
Code Motion for Explicitly Parallel Programs*

Jens Knoop Bernhard Steffen
Universitjt Dortmund t

knoop@ls5.cs.uni-dortmund.de

UniversitSt Dortmund t

steffen@ls5.cs.uni-dortmund.de

Abstract

In comparison to automatic parallelization, which is
thoroughly studied in the literature [31, 331, classical
analyses and optimizations of explicitly parallel pro-
grams were more or less neglected. This may be due
to the fact that naive adaptations of the sequential
techniques fail [24], and their straightforward correct
ones have unacceptable costs caused by the interleav-
ings, which manifest the possible executions of a parallel
program. Recently, however, we showed that unidirec-
tional bitvector analyses can be performed for parallel
programs as easily and as efficiently as for sequential
ones [17], a necessary condition for the successful trans-
fer of the classical optimizations to the parallel setting.

In this article we focus on possible subsequent code
motion transformations, which turn out to require much
more care than originally conjectured [17]. Essentially,
this is due to the fact that interleaving semantics, al-
though being adequate for correctness considerations,
fails when it comes to reasoning about eficiency of par-
allel programs. This deficiency, however, can be over-
come by strengthening the specific treatment of syn-
chronization points.

Keywords: Code optimization, shared memory, inter-
leaving semantics, synchronization, data-flow analysis,
bitvector problems, code motion (partial redundancy
elimination).

1 Motivation

Background. Code motion (CM) has proved to be a
powerful technique for the optimization of sequential

+Fachbereich Informatik, Universitiit Dortmund, Baroper Strafie
301, D-44227 Dortmund, Germany.

*A poster presentation wae given at CC’96, LinkSping, Sweden.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial sdvan-
tage and that copies bear this notice and ths full citation on the first page.
To Copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP ‘99 5/99 Atlanta, GA, USA
0 1999 ACM l-58113-lOO-3/99/0004...$5.00

programs. Intuitively, it improves the efficiency of a
program by avoiding unnecessary recomputations of val-
ues at runtime. This is achieved by replacing the orig-
inal computations of a program by temporaries which
are initialized at suitable program points while main-
taining the program semantics. It is well-known that
for sequential programs even computationally optimal
results can be obtained, i.e., the number of computa-
tions on each program path cannot be reduced anymore
by semantics preserving code motion.

a)
1

The Sequential Argument Program

b)

A Computationally Optimal F’rogram

Figure 1: CM in the sequential setting.

Placing the computations at their “earliest down-
safe” points leads to computationally optimal results
[12, 14). Intuitively, earliest down-safe program points
are points where the computation under consideration
is not available, but required on every program continu-
ation leaving it. Following [14], the as-early-as-possible
placement of computations can be achieved by comput-
ing the set of up-safe and down-safe program points
of a computation, i.e., where it has been computed on
every program path reaching the program point under

13

consideration, and where it will be computed on ev-
ery program continuation reaching the program’s end
node.’ Thus, down-safe start nodes are earliest, as well
as down-safe nodes with an unsafe predecessor or a pre-
decessor modifying an operand of the computation un-
der consideration. The as-early-as-possible placement
strategy is illustrated in Figure 1. Note that the par-
tially redundant computation of a + b at node 8 cannot
safely be eliminated, i.e., without affecting the seman-
tics or impairing some program executions.

As both up-safety and down-safety are unidirectional

bitvector problems, it is straightforward - using the
framework of [17] - to transfer these analyses to par-
allel programs at almost no cost on the implementation
and the computation side. This suggests to make the
computationally optimal code motion of the as-early-as-
possible placement strategy available for parallel pro-
grams, too, in order to avoid the unnecessary recompu-
tation of values. An extension based on this idea has
been sketched in [17] together with the conjecture that
the resulting transformation leads to computationally
optimal parallel programs. The following sections illus-
trate that this conjecture was too optimistic.

