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Abstract 

In comparison to automatic parallelization, which is 
thoroughly studied in the literature [31, 331, classical 
analyses and optimizations of explicitly parallel pro- 
grams were more or less neglected. This may be due 
to the fact that naive adaptations of the sequential 
techniques fail [24], and their straightforward correct 
ones have unacceptable costs caused by the interleav- 
ings, which manifest the possible executions of a parallel 
program. Recently, however, we showed that unidirec- 
tional bitvector analyses can be performed for parallel 
programs as easily and as efficiently as for sequential 
ones [17], a necessary condition for the successful trans- 
fer of the classical optimizations to the parallel setting. 

In this article we focus on possible subsequent code 
motion transformations, which turn out to require much 
more care than originally conjectured [17]. Essentially, 
this is due to the fact that interleaving semantics, al- 
though being adequate for correctness considerations, 
fails when it comes to reasoning about eficiency of par- 
allel programs. This deficiency, however, can be over- 
come by strengthening the specific treatment of syn- 
chronization points. 

Keywords: Code optimization, shared memory, inter- 
leaving semantics, synchronization, data-flow analysis, 
bitvector problems, code motion (partial redundancy 
elimination). 

1 Motivation 

Background. Code motion (CM) has proved to be a 
powerful technique for the optimization of sequential 
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programs. Intuitively, it improves the efficiency of a 
program by avoiding unnecessary recomputations of val- 
ues at runtime. This is achieved by replacing the orig- 
inal computations of a program by temporaries which 
are initialized at suitable program points while main- 
taining the program semantics. It is well-known that 
for sequential programs even computationally optimal 
results can be obtained, i.e., the number of computa- 
tions on each program path cannot be reduced anymore 
by semantics preserving code motion. 

a) 
1 

The Sequential Argument Program 

b) 

A Computationally Optimal F’rogram 

Figure 1: CM in the sequential setting. 

Placing the computations at their “earliest down- 
safe” points leads to computationally optimal results 
[12, 14). Intuitively, earliest down-safe program points 
are points where the computation under consideration 
is not available, but required on every program continu- 
ation leaving it. Following [14], the as-early-as-possible 
placement of computations can be achieved by comput- 
ing the set of up-safe and down-safe program points 
of a computation, i.e., where it has been computed on 
every program path reaching the program point under 
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consideration, and where it will be computed on ev- 
ery program continuation reaching the program’s end 
node.’ Thus, down-safe start nodes are earliest, as well 
as down-safe nodes with an unsafe predecessor or a pre- 
decessor modifying an operand of the computation un- 
der consideration. The as-early-as-possible placement 
strategy is illustrated in Figure 1. Note that the par- 
tially redundant computation of a + b at node 8 cannot 
safely be eliminated, i.e., without affecting the seman- 
tics or impairing some program executions. 

As both up-safety and down-safety are unidirectional 

bitvector problems, it is straightforward - using the 
framework of [17] - to transfer these analyses to par- 
allel programs at almost no cost on the implementation 
and the computation side. This suggests to make the 
computationally optimal code motion of the as-early-as- 
possible placement strategy available for parallel pro- 
grams, too, in order to avoid the unnecessary recompu- 
tation of values. An extension based on this idea has 
been sketched in [17] together with the conjecture that 
the resulting transformation leads to computationally 
optimal parallel programs. The following sections illus- 
trate that this conjecture was too optimistic. 

Pitfalls of CM in the Parallel Setting 

Optimality. Computational optimality as considered 
for sequential programs is based on the relation “com- 
putationally better” between programs: a program G is 
computationally better than a program G’ if every ex- 
ecution of G requires at most as many computations as 
the corresponding execution of G’. This relation is per- 
fectly well-suited for comparing sequential programs. A 
sequential program G which is computationally better 
than a program G’ is also “executionally better,” i.e., 
any program execution of G will be faster than the cor- 
responding execution of G’. Unfortunately, this does 
not carry over to the parallel setting as illustrated by the 
example of Figure 2. For clarity, the components of par- 
allel statements are separated by parallels throughout 
this article. Note that both programs of Figure 2(b) and 
(c) lie in the kernel of the relation computationally bet- 
ter, i.e., on every program path from node 1 to node 10 

they perform the same number of computations. Actu- 
ally, they are even both computationally optimal. How- 
ever, the runtime behaviour of the program of Figure 
2(b), which results from the as-early-as-possible place- 
ment strategy, will be worse than that of the program 
of Figure 2(c). The point here is that “computationally 
better” is based on a simple count of the occurrences of 
computations on (sequentialized) program paths, i.e., 
on a pure interleaving view. It does not distinguish 

‘Up-safety and down-safety are also known as availability and 
anticapibility (very busyness). The coining of these traditional terms, 
however, relies on.a mostly technical motivation. They neither reflect 
the duality of the two properties, nor their semantical essence, which 
is to express a safety property. 

