message passing). The Threads implementation
determines at compile-time whether to utilize Pthreads or
OpenMP. In addition, we have implemented a mixed-mode
implementation, which combines the two models for systems
such as clusters of SMP’s. Since the interface remains the
same, all that is required to use a different implementation
is to re-compile.
In the rest of this section, we describe the basic mecha-

nisms used to implement the three subsystems outlined in
Section 3, object registration, communication, and synchro-
nization.

4.1 Object Registration
All objects that may serve as communication targets must

first be registered. Currently, we assume an SPMD style of
programming, such that each thread will register the same
number of objects in the same order. Although this object
symmetry constraint may be restrictive in some cases, it fa-
cilitates a simple implementation where the assigned handle
is simply an index into a table. It also coincides with the
current implementation of pContainers. However, the con-
straint may be relaxed, at the expense of hashing each han-
dle, and a more complicated handle negotiation protocol,
such that both shared-objects and thread-specific objects
are possible.

4.2 Communication
The communication subsystem is the most complicated

to implement. Both the Threads and MPI implementations
internally use a form of message passing, since the seman-
tics of RMI imply one thread telling another thread to do
something. However, the Threads implementation is able to
simply trade points to RMI request buffers, whereas MPI
physically transfers these buffers. To support periods of
high communication, message transfer is pipelined by using
multiple internal communication buffers per possible desti-
nation thread. While one buffer is being transfered to its
destination, a different buffer can be used to aggregate new
requests.
All async rmi’s are automatically aggregated by ARMI,

and issued in groups based on a default or user-defined ag-
gregation factor. An appropriate default aggregation buffer
size can be configured for each machine during installation.
Because sync rmi’s block, they are not aggregated. How-
ever, a single sync rmi can be included at the end of a group
of async rmi requests to reduce message traffic.

4.2.1 Request Scheduling
RMI requests do not require matching operations on the

destination thread. As such, ARMI must introduce mecha-
nisms to schedule the processing of incoming requests. The
two issues that must be balanced are ensuring a timely re-
sponse to incoming requests, which may be blocking the
caller (e.g., sync rmi, and allowing the local computation
to proceed. This is not a new problem, and we are aware of
four solutions:

1. explicit polling - the code explicitly polls for incoming
requests [28, 1, 7, 24]. This approach is successful if
polls do not dominate the local computation, but are
frequent enough to yield a timely response.

2. interrupt-driven - the caller issues an interrupt to no-
tify a thread of incoming requests [28, 1, 7, 24, 19].
Although this solution is often avoided due to the high
cost of interrupts, it does guarantee a timely response
with minimal user interruption (i.e., no extraneous
polls).

3. blocking communication thread - a separate commu-
nication thread posts a blocking receive for incoming
requests [7]. Upon arrival, the request is immediately
processed. This solution is successful if other threads
can execute while the receive is blocking, and control
returns to the communication thread soon after the
receive completes.

4. non-blocking communication thread - a separate com-
munication thread performs a poll for incoming re-
quests, processes any available requests, then yields [7].
This solution is successful if the thread scheduler is
effective. For example, the communication thread is
scheduled at times when no computation is available,
or the time slice is a good balance between computa-
tion and polling. Since typical time slices are 1/10 of
a second, this is often a problem.

Our current solution is explicit polling. Polls are per-
formed within ARMI library calls. This has the advantage
of being transparent to the user, and the drawback of poor

236

response if no communication occurs for a long period of
time. In cases where the user is aware of this, an explicit
rmi poll operation is available. To handle the alternative
case of extremely frequent communication, every nth com-
munication call will internally perform a poll, where n may
be set by the user. Low values for n will yield more timely
responses, but slow the progress of the computation by im-
posing more unsuccessful polls.
In general, when a group of RMI requests are received, as

in an aggregated group of async rmi’s, they are processed
in FIFO order. However, the one notable complication is
the possibility of nested RMI requests, which occurs when
a remotely invoked method blocks inside a communication
call. If another RMI is scheduled to execute while the orig-
inal RMI blocks, the new RMI is known as a nested RMI
request. For example, a lookup operation may be imple-
mented using a sync rmi to the thread that last owned an
object. If the object moved, that thread may invoke another
sync rmi to a different thread. Since sync rmi blocks un-
til it obtains a return value, it is highly likely that nested
RMI’s will occur in this scenario.
Nested requests present a number of problems. First, the

original RMI’s resources must be saved while the nested RMI
consumes new resources. A naive implementation could al-
low enough resources to be consumed that deadlock occurs,
because a necessary request does not have enough resources
to complete. Second, nested execution can starve the orig-
inal RMI request, potentially causing imbalance in the sys-
tem. ARMI addresses the first issue by allocating a set of
initial resources, then dynamically allocating additional re-
sources as necessary. ARMI address the second issue by
allowing the user to specify the maximum nesting level.