Pitfalls of CM in the Parallel Setting

Optimality. Computational optimality as considered
for sequential programs is based on the relation “com-
putationally better” between programs: a program G is
computationally better than a program G’ if every ex-
ecution of G requires at most as many computations as
the corresponding execution of G’. This relation is per-
fectly well-suited for comparing sequential programs. A
sequential program G which is computationally better
than a program G’ is also “executionally better,” i.e.,
any program execution of G will be faster than the cor-
responding execution of G’. Unfortunately, this does
not carry over to the parallel setting as illustrated by the
example of Figure 2. For clarity, the components of par-
allel statements are separated by parallels throughout
this article. Note that both programs of Figure 2(b) and
(c) lie in the kernel of the relation computationally bet-
ter, i.e., on every program path from node 1 to node 10

they perform the same number of computations. Actu-
ally, they are even both computationally optimal. How-
ever, the runtime behaviour of the program of Figure
2(b), which results from the as-early-as-possible place-
ment strategy, will be worse than that of the program
of Figure 2(c). The point here is that “computationally
better” is based on a simple count of the occurrences of
computations on (sequentialized) program paths, i.e.,
on a pure interleaving view. It does not distinguish

‘Up-safety and down-safety are also known as availability and
anticapibility (very busyness). The coining of these traditional terms,
however, relies on.a mostly technical motivation. They neither reflect
the duality of the two properties, nor their semantical essence, which
is to express a safety property.

between computations in sequential and parallel pro-
gram parts. The execution time of a parallel program,
however, is extremely sensitive to this distinction: e.g.,
computations in a parallel component may be for “free.”
The execution time of the considered execution is de-
termined by the computations of the bottleneck com-
ponent (the component requiring most activity). Thus,
the as-early-as-possible placement, which leads to com-
putationally (and executionally) optimal results in the
sequential setting, is inappropriate for the parallel set-
ting as here computational optimality it is aiming at
does not induce the desired executional optimality.

c5
2 ParBegin

10 d :=c+b
25

The Parallel Argument Program

b)

3 5

4 6

8 9

3 5

4 6

8 9

A Computationally Optimal Program An Executionally Optimal Program

Figure 2: Computational vs. executional optimality.

“Recursive” Assignments. For sequential programs it
is important that all computation patterns can be in-
dependently processed without affecting correctness or
optimality of the complete transformation. In the paral-

14

lel setting, however, correctness can be violated in the
presence of ‘recursive” assignments, i.e., assignments
whose left-hand side variables occur in their right-hand
side terms. This is illustrated by the two examples of
Figure 3. Note that the transformation of Figure 3(b)
preserves sequential consistency (cf. [20,28]) of the pro-
gram of Figure 3(a), i.e., every observable behaviour for
an interleaving of the program of (b) can also be ob-
served for some (in general different) interleaving of the
program of (a). Sequential consistency, however, gets
lost as soon as the left-hand side variable z of the state-
ment at node 3 is replaced by c making this statement
like the one of node 5 a recursive one, too (cf. Figure
3(c)). As a consequence, in any interleaving sequence,
in which node 3 is executed prior to node 5, the use of
c in node 6 refers to the new value of c and vice versa.
This is illustrated by the program transformation dis-
played in Figure 3(d): the interleaving 5 - 6 - 3 - 4
of the program of (d) assigns in the parallel statement
the value 5 to the variables a and z, and the value 8 to
the variables c and y. This is impossible for any inter-
leaving of the program of (c), regardless of considering
assignments atomic or not.

a) b)

8

Argument Program A

C)

Argument Program B

Sequentially Consistent

4)

Sequential Coosl8tency is lost!

Figure 3: Loss of sequential consistency I.

Considering assignments atomic, however, even the

independent treatment of different occurrences of the
same computation pattern can cause the loss of sequen-
tial consistency in the presence of recursive assignments.
This is illustrated by the example of Figure 4. Whereas
the transformations of Figure 4(b) and (c) preserve se-
quential consistency of the argument program of Figure
4(a), sequential consistency gets lost if both individu-
ally correct transformations of (b) and (c) are combined
as shown in (d): each interleaving of the program of (d)
assigns the value 5 to the occurrences of variable a at
node 4 and node 5. This is impossible for any inter-
leaving of the program of (a).

b)
1

3 5

4 6

8 8

Argument FYogram Sequentially Consistent

Cl d)
1 1

s 3

6 4

Sequentially Consistent Sqttential Consistency is lost!

Figure 4: Loss of sequential consistency II.