between computations in sequential and parallel pro- 
gram parts. The execution time of a parallel program, 
however, is extremely sensitive to this distinction: e.g., 
computations in a parallel component may be for “free.” 
The execution time of the considered execution is de- 
termined by the computations of the bottleneck com- 
ponent (the component requiring most activity). Thus, 
the as-early-as-possible placement, which leads to com- 
putationally (and executionally) optimal results in the 
sequential setting, is inappropriate for the parallel set- 
ting as here computational optimality it is aiming at 
does not induce the desired executional optimality. 

c5 
2 ParBegin 

10 d :=c+b 
25 

The Parallel Argument Program 

b) 

3 5 

4 6 

8 9 

3 5 

4 6 

8 9 

A Computationally Optimal Program An Executionally Optimal Program 

Figure 2: Computational vs. executional optimality. 

“Recursive” Assignments. For sequential programs it 
is important that all computation patterns can be in- 
dependently processed without affecting correctness or 
optimality of the complete transformation. In the paral- 
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lel setting, however, correctness can be violated in the 
presence of ‘recursive” assignments, i.e., assignments 
whose left-hand side variables occur in their right-hand 
side terms. This is illustrated by the two examples of 
Figure 3. Note that the transformation of Figure 3(b) 
preserves sequential consistency (cf. [20,28]) of the pro- 
gram of Figure 3(a), i.e., every observable behaviour for 
an interleaving of the program of (b) can also be ob- 
served for some (in general different) interleaving of the 
program of (a). Sequential consistency, however, gets 
lost as soon as the left-hand side variable z of the state- 
ment at node 3 is replaced by c making this statement 
like the one of node 5 a recursive one, too (cf. Figure 
3(c)). As a consequence, in any interleaving sequence, 
in which node 3 is executed prior to node 5, the use of 
c in node 6 refers to the new value of c and vice versa. 
This is illustrated by the program transformation dis- 
played in Figure 3(d): the interleaving 5 - 6 - 3 - 4 
of the program of (d) assigns in the parallel statement 
the value 5 to the variables a and z, and the value 8 to 
the variables c and y. This is impossible for any inter- 
leaving of the program of (c), regardless of considering 
assignments atomic or not. 

a) b) 

8 

Argument Program A 

C) 

Argument Program B 

Sequentially Consistent 

4) 

Sequential Coosl8tency is lost! 

Figure 3: Loss of sequential consistency I. 

Considering assignments atomic, however, even the 

independent treatment of different occurrences of the 
same computation pattern can cause the loss of sequen- 
tial consistency in the presence of recursive assignments. 
This is illustrated by the example of Figure 4. Whereas 
the transformations of Figure 4(b) and (c) preserve se- 
quential consistency of the argument program of Figure 
4(a), sequential consistency gets lost if both individu- 
ally correct transformations of (b) and (c) are combined 
as shown in (d): each interleaving of the program of (d) 
assigns the value 5 to the occurrences of variable a at 
node 4 and node 5. This is impossible for any inter- 
leaving of the program of (a). 

b) 
1 

3 5 

4 6 

8 8 

Argument FYogram Sequentially Consistent 

Cl d) 
1 1 

s 3 

6 4 

Sequentially Consistent Sqttential Consistency is lost! 

Figure 4: Loss of sequential consistency II. 

In other words, the examples above demonstrate that 
an (existential!) trace-based requirement like sequential 
consistency is in general not adequate as correctness 
constraint for composite optimizations: the sequential 
composition of sequentially consistent optimizations is 
not guaranteed to be sequentially consistent, too. 

Up-Safety and Down-Safety. A program point n is 
up-safe for a computation t, if every program path reach- 
ing n contains a computation of t, which is not followed 
by a modification of any operand of t. Dually, n is 
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down-safe for t, if every program path starting in n
and reaching the end node contains a computation oft,
which is not preceded by a modification of an operand
of t. In the sequential setting up-safety of a program
point n for t guarantees that there is a set it M of program
points computing t, and commonly dominating n, where
every program point on a path leaving a node of M and
reaching n is up-safe as well. Conversely, down-safety
of n for t guarantees that there is a set M of program
points, which compute t, and commonly post-dominate
n, and where each program point on a path leaving n
and reaching a node of M is down-safe, too. These facts
are illustrated in Figure 5. In the sequential setting they
are sufficient to establish the correctness of the as-early-
as-possible placement strategy: they guarantee (1) that
a temporary which is initialized at a down-safe program
point can be used on every program continuation reach-
ing the end node without an intermediate redefinition
of the temporary itself or of an operand of the com-
putation, and (2) that at an up-safe program point the
computation under consideration can be made available
in a temporary which is initialized in a set of down-safe
program points commonly dominating it.