4.3 Synchronization
The synchronization subsystem involves two major func-

tions. The rmi wait function waits for a single incoming
request. Because of the asynchronous nature of ARMI,
rmi wait actually waits for the next incoming request since
the previous rmi wait or rmi fence call. If that request
has already arrived and executed since the previous call,
rmi wait returns immediately. This prevents deadlocks in
cases where multiple incoming requests are scheduled for
execution at once.
The rmi fence function waits for all threads to arrive and

complete all outstanding requests. There are two complicat-
ing issues for a fence versus a barrier. First, to ensure correct
execution, threads waiting at the fence must continue to poll
for RMI requests. Second, the fence protocol must correctly
determine when all RMI request transfers have completed.
This issue is further complicated by the fact that one RMI
request could invoke a second request, which in turn invokes
a third request, etc.
Most vendors provide blocking barriers, which are unsuit-

able for incorporating polling [1]. As such, we were forced
to implement our own tree-based barrier implementations
for use in the fence protocol. To address the second is-
sue, we overlay a distributed termination detection algo-
rithm [14]. In short, the algorithm tracks the number of
sends and receives performed by each thread, performs a
distributed summation, and declares termination as soon as
the sum equals zero. The summation is essentially a reduc-
tion that is easily incorporated into the barrier’s arrival and
release messages.

4.4 Mixed-Mode
The mixed-mode implementation of ARMI implements

multi-protocol communication. It starts by creating MPI
processes, which each in turn spawn a number of internal,
local threads. The aggregate threads provide a flat view
of the parallelism, but use shared-memory communication
to local threads (i.e., within the MPI process), and MPI to
remote threads.
Each thread maintains a table, which maps destination

thread ID’s to MPI processes and local thread ID’s. A single
index into this table allows the thread to determine whether
the communication is local or remote to its MPI process. In
the simple case, mixed-mode RMI is implemented by adding
a check in each RMI operation, and then calling the appro-
priate underlying implementation, Threads or MPI.
Since the view of parallelism is flat, threads can individu-

ally send and receive RMI requests to remote MPI processes.
The MPI message tag is used to identify which thread should
actually receive a given request. Collective operations such
as rmi fence are modified to a two level scheme, synchro-
nizing the local shared-memory threads first, with the root
thread continuing to perform the MPI synchronization.
Some vendor supplied MPI implementations are thread-

safe, and hence facilitate threads making MPI calls in par-
allel. However, many other implementations are not thread-
safe, and require running in serialized mode, meaning each
MPI operation must be protected by a lock. Blocking oper-
ations such MPI Wait, which waits until a given communica-
tion completes, must be replaced with a loop that balances
a non-blocking MPI Test with the shared-memory poll oper-
ation. These loops can cause great contention by repeatedly
polling the MPI library. During such a loop, the MPI library
is only tested every nth iteration, where n is adjustable to a
given platform. This solution does not always provide opti-
mal results, so we are pursuing a multi-threaded implemen-
tation, such that a single communication thread can handle
all MPI communication, reducing the need for locks.

5. PERFORMANCE
We tested the implementations of ARMI on a number

of different machines, including a Hewlett Packard V2200,
an SGI Origin 3800, an IBM Regatta-HPC, and an IBM
RS6000 SP. The V2200 is a shared-memory, crossbar-based
symmetric multiprocessor consisting of 16 200MHz PA-8200
processors with 2MB L2 caches. The O3800 is a hardware
DSM, hypercube-based CC-NUMA consisting of 48 500MHz
MIPS R14000 processors with 8MB L2 caches. The Regatta
is a shared-memory bus-based interconnect, consisting of 16
1.3GHz Power4 processors with 1.5MB L2 and 32MB L3
caches. The RS6000 is a cluster of SMP’s, consisting of
4 332MHz PowerPC 604e processors with 256kB L2 caches
per node, with nodes connected by a dedicated high-speed
switch.