In other words, the examples above demonstrate that
an (existential!) trace-based requirement like sequential
consistency is in general not adequate as correctness
constraint for composite optimizations: the sequential
composition of sequentially consistent optimizations is
not guaranteed to be sequentially consistent, too.

Up-Safety and Down-Safety. A program point n is
up-safe for a computation t, if every program path reach-
ing n contains a computation of t, which is not followed
by a modification of any operand of t. Dually, n is

15

down-safe for t, if every program path starting in n
and reaching the end node contains a computation oft,
which is not preceded by a modification of an operand
of t. In the sequential setting up-safety of a program
point n for t guarantees that there is a set it M of program
points computing t, and commonly dominating n, where
every program point on a path leaving a node of M and
reaching n is up-safe as well. Conversely, down-safety
of n for t guarantees that there is a set M of program
points, which compute t, and commonly post-dominate
n, and where each program point on a path leaving n
and reaching a node of M is down-safe, too. These facts
are illustrated in Figure 5. In the sequential setting they
are sufficient to establish the correctness of the as-early-
as-possible placement strategy: they guarantee (1) that
a temporary which is initialized at a down-safe program
point can be used on every program continuation reach-
ing the end node without an intermediate redefinition
of the temporary itself or of an operand of the com-
putation, and (2) that at an up-safe program point the
computation under consideration can be made available
in a temporary which is initialized in a set of down-safe
program points commonly dominating it.

Unfortunately, these facts generally do not carry over
to parallel programs. This is illustrated in Figure 6.
Note that for every program interleaving node 3 and
node 16 are down-safe and up-safe on entering and leav-
ing the parallel statement, respectively. However, none
of the internal nodes of the parallel statements enjoys
these properties. The point here is that up-safety and
down-safety at node 16 and node 3, respectively, hold

for individual interleavings. This becomes obvious by
considering the corresponding nondeterministic sequen-
tial product program, the “unfolded” version of a paral-
lel program (cf. Figure 6). The product program makes
all interleavings of a parallel program explicit. In fact,
up-safety and down-safety then hold in the usual path-
based sense, i.e, the particular occurrence guaranteeing
the property can be precisely pin-pointed. However,
in the compact representation as a parallel program
(cf. Figure 6), which can be considered an abbrevia-
tion of the in the worst case exponentially larger un-
folded (product) program, this is impossible. In fact,
depending on the chosen interleaving the properties are
guaranteed by different occurrences of “a + b.”

As a consequence, a “naive” adaption of the compu-
tationally optimal placing strategies known for sequen-
tial programs like the earliest down-safe placement can
impair the efficiency and even corrupt the semantics.
This is illustrated in Figure 7. Obviously, node 1 is
an earliest down-safe point. However, the initialization
made here cannot be guaranteed to be used. Hence, the
runtime efficiency may be impaired. On the other hand,
the initialization at node 12 is suppressed as the value
under consideration is up-safe there. In the sequential
setting the suppression would be correct as up-safety
implies that the value is already stored in a temporary.
However, in the parallel setting this cannot be guaran-
teed.

In this article, we show how to overcome these pitfalls
of CM for parallel programs within the framework of

[17]. It turns out that all modifications required to
compute the program properties required by (proper)
parallel code motion are limited to the generic com-
putation algorithm of the framework, and concern the
computation of data-flow information at synchroniza-
tion points only. The modifications leave the general
structure of the sequential algorithm for the as-early-
as-possible placement strategy invariant. In fact, the
new algorithm inherits the simple structure of its un-
derlying sequential counterpart, the busy code motion
(BCM) transformation of [12, 14], and it is similarly
efficient. Like the BCM-transformation, it is composed
of only two unidirectional bitvector data-flow analyses.
The power of the new algorithm is illustrated in the ex-
ample of Figure 10(a), where it is unique to obtain the
optimization of Figure 10(b).

Related Work. One of the pioneering approaches for
analyzing parallel programs has been proposed by Shasha
and Snir [28]. It is concerned with analysing the side-
conditions guaranteeing sequential consistency. Intu-
itively, sequential consistency means that a parallel ex-
ecution of a program must behave like some interleaving
of the program’s parallel components. Later approaches
like the one of Krishnamurthy and Yelick [18] improved
on the complexity of Shasha and Snir’s approach for
a specific class of programs, or were concerned