Unfortunately, these facts generally do not carry over
to parallel programs. This is illustrated in Figure 6.
Note that for every program interleaving node 3 and
node 16 are down-safe and up-safe on entering and leav-
ing the parallel statement, respectively. However, none
of the internal nodes of the parallel statements enjoys
these properties. The point here is that up-safety and
down-safety at node 16 and node 3, respectively, hold

for individual interleavings. This becomes obvious by
considering the corresponding nondeterministic sequen-
tial product program, the “unfolded” version of a paral-
lel program (cf. Figure 6). The product program makes
all interleavings of a parallel program explicit. In fact,
up-safety and down-safety then hold in the usual path-
based sense, i.e, the particular occurrence guaranteeing
the property can be precisely pin-pointed. However,
in the compact representation as a parallel program
(cf. Figure 6), which can be considered an abbrevia-
tion of the in the worst case exponentially larger un-
folded (product) program, this is impossible. In fact,
depending on the chosen interleaving the properties are
guaranteed by different occurrences of “a + b.”

As a consequence, a “naive” adaption of the compu-
tationally optimal placing strategies known for sequen-
tial programs like the earliest down-safe placement can
impair the efficiency and even corrupt the semantics.
This is illustrated in Figure 7. Obviously, node 1 is
an earliest down-safe point. However, the initialization
made here cannot be guaranteed to be used. Hence, the
runtime efficiency may be impaired. On the other hand,
the initialization at node 12 is suppressed as the value
under consideration is up-safe there. In the sequential
setting the suppression would be correct as up-safety
implies that the value is already stored in a temporary.
However, in the parallel setting this cannot be guaran-
teed.

In this article, we show how to overcome these pitfalls
of CM for parallel programs within the framework of



[17]. It turns out that all modifications required to
compute the program properties required by (proper)
parallel code motion are limited to the generic com-
putation algorithm of the framework, and concern the
computation of data-flow information at synchroniza-
tion points only. The modifications leave the general
structure of the sequential algorithm for the as-early-
as-possible placement strategy invariant. In fact, the
new algorithm inherits the simple structure of its un-
derlying sequential counterpart, the busy code motion
(BCM) transformation of [12, 14], and it is similarly
efficient. Like the BCM-transformation, it is composed
of only two unidirectional bitvector data-flow analyses.
The power of the new algorithm is illustrated in the ex-
ample of Figure 10(a), where it is unique to obtain the
optimization of Figure 10(b).

Related Work. One of the pioneering approaches for
analyzing parallel programs has been proposed by Shasha
and Snir [28]. It is concerned with analysing the side-
conditions guaranteeing sequential consistency. Intu-
itively, sequential consistency means that a parallel ex-
ecution of a program must behave like some interleaving
of the program’s parallel components. Later approaches
like the one of Krishnamurthy and Yelick [18] improved
on the complexity of Shasha and Snir’s approach for
a specific class of programs, or were concerned with
analysing different variants of parallel programs differ-

ing in the language primitives concerning for example
synchronization, the kind of parallelism or the restric-
tions applying to shared variables. Typical examples
are the approaches of Chow and Harrison [l], Dwyer
and Clarke [5], Grunwald and Srinivasan [6], Long and
Clarke [22], or Srinivasan and Wolfe [30]. The majority
of these approaches is designed for problems which are
specific for parallel programs like mutual exclusion or
the detection of dead-locks and data races. In fact, only
a minority like Grunwald and Srinivasan’s approach [6]
is dealing with a problem known from sequential op-
timization: reaching-definitions analysis. Though they
indicate that reaching-definitions information is impor-
tant in sequential optimization for instance for com-
mon subexpression elimination, dead code elimination
or constant propagation, they do not present any op-
timization. Similarly this holds for the approaches of
Srinivasan, Hook, and Wolfe [29], Srinivasan and Wolfe
[30], and of Wolfe and Srinivasan [32]. They focus on
data structures and algorithms for transforming parallel
programs into SSA-like program representations, but do
not consider (classical) optimizations. An optimization
is proposed by Krishnamurthy and Yelick [19]. They
present an approach for optimizing remote accesses on
distributed memory machines. Note that this is a prob-
lem specific for parallel architectures.

There are only very few approaches dealing with
classical optimizations of explicitly parallel programs
as those of Lee, Midkiff and Padua [21] and Knoop
[11] dealing with constant propagation or of Knoop [10]
dealing with partial dead-code elimination. As demon-
strated by Midkiff and Padua [24] straightforward trans-
fers of sequential techniques fail, in particular for code
motion. This article contributes to revealing the inher-
ent reasons of these failures for code motion. As they do
not rely on a specific structural richness of the parallel
setting, we consider a setting as simple and as concise
as possible, which allows us to extract the problem’s
essence. However, our approach itself is not limited to
this setting.

Structure of the Article. In Section 2 we recall the es-
sential parts of the framework of [17], which are neces-
sary for developing our CM-algorithm for parallel pro-
grams. Subsequently, we show how to overcome the
pitfalls of CM in a parallel setting, and present our al-
gorithm, which is unique to eliminate partially redun-
dant computations in a parallel program in Section 3.
Section 4, finally, contains our conclusions.

This section sketches our setup, which has been pre-
sented in detail in [17]. We consider a parallel impera-
tive programming language with interleaving semantics.