5.1 RMI Overhead
The ARMI abstraction includes a number of overheads

compared to regular method invocation. Section 5.2 de-
tails transfer latency, while this section measures the cost of
creating and executing an RMI locally (i.e., everything but
transfer latency). The major abstraction involved in build-
ing an RMI request is using the method pointer (member
function pointer), instead of invoking the method directly
on a given object. Storing the method pointer allows for

237

execution at a later time, at the cost of increased overhead
due to additional memory dereferences at runtime.
Table 1 measures the cost of invoking an empty method

directly, via a method pointer, and via ARMI’s async rmi.
The inliner was disabled since inlining an empty method
allows the optimizer to deadcode and remove the entire in-
vocation. In general, the method pointer generally requires
twice as long as direct method invocation. ARMI requires
a substantial amount more than this however.

Table 1: Overhead of method invocation (ns)
V2200 O3800 Regatta RS6000

Direct 65 12 8 60
Method Pointer 132 26 14 121
ARMI 933 325 197 842

Before execution is possible, the RMI request must be
created, at the cost of several internal method invocations
that allocate the request directly in the aggregation buffer.
This helps reduce latency in the general case, but increases
the cost of local execution versus creation directly on the
stack. To preserve copy-by-value semantics, and possibly se-
rialize data for transfer, all arguments must also be copied.
During execution, the RMI request execution method is vir-
tual, which incurs an additional dereference, and must also
access the RMI registry to determine the location of the
object specified by the given rmiHandle, another derefer-
ence. Although these overheads are costly compared to di-
rect method invocation, the next section will show that they
are a small percentage of the actual communication latency.

5.2 Latency
We tested the latency of ARMI versus explicit Pthreads

or MPI code using a ping-pong benchmark. One thread
sends a message, and upon receipt, the receiver immedi-
ately sends a reply. ARMI uses two benchmarks. The first
uses async rmi to invoke a reply async rmi. The second
uses a single sync rmi. The Pthreads benchmark uses an
atomic shared variable update as the message, with ordering
preserved by busy-waiting. The MPI benchmark explicitly
matches sends and receives.
The resulting wall clock times are shown in Table 2. Since

ARMI is implemented on top of Threads or MPI, its la-
tency is always greater. However, the abstraction buys the
user the ability to interact with an object’s methods, in-
stead of directly with data, and handles most of the low
level details. The major contributor to this overhead is that
ARMI attempts to make the common case fast, whereas the
hand-tuned benchmarks make the best possible use of their
communication libraries for this specific benchmark. For ex-
ample, ARMI uses non-blocking MPI Isend and MPI Irecv

to internally overlap communication and computation as
much as possible, which yields great benefits in larger pro-
grams. However, given the minimal amount of overlap in the
ping-pong benchmark, the hand-tuned MPI uses MPI Send

and MPI Recv. We have identified that the HP implemen-
tation of MPI on the V2200 incurs a 131% penalty when
using MPI Isend/MPI Irecv versus MPI Send/MPI Recv on
this benchmark, increasing the latency from 16 to 37us for
hand-tuned MPI. Another source of overhead is that ARMI
transfers RMI header information during the ping-pong, and
hand-tuned MPI is able to use empty messages. On the
V2200, augmenting the MPI benchmark to transfer 24 bytes,
the size of an RMI header, increases the latency from 37 to

45us. As such, 72% of the ARMI overhead on the V2200
can be attributed to implementation via non-blocking MPI,
27% to header information, with remaining differences due
to the overhead of creating and executing RMI requests.
We also tested the impact of aggregation on message la-

tency when issuing many communication requests, by re-
timing the ping-pong benchmark using multiple consecutive
pings before a single pong. ARMI’s aggregation factor was
varied from 4 to 2048 messages.
Fig. 6 show the results for MPI on the O3800. ARMI