Rz%llelism is syntactically expressed by means of a par 
statement whose components are executed in parallel on 
a shared memory. As usual, we assume that there are 
neither jumps entering a component of a parallel state- 
ment from outside nor vice versa. 

Similar to [29] and [6], we represent a parallel pro- 
gram by a nondeterministic parallel flow graph G* = 
(N*, E*, s*, e*) with node set N* and edge set E* as 
illustrated in Figure 2. As in a sequential flow graph, 
nodes n E N* represent the statements, and edges (m, n) 
E E* the nondeterministic branching structure of the 
progam under consideration, while s* and e* denote the 
distinct start node and end node of the graph. They are 
assumed to represent the empty statement skip, and 
to be free of incoming and outgoing edges, respectively. 
Parallel statements are represented by subgraphs, which 
are encapsulated by a ParBegin node and a ParEnd 
node representing both skip. For clarity, ParBegin 
nodes and Paz-End nodes are represented by ellipses in 
the figures. Additionally, the component graphs of a 
parallel statement are separated by two parallel lines as 
shown in Figure 2. 

Important in order to capture the interference of par- 
allel components is the notion of an interleaving prede- 
cessor of a node. In contrast to a sequential flow graph 
G, where the set of nodes which might precede a node 
n at runtime is precisely given by the set PTedG(n) of 
its predecessors in the graph, in a parallel flow graph 
the interleaving of parallel components must be taken 
into account, too. A node n occurring in a component 
of some parallel statement can at runtime also be pre- 
ceded by any node of another component of this parallel 
statement. As in [17] we denote these “potentially par- 
allel” nodes of a node n ils its interleaving predecessors, 
denoted by Pred.f$g(n). In the example of Figure 2 
node 3 is the ‘Lordinary” predecessor of node 4, while 
node 5 and node 6 are its interleaving predecessors. 

The key for defining the operational semantics of 
a parallel program is the notion of a parallel program 
path. To this end we recall that the interleaving seman- 
tics of parallel imperative programs can be defined via 
a translation that reduces them to (much larger) non- 
deterministic programs, which represent all the possible 
interleavings explicitly. These “product” programs di- 
rectly induce the notion of a (finite) feasible path of 
a parallel program, or for short, of a parallel path: a 
node sequence of a parallel program is a parallel path 
if and only if it is a path in the corresponding product 
program. We denote the set of all parallel paths from 
m to n or to a predecessor of n by PP~e[m,n] and 
PP~e[m,n[, respectively. In the remainder of this sec- 
tion we recall how to perform unidirectional bitvector 
data-flow analyses for parallel programs as easily and 
as efficiently as for sequential ones. 

Data-flow Analysis. In essence, data-flow analysis 
(DFA) provides information about the program states 
which may occur at some given program points during 

execution (cf. [7, 26, 251). Theoretically well-founded 
are DFAs based on abstract interpretation (cf. [CC?, 3,231). 
Usually the abstract semantics is tailored to deal with 
a specific problem, and is specified by a local semantic 
functional I[ ]I : N* + (C + C). It gives abstract mean- 
ing to every program statement (here: every node of a 
parallel flow graph G* with node set N*) in terms of a 
transformation function on a complete lattice (C, n, C, 
I, T), whose elements express the DFA-information of 
interest. In our framework this carries over to the par- 
allel setting. 

A local semantic functional can easily be extended 
to cover parallel paths. This extension is the key for 
defining the parallel version of the meet-over-all-paths 
(MOP) approach in the sense of Kam and Ullman [8]. 
Its solution specifies the intuitively desired solution of 
a DFA-problem. The MOP-approach (in the parallel 
setting the PMOP-approach) directly mimics possible 
program executions in that it “meets” (intersects) all 
informations belonging to a program path starting in 
s* and reaching the program point n E N* under con- 
sideration. 

The PMOP-Solution: VQ E C Vn E N*. 
PMo~(n)(Co)=n{l[~~(Cg)~P~ppG*[s*,n[} 

This directly reflects our desires, but is in general not ef- 
fective. For unidirectional bitvector problems, however, 
there exists an elegant and efficient way for computing 
the PMOP-solution by means of a fixpoint computation. 

Remark 2.1 The local semantic functional as intro- 
duced above gives meaning to assignments rather than 
to their right-hand side terms. Assignments are thus 
implicitly considered atomic. However, interleavings 
between the evaluation of right-hand side terms and 
their subsequent assignments to the left-hand side vari- 
able can easily be modelled by (conceptually) splitting 
assignments of the form x := t into the sequence xt := t; 

z:= xt, where zt is a fresh variable (cf. [lo]). 

Bitvector Analyses. Unidirectional bitvector problems 
are characterized by the simplicity of their local seman- 
tic functional [ ]I : N* + (L? + l?). It specifies the effect 
of a node n on a particular component of the bitvec- 
tor, where t3 is the lattice ((8, tt}, n, IZ) of Boolean 
truth values with fl & tt and the logical “and” as meet 
operation n (or its dual counterpart). Important for 
our efficient fixpoint approach are the following obvi- 
ous facts on the semantic domain .?B of the monotonic 
Boolean functions B + B of bitvector analyses: (1) FB 
consists of the constant functions Consttt and Constff, 
together with the identity Ida on f3 only. (2) All func- 
tions of FB are distributive. (3) FB, together with the 
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pointwise ordering between functions, forms a complete 
lattice with least element Consta and greatest element 
Con&, which is closed under function composition. 
Based on these facts, the following lemma, which fol- 
lows by a simple induction on q, will be the key to 
the efficient computation of the “interleaving effect.” It 
pin-points the specific nature of a domain of functions 
which only consists of constant functions and the iden- 
tity function on a set M. 

Lemma 2.2 (Main Lemma) 
Let fi : FB + .FB, 1 5 i 5 q, q E M, be functions on 
.&. Then:ElkE{l,..., q}. fqO...OfiOfi=fk AvjE 

{k + 1,. . . ,q}. fj =I&. 

Interference. The relevance of Main Lemma 2.2 for 
bitvector problems is that it restricts the means of pos- 
sible interference within a parallel program: each pos- 
sible interference in a parallel program is due to a sin- 
gle statement in a parallel component, whose execution 
can be interleaved with the statement at the program 
point n under consideration, i.e., one of n’s interleav- 
ing predecessors of Predgyg(n). This is a consequence 
of Main Lemma 2.2 and the fact that for each node 
m E Pre&Fg (n), there exists a parallel path leading to 
n, whose last step requires the execution of m. Together 
with the obvious existence of a path to n that does not 
require the execution of any statement of Predgfwg (n), 
this implies that the only effect of interference is “de- 
struction.” This motivates the introduction of the pred- 
icate NonDest defined for each node n E N’ by 

NonDest(n)=df 
Vm E PredEpg (n). [ml E {Consttt,W3} 

Only the constant function given by the precomputed 
value of this predicate is used below to model interfer- 
ence (cf. Definition 2.3), and in fact, the Parallel Bitvec- 
tor Coincidence Theorem 2.4 guarantees that this mod- 
elling is sufficient. 

Synchronization. In order to leave a parallel state- 
ment, all parallel components are required to terminate. 
The information, which is necessary to model this effect, 
can be computed by a hierarchical algorithm which only 
considers purely sequential programs. The central idea 
coincides with that of interprocedural DFA (cf. [9, 271): 
we need to compute the effect of complete subgraphs, 
in this case of complete parallel components. This in- 
formation is computed in an “innermost” fashion and 
then propagated to the next surrounding parallel state- 
ment. In essence, the complete three-step procedure 
A is a straightforward hierarchical adaptation of the 
functional version of the maximal-fixed-point (MFP) 
approach in the sense of Kam and Ullman [8] to the 
parallel setting. Here we only consider the second step 
realizing the synchronization at end nodes of parallel 

statements in more detail. In essence, this step can 
be reduced to the case of parallel statements G with 
purely sequential components GI , . . . , G’k. Thus, the 
global semantics [ Gi ]* of the component graphs Gi of 
G, 1 5 i 5 k, can be computed as in the sequential 
case. Afterwards, the global semantics o[ G I* of G is 
given by: 

8[c’18* = 

Const# if 3G’ E &(G). f end(G’) ]D = Consts 
Ida if VG’ E Gc(G). a end(G’) ]D =I& 
Cons& otherwise 

where 4c (G) denotes the set {Gi, . . . , Gk}. Again, Main 
Lemma 2.2 is the key for proving the correctness of 
this step, i.e., [ G J* coincides with the desired PMOP- 
solution. As before the point is that a single statement 
is responsible for the entire effect of a path through 
a parallel statement. Thus, its effect is already given 
by the projection of this path onto the parallel compo- 
nent containing the vital statement. This is exploited in 
the synchronization step above. Adapting this step will 
be the key for overcoming the pitfalls of parallel CM 
in Section 3. After the hierarchical preprocess, whose 
correctness is a consequence of the Hierarchical Coin- 
cidence Theorem of [17], the following equation system 
is the key for characterizing the PMOP-solution of a 
unidirectional bitvector problem algorithmically: 

Definition 2.3 The functional [ 1 : N* +,.Ta is de- 
fined as the greatest solution of the equation system 
given by: [ n 10 = 

I 

I&3 if n=a* 
o[ P.@(n) m;fonig-$@fg(n)) 1 n ConStNonDest(n) 

n( I[ m ] 0 1 m m17f c Pred@ (n)} n constNonDest(n) 
otherwise 

where pfg denotes a function, which maps a node of a 
parallel subgraph to the smallest parallel subgraph con- 
taining it, and where start is a function, which maps a 
graph to its start node, and where Ng denotes the set 
of end nodes of parallel subgraphs. 