is faster after issuing just 10 pings, and yields a 15-fold
improvement after 10,000 pings. In this case, the optimal
aggregation factor is 256 messages (an 8KB buffer), which
means ARMI will automatically translate the 10,000 pings
into 40 large MPI Sends, as opposed to the MPI benchmark
using 10,000 small MPI Sends. The general trend for the
aggregation factor is a parabolic curve. Initially, aggrega-
tion alleviates much of the network traffic and makes better
use of the available bandwidth. If used too liberally how-
ever, aggregation increases the amount of work that needs
to be performed at the end of the computation phase, thus
increasing the critical path, as seen for an aggregation of
2048. These same results hold for shared-memory systems,
although the benefit is less given the already low overheads
of shared-memory. For Pthreads on the O3800, an aggrega-
tion buffer of 256 messages provides a 3-fold improvement
versus non-aggregated Pthreads. Although Pthreads and
MPI can both make use of explicit aggregation hand-coded
by the user to gain similar benefits, we note that ARMI
performs aggregation automatically, and its settings can be
tuned to which platform to provide maximum performance
on a variety of different systems.

1 10 100 1000 10000

Number of Pings

10

100

1 k

10 k

100 k

T
im

e
(u

s)

MPI, no aggregation
ARMI (aggregation=4)
ARMI (aggregation=32)
ARMI (aggregation=256)
ARMI (aggregation=2048)

Figure 6: MPI Latency (O3800)

5.3 Algorithm Performance
A variety of parallel algorithms have been implemented

using ARMI. One example is the case study, sample sort.
The ARMI implementation uses fine-grain RMI directly, is-
suing an RMI for each element in the distribution phase,
to add it to the correct destination bucket. We compared
our RMI-based implementation to a hand-tuned MPI imple-
mentation that required twice as many lines of code. The
implementation buffers all elements locally, then performs
an all-to-all merge before the final sorting phase.
Fig. 7 shows the scalability versus running the parallel

algorithm with one processor on the Regatta. It compares

238

Table 2: Latency (us) of explicit communication and ARMI (async rmi/sync rmi).
V2200 O3800 Regatta RS6000

Explicit ARMI Explicit ARMI Explicit ARMI Explicit ARMI
Threads 15 21/18 4 6/5 2 3/3 6 16/11
MPI 16 45/49 13 15/16 6 10/11 29 66/71

ARMI’s Threads and MPI implementations for one million
integers, distributed uniformly among threads. Both are
using an aggregation factor of 256 requests. As shown,
Threads are able to sustain more parallelism at this level
of work than MPI, as well as outperform the hand-tuned
MPI. The superlinear scalability starting at 4 processors oc-
curs when the input data first fit into the 1.5MB L2 cache.
The drop-off at 16 processors is due to the overhead of com-
munication, which sets a lower bound on the running-time.
Since Threads have lower latency than MPI, they are able
to sustain a faster running time. In addition, the Threads
implementation overlaps communication and computation
by communicating groups of RMI requests, whose sizes are
determined by the aggregation factor, instead of using a sin-
gle large merge, as in the hand-tuned MPI, which is unable
to hide any communication latency.
Fig. 8 shows the scalability as the dataset is increased from

1M to 50M integers. Even given the much larger dataset,
the Threads implementation is still able to outperform MPI.
However, the increased work-per-communication ratio al-
lows the hand-tuned MPI to able to outperform ARMI. The
superlinear speedups at 8 processors occur when the data
first fits into the 32MB L3 cache.
This benchmark demonstrates the value of having mul-

tiple implementations based on shared-memory and MPI.
MPI can always be used for machines that only support
message passing, and thus provide scalability for the largest
systems. However, if a machine provides shared-memory,
then the Threads implementation is able to leverage it for in-
creased performance. As shown, smaller problems may still
be run on a larger number of processors efficiently, compared
to using MPI directly.

1 2 4 8 16
Number of Processors

2

4

6

8

10

12

14

16

Sc
al

ab
ili

ty

ideal
ARMI (Threads)
ARMI (MPI)
Hand-Tuned MPI

Figure 7: Scalability of sorting 1M integers (Regatta)

More complex algorithms have also been implemented us-
ing ARMI. Detecting strongly-connected components is an
important component for many scientific codes, such as par-
ticle transport. One parallel approach is detailed in [11]. In
short, it is an iterative algorithm that is composed of three
main steps:

1. Sweep the graph, trimming edges that are not part of

1 2 4 8 16
Number of Processors

2

4

6

8

10

12

14

16

Sc
al

ab
ili

ty

ideal
ARMI (Threads)
ARMI (MPI)
Hand-Tuned MPI

Figure 8: Scalability of sorting 50M integers (Regatta)

a strongly connected component.