In analogy to the MFP-solution of [8] for the se- 
quential case, we can now define the PMFPBV-solution 
of unidirectional bitvector problems for the parallel set- 
ting: 

The PMFPsv-Solution: 

VbEBVnEN*.PMFPsv(n)(b)=fn]B(b) 

As in the sequential case, the PMFPBv-solution is prac- 
tically relevant because it can efficiently be computed. 
Moreover, it coincides with the desired PMOP-solution 
(cf. [17]): 

19 



Theorem 2.4 (Parallel BV-Coincidence Th.) 
Given a parallel flow graph G*, and a local semantic 
functional [ ] : N* -+ FL?, the PMOP-solution and the 
PMFPBv -solution coincide. 

3 Code Motion for Parallel Programs 

In this section we develop our CM-algorithm for par- 
allel programs, and demonstrate how to overcome the 
pitfalls illustrated in Section 1. In order to allow a sim- 
ple and unparameterized notation we develop our algo- 
rithm with respect to an arbitrary, but specific program 
G’ and an arbitrary, but specific computation t. With- 
out loss of generality we assume that the right-hand side 
terms of assignments contain at most one operator, i.e., 
we consider 3-address code. Additionally, we assume 
that all edges leading to a node outside the set of end 
nodes of parallel statements with more than one pre- 
decessor have been split by inserting a synthetic node. 
This is typical for CM-transformations (cf. [4,12,14]) in 
order to avoid the blocking of the code motion process 
by edges leading from a node with more than one suc- 
cessor to a node with more than one predecessor, which 
in sequential optimization are called critical edges. 

3.1 Admissible Code Motion 

As mentioned in Section 1 a CM-transformation CM 
must preserve the semantics. Intuitively, this requires 
that CM is admissible, i.e., safe and correct: “safe” 
means that on no program path the computation of a 
new value is introduced by inserting a computation oft; 
“correct” means that at program sites where the tempo- 
rary h replaces an original computation of t, it always 
represents the same value as t. A sufficient condition, 
which is usually considered for code motion, is that two 
computations of trepresent the same value on a path if 
no operand of t is modified between them. Thus, CM 
is admissible if Ins&CM implies safety, and ReplacecM 
implies correctness, where Ins&CM and RepIacecM are 
two predicates for nodes specifying the insertion and 
replacement points of CM. Note that the admissibility 
constraint holds analogously for the sequential and the 
parallel setting. In the following section we define the 
as-early-as-possible placement valid for the sequential 
setting. Subsequently, we show how to modify the DFA- 
analyses in order to overcome the pitfalls of code motion 
for parallel programs, when transferring the placement 
strategy to the parallel setting. 

3.2 Earliest Down-Safe Placements 

For sequential programs computational (and simultane- 
ously executional) optimality can be obtained by plac- 
ing computations at their “earliest (down-safe)” compu- 
tation points, and by subsequently replacing all original 

computations by the temporary introduced for the com- 
putation under consideration. A node n is earliest (for 
t), if it is 

down-safe, i.e., if the value oft is required on every 
continuation of a program execution leaving n and 
reaching the end node, 

not up-safe, i.e., if the value of t is not already 
available at n, and if it is 

either the start node, or if the placement of t in 
some of n’s predecessors would not be safe (it would 
introduce a new value on some path) or would not 
be transparent due to a modification of one of t’s 
operands (a computation there would not yield the 
same value as in n). 

Thus, the insertion points of the as-early-as-possible 
placement can be induced from the set of up-safe and 
down-safe program points. We are therefore simply left 
with specifying the local semantic functionals [ ]I,, : 
N*+(B-+D) and [Ids : N* + (B + Z?) for up-safety 
and down-safety. They are defined for each node n of 
the argument program as shown below, where Transp 
and Comp denote as usual two local predicates being 
true for a node n, if n does not modify an operand of 
the computation t under consideration (i.e., the value 
oft is transparent for n (Transp (n))), and if it contains 
a computation of t (Comp (n)), respectively:2 

if Transp (n) A Comp (n) 
if Transp (n) A 7 Comp (n) 

Consta otherwise 

{ 

Cons& if Camp(n) 

[n lds=df Ida if -~Comp (n) A Transp (n) 
Consta otherwise 

These are just the semantic functionals known from 
the sequential case.3 They can directly be fed into 
the generic algorithm of the framework of [17] (cf. Sec- 
tion 2), which then computes the set of up-safe and 
down-safe program points for sequential and parallel 
programs. Subsequently placing the computations at 
the “earliest down-safe” computation points and replac- 
ing all original computations by a reference to the corre- 
sponding temporary, leads to computationally (and si- 
multaneously also executionally) optimal results in the 
sequential setting. However, for parallel programs nei- 
ther executional optimality nor correctness of the trans- 
formation is guaranteed (see Section 1). In the following 
section we show how to elegantly overcome these prob- 
lems. 

‘Note that up-safety requires a forward analysis of the argument 
program, whereas down-safety requires a backward analysis. 

sin the literature these definitions are usually given in the 
following equivalent form: 
[n],,(b)= (b v Camp(n)) A Tmnsp(n) and [n],8(a)= 
Camp(n) v (Tramp(n) A b). 
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3.3 Overcoming the Pitfalls 

3.3.1 Optimality 

As illustrated in Section 1, the relation “computation- 
ally better” is inappropriate for comparing the efficiency 
of parallel programs. Hence, a strategy aiming at com- 
putational optimality like the as-earliest-as-possible one 
is inappropriate, too. As a new measure we introduce 
the relation “executionally better.” As usual for code 
motion, assignments with a trivial right-hand side term 
(i.e., a variable or a constant) are considered to be for 
free, and assignments whose right-hand side term in- 
volves an operator are assumed to have unit costs.4 
Now the execution time of a parallel program path is 
given (structurally) as follows: for a parallel statement 
it is the maximum of the execution times of its com- 
ponents for the considered execution, and for a parallel 
program path, i.e., the sequential composition of ele- 
mentary and parallel statements, it is the sum of the 
execution times of its components. 

An admissible CM-transformation CM is execvtion- 
ally better than an admissible CM-transformation CM’ 
if and only if for all paths p from the start node to the 
end node of the program the execution time of p in the 
program resulting from CM is less or equal to that of 
p in the program resulting from CM’.5 Moreover, CM 
is executionally optimal if and only if it is executionally 
better than any other admissible code motion transfor- 
mation. As executional optimality cannot be achieved 
in general, we will present an efficient algorithm which 
guarantees executional improvement only. 

Note that in contrast to “computationally better,” 
the relation “executionally better” separates the pro- 
grams of Figure 2(b) and (c) as desired. 

3.3.2 Recursive,,Assignments 

The observation that an independent treatment of “re- 
cursive” assignments can lead to the loss of sequential 
consistency, is caused by the fact that recursive state- 
ments both compute and modify t. This property can- 
not be distinguished from a simple use in our abstract 
domain. While this distinction is unnecessary in the se- 
quential setting, and unnecessary in the parallel one as 
long as one is only interested in the up-safety or down- 
safety property, this distinction is vital when using these 
properties for the placement transformation because of 
interference. This problem, however, can easily and el- 
egantly be overcome in our framework by implicitly de- 
composing recursive assignments 2 := t in parallel state- 
ments into sequences xt := t; x := xt, which are consid- 
ered atomic, and where xt is a fresh variable (cf. Remark 

4Thus, we are implicitly assuming that all variables are shared. 
However, our results carry over to a refined model distinguishing be- 
tween shared and local variables. 

5Note that this relation is reflexive. Ezecutionally at least as good 
would thus be the more precise, however, uglier term. 

2.1): rather than changing the argument program, this 
implicit decomposition is realized by associating two se- 
mantic functions with recursive assignments (in parallel 
components). In fact, this is sufficient to completely de- 
couple all computation patterns and their occurrences. 
Considering the examples in Figure 3(a) and (c) and 
the computation of down-safety for illustration, the ef- 
fect of this implicit decomposition is that the predicate 
NonDest is set to false for nodes occurring in a paral- 
lel statement, whose right-hand side term contains an 
operand being assigned to in a parallel relative by a 
recursive or non-recursive assignment. In effect, this 
(together with the modification of Section 3.3.3) pre- 
vents the transformations displayed in Figures 3(b) and 
(d), and in Figures 4(b), (c), and (d). Note that this 
is a semantic must for the transformations of Figures 
3(d) and 4(d) b ecause they are semantically incorrect, 
and it is a profitabiEity must for the transformations of 
Figures 4(b) and (c) as without additional (runtime!) 
information none of these transformations guarantees 
profitability, or is preferable to its counterpart. 

3.3.3 Up-Safety and Down-Safety 

The modification here must reestablish the two facts 
that (1) up-safety of a program point n guarantees that 
the computation under consideration can be made avail- 
able in a temporary at n, and that (2) down-safety 
guarantees that the value of a temporary initialized at 
n can be used on every terminating program continua- 
tion. Denoting the new properties up-safepar and down- 
Safepar, this is illustrated for up-safePar in Figure 8. 

To reestablish fact (1) on up-safety, it is sufficient 
to modify the synchronization step, when computing 
the semantics of parallel statements. In fact, the exit 
of a parallel statement is up-safePa,., if and only if the 
computation under consideration is available on enter- 
ing the parallel statement and the parallel statement 
is transparent for it, or if it is made available by one 
of the parallel components, and none of the nodes of 
its same-level parallel relatives destroys the availability 
information. This is simply achieved by modifying the 
synchronization step of the three-step procedure A of 
Section 2 as follows: 

1lq* = 

i 

Consttt if 3G’ E &(G). [ ena! ]D = Con& A 
Vm E Nodes(&(@\G’). 1 m] # Constg 

Ida if VG’ E &(G). [ end(G’) ]II = Ida 
Constff otherwise 

In order to guarantee that a temporary initialized on 
entering a parallel statement can be used at least once 
on every program continuation reaching the end node, 
the same modification as above proposed for up-safety 
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c] : Up-Safety 