2. Each processor chooses a pivot, and marks edges that
are part of a strongly connected component.

3. Remove each strongly-connected component, and iter-
ate if there are remaining edges.

The communication is fine-grain, because an RMI is gen-
erated every time an edge is marked or trimmed. As such,
the communication library is used to aggregate communica-
tion sufficiently for performance. The input to the algorithm
is a set of 10 meshes, each consisting of approximately 10k
vertices and 30k edges, for a total of 338 strongly-connected
components.
Fig. 9 shows the scalability versus running the parallel

SCC on one processor on the V2200, using a variety of aggre-
gation factors. Super-linear performance is possible because
as processors are added, more pivots are considered, which
greatly decrease the number of iterations necessary for con-
vergence. For example, the number of iterations required are
cut in half when moving from one to two processors for this
graph. As shown, aggregation has a significant effect. As
expected, no aggregation yields poor performance, whereas
too much aggregation degrades performance, as shown in
the difference in aggregation from 75 and 100. The later
effect occurs because the algorithm is irregular, and some
threads will be forced to wait until other threads sufficiently
fill their aggregation buffers.
To demonstrate the effect of mixed-mode communication,

we implemented a Jacobi iterative solver for Poisson’s equa-
tion. Each thread owns an nxn portion of the matrix, where
data is distributed using 1D block partitioning. The solver
iterates a fixed number of times instead of testing for conver-
gence. As opposed to sample sort’s highly irregular all-to-all
communication pattern, Jacobi performs neighbor commu-
nication. As such, when run on a cluster, only the outer two
processors will need to use MPI, while all other processors
can use shared-memory.
Fig. 10 shows scalability for hand-tuned MPI, as well

as the MPI and mixed-mode implementations of ARMI on

239

1 2 4 8 12
Number of Processors

2

4

6

8

10

12
Sc

al
ab

ili
ty

Aggregation=1
Aggregation=25
Aggregation=50
Aggregation=75
Aggregation=100

Figure 9: Scalability of detecting strongly-connected com-
ponents (V2200)

the RS6000 for a 500x500 matrix/thread over 200 itera-
tions. Mixed-mode uses one MPI process per node, with
four shared-memory threads inside. As shown, mixed-mode
is able to gain a slight advantage by using shared-memory
RMI. We note that the MPI implementation is running on
top of IBM’s MPI library, which is also optimized to take
advantage of shared-memory within nodes. However, the
mixed-mode implementation is still able to outperform MPI
by simply trading pointers, instead of copying data from
the send buffer to the receive buffer as in MPI (not to men-
tion any additional intermediate copies used). Both ARMI
implementations remain comparable with hand-tuned MPI.

1 4 8 16 32
Number of Processors

2

4

6

8

10
12

14

16

18

20
22

24

26

28

Sc
al

ab
ili

ty

ideal
ARMI (MPI)
ARMI (MIXED)
Hand-Tuned MPI

Figure 10: Scalability of Jacobi iteration (RS600)

6. RELATED WORK
A number of other libraries provide RMI-based high per-

formance communication with similar goals to ARMI.
Active messages is an extension to one-sided communi-

cation that includes specifying a message handler on the
receiving process [28]. The handler is intended to quickly
integrate the message into the ongoing computation, as op-
posed to general purpose computation as in RPC.
Tulip is a wrapper around existing models, and serves as a

compiler target for the pC++ programming language [1]. It
provides a consistent interface across a variety of platforms,
and provides functionality common to message passing, one-
sided communication, and remote procedure call.
ARMCI is a one-sided communication library that focuses

on optimizing strided data communication, by internally

buffering and issuing fewer messages [19].
Nexus provides remote service requests (RSR), which are

similar to non-blocking RPC, and can optionally spawn a
new thread on the destination to perform the work [7].
Charm++ is an object-oriented parallel programming lan-

guage that utilizes non-blocking RMI communication [13].
It emphasizes split-phase execution and the creation of a
large number of parallel tasks, which it dynamically sched-
ules and load balances, to increase latency tolerance.
In contrast to all of these libraries, ARMI includes both

blocking and non-blocking communication functions. Sim-
ilar to ARMCI, automatic aggregation buffering is avail-
able for the non-blocking requests, although ARMI is more
expressive in that it will aggregate multiple discrete calls,
instead of just within a single call. Although ARMI is
implemented on top of existing models, such as MPI and
OpenMP, it is not simply a wrapper. It attempts to raise
the level of abstraction by handling low-level issues inter-
nally, and providing an object-oriented RMI interface.
Many other researchers have considered combining shared-

memory and message passing into mixed-mode, often called
hybrid and multi-protocol, parallel programs. Most of these
studies focus on a two-level scheme, by explicitly using MPI
for coarse-grain parallelism, and then instrumenting inner
loops with OpenMP [3, 26, 4]. This programming style
is most often referred to as hybrid parallelism. Other li-
braries, including some MPI implementations [9], provide
multi-protocol communication, which provides a flat, or one-
level, view of the available processors, and internally uses
shared-memory when possible and remote memory opera-
tions otherwise [15, 20]. Nexus implements a unique multi-
protocol layer that adaptively selects the best transport pro-
tocol [6]. Although the obvious approach is to always use
the fastest protocol, other options, such as quality of service
and security, may also be considered.
ARMI also focuses on multi-protocol communication. In

general, two-level schemes require learning two parallel pro-
gramming models, and explicitly specifying where to use
them. In contrast, only one model is necessary with multi-
protocol communication, and the library can be tuned to
appropriately map the available parallelism to each new ma-
chine, instead of requiring additional changes to user code.
In addition, multiple levels of parallelism can be specified
in a code, and the library can adaptively serialize or exploit
the extra parallelism, based on the underlying machine and
overhead of communication. Unlike other existing systems,
the current implementation of the ARMI translates directly
into MPI, OpenMP/Pthreads, or a combination, leveraging
their already highly tuned, vendor provided facilities.

7. CONCLUSIONS
In this paper we present ARMI, a high level communica-

tion library that we have developed for our generic paral-
lel library, STAPL, but which can be used independently,
in any parallel C++ code. ARMI is based on an adap-
tive implementation of RMI, which allows the user to ex-
ploit fine-grain parallelism, while handling low-level details
such as scheduling incoming communication and aggregat-
ing outgoing communication. These details can be tuned
for specific machines to provide the maximum performance
possible without modification to user code. A fine-grain
parallelization allows ARMI to fully exploit resources on a
shared-memory system, while coarsening communication via

240

aggregation for a large message passing system.
Our first implementation shows good results, which we

will continue to improve upon. We are currently working on
finding a better way to alternate between communication
activity and computation by using multi-threading. This
approach promises to be very useful on systems that may
have a dedicated communication processor or that supports
multi-threading in hardware. Furthermore, such an imple-
mentation can help decouple the design of computation ac-
tivity (the real work) from communication (an overhead due
to the distributed nature of large machines).

8. REFERENCES
[1] P. Beckman and D. Gannon. Tulip: A portable

run-time system for object-parallel systems. In Int.
Parallel Processing Symp., pages 532–536, 1996.

[2] G. Blelloch, C. Leiserson, B. Maggs, G. Plaxton,
S. Smith, and M. Zagha. A comparison of sorting
algorithms for the connection machine CM-2. In
Symp. on Parallel Algorithms and Architectures, pages
3–16, 1991.

[3] S. Bova, R. Eigenmann, H. Gabb, G. Gaertner,
B. Kuhn, B. Magro, S. Salvini, and V. Vatsa.
Combining message-passing and directives in parallel
applications. SIAM News, 32(9):10–14, 1999.

[4] F. Cappello and D. Etiemble. MPI versus
MPI+OpenMP on the IBM SP for the NAS
benchmarks. In Supercomputing, pages 51–63, 2000.

[5] D. Culler and J. Pal Singh. Parallel Computer
Architecture: A Hardware/Software Approach. San
Francisco, CA: Morgan Freeman Publishers, 1999.

[6] I. Foster, J. Geisler, C. Kesselman, and S. Tuecke.
Managing multiple communication methods in
high-performance networked computing systems.
Journal of Parallel and Distributed Computing,
40(1):35–48, 1997.

[7] I. Foster, C. Kesselman, and S. Tuecke. The Nexus
approach to integrating multithreading and
communication. Journal of Parallel and Distributed
Computing, 37(1):70–82, 1996.