M= (5) 

Figure 8: Up-safety refinement. 

would suffice. This is illustrated in Figure 9(a). How- 
ever, this would still allow moving a computation from 
a single component of a parallel program statement, 
where its execution is possibly for free, to a sequential 
program part, where it definitely counts. Thus, in order 
to never impair a program execution, we require that 
the entry of a parallel statement is down-safepa, only 
if all its components satisfy this property and none of 
them contains an assignment modifying t as illustrated 
in Figure 9(b). I? this situation moving a computation 
out of a parallel statement is safe as it is simultaneously 
moved out of all of its components, and hence, in partic- 
ular, out of any corresponding bottleneck component. 

As for up-safety,,, modifying the synchronization 
step of procedure A of Section 2 is sufficient: 

o[cm* = 

Consttt if VG’ E 6c(C?). [ end(G’) ]n = Cons& A 
Vm E Nodes(&(G)). I[ m] # Constfl 

I& if VG’ E SC(~). [ end(G’) I= IdB 
Con&g otherwise 

3.3.4 The Parallel CM-Transformation 

After computing the set of up-safepar and down-safe,,, 
nodes the insertion points of our parallel CM-transform- 
ation are computed along the lines of Section 3.2 us- 
ing up-safety,,, and down-safety,,,. Subsequently, all 
original computations occurring in a Safe,,, node are 

a) b) 
1 1 

2 2 
I 

17 

18 A 

17 

18 k 

0 : Down-Safety M=[6) 0 : Down-safety M = (6.10,14) 

Figure 9: Down-safety refinement. 

replaced by the corresponding temporary, i.e., the inser- 
tion and replacement predicates are defined by Insert(n) 
=df Earlie.stpar(n), and Replace(n)=@ Camp(n) A 
Safe,,,(n), where SafepoT denotes the disjunction of 
up-safe,,,(n) and down-safe,,,(n), and Earliest,,,(n) 
the conjunction of down-safe,,,(n) and the disjunction 
of n is equal to t,he start node and there is a predecessor 
of n failing the predicate Safe,,,.. 

Intuitively, this transformation moves computations 
as far as possible in the opposite direction of the control 
flow while maintaining admissibility and the parallelism 
of the argument program. In contrast, a “pure” as- 
early-as-possible placement strategy maintains admis- 
sibility only. The new placement strategy realized by 
our algorithm for parallel code motion is an adequate 
natural adaption of the as-early-as-possible placement 
strategy for sequential programs to the parallel setting. 
The correctness and the profitability of our new algo- 
rithm are rather straightforward to prove. Moreover, we 
conjecture that it is impossible to improve this transfor- 
mation without an explicit consideration of the bottle- 
neck components of parallel statements. The example 
of Figure 10 illustrates the power of the complete trans- 
formation. It is particularly highlighted by the different 
treatment of the terms a + b, c + d, e + f, g + h, and 
j + Ic. The transformation removes the loop invariant 
computations of g + h and j + k by placing them in- 
side the parallel statement in front of their respective 
loops. Similarly, this holds for the computation of c+d, 
which remains inside the parallel statement as its com- 
putation can be for free at this point, whereas it would 
definitely count at an earlier program point. In con- 
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trast, the computation of a + b can safely be placed 
outside the parallel statement as it is computed in both 
parallel components. Combining this with the fact that 
a + b is also computed in the left branch leaving node 
6, a + b can safely be moved to node 1. 

a) b) 

Figure 10: The power of the complete transformation. 

4 Conclusions 

Using the framework of [17] it is possible to transfer 
unidirectional bitvector analyses to parallel programs, 
and to solve them as efficiently as for sequential ones. 
This is highly relevant in practice because of the broad 
variety of powerful classical optimizations like code mo- 
tion [14], strength reduction [13], partial dead-code elim- 
ination [15], and assignment motion [16], which only 
require bitvector analyses of this type. However, trans- 
ferring transformations to the parallel setting is more 
problematic as we demonstrated here by means of code 
motion. The point is that thinking in terms of “inter- 
leaved” program paths is insufficient when considering 
performance. Our algorithm takes this observation into 
account. It is unique in eliminating partially redundant 
computations in a parallel program, while guaranteeing 
safety and executional improvement. It is worth noting 
that all the required modifications concern the generic 
algorithm of the framework only. Thus programmers 

applying the framework do not have to bother about 
them at all. 

We developed our algorithm for a minimum parallel 
setting in order to focus on the essence of the prob- 
lems one encounters when transferring code motion to 
parallel programs. However, our technique can also be 
applied to extended settings, e.g. comprising explicit 
synchronization or extensions to task-parallel languages 
e.g. in the fashion of Java. This leads to extremely ef- 
ficient however less precise analyses. We are currently 
empirically investigating the impact of language exten- 
sions to precision. 
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