[8] M. Govindaraju, A. Slominski, V. Choppella,
R. Bramley, and D. Gannon. Requirements for and
evaluation of RMI protocols for scientific computing.
In Supercomputing, pages 76–102, 2000.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
High-performance, portable implementation of the
MPI Message Passing Interface Standard. Parallel
Computing, 22(6):789–828, 1996.

[10] IEEE. Information Technology - Portable Operating
System Interface (POSIX) - Part 1: System
Application: Program Interface [C Language].
9945-1:1996 (ISO/IEC) [IEEE/ANSI Std 1003.1 1996
Edition], Piscataway, NJ: IEEE Standard Press, 1996.

[11] W. M. III, B. Hendrickson, S. Plimpton, and
L. Rauchwerger. Finding strongly connected
components in parallel in particle transport sweeps. In
Symp. on Parallel Algorithms and Architectures, pages
328–329, 2001.

[12] B. Joy, G. Steele, J. Gosling, and G. Bracha.
Java(TM) Language Specification (2nd Edition).
Reading, MA: Addison-Wesley Pub Co, 2000.

[13] L. Kale and S. Krishnan. CHARM++: A portable

concurrent object oriented system based on C++. In
Conf. on Object-Oriented Programming Systems,
Languages and Applications, pages 91–108, 1993.

[14] D. Kumar. Development of a class of distributed
termination detection algorithms. IEEE Trans. on
Knowledge and Data Engineering, 4(2):145–155, 1992.

[15] S. Lumetta, A. Mainwaring, and D. Culler.
Multi-protocol active messages on a cluster of SMPs.
In Supercomputing, 1997.

[16] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, June 1995.
www.mpi-forum.org.

[17] Message Passing Interface Forum. MPI-2: Extensions
to the Message-Passing Interface, May 1998.
www.mpi-forum.org.

[18] S. Microsystems. Java remote method invocation
(RMI). http://java.sun.com/products/jdk/rmi/,
1995–2002.

[19] J. Nieplocha and B. Carpenter. ARMCI: A portable
remote memory copy library for distributed array
libraries and compiler run-time systems. In Workshop
on Runtime Systems for Parallel Programming of the
Int. Parallel Processing Symp., 1999.

[20] J. Nieplocha, J. Ju, and T. P. Straatsma. A
multiprotocol communication support for the global
address space programming model on the IBM SP.
Lecture Notes in Comp. Science, 1900:718–726, 2001.

[21] D. Nikolopoulos, E. Ayguad, J. Labarta,
T. Papatheodorou, and C. Polychronopoulos. The
tradeoff between implicit and explicit data distribution
in shared-memory programming paradigms. In Int.
Conf. on Supercomputing, pages 23–37, 2001.

[22] OpenMP Architecture Review Board. OpenMP - C
and C++ Application Program Interface, October
1998. Document DN 004-2229-001, www.openmp.org.

[23] A. Ping, A. Jula, S. Rus, S. Saunders, T. Smith,
G. Tanase, N. Thomas, N. Amato, and
L. Rauchwerger. STAPL: An adaptive, generic parallel
C++ library. In Int. Workshop on Languages and
Compilers for Parallel Computing, 2001.

[24] G. Shah, J. Nieplocha, J. Mirza, C. Kim, R. Harrison,
R. Govindaraju, K. Gildea, P. DiNicola, and
C. Bender. Performance and experience with LAPI: A
new high-performance communication library for the
IBM RS/6000 SP. In Int. Parallel Processing Symp.,
pages 260–266, 1998.

[25] H. Shan and J. P. Singh. A comparison of MPI,
SHMEM and cache-coherent shared address space
programming models on the SGI origin2000. In Int.
Conf. on Supercomputing, pages 241–266, 1999.

[26] L. Smith. Mixed mode MPI/OpenMP programming.
UK High-End Computing Technology Report,
http://www.ukhec.ac.uk/publications/, 2000.

[27] B. Stroustrup. The C++ Programming Language.
Reading, MA: Addison-Wesley Pub Co, 2000.

[28] T. von Eicken, D. Culler, S. Goldstein, and
K. Schauser. Active messages: A mechanism for
integrated communication and computation. In Int.
Symp. on Computer Architecture, pages 256–266, 1992.

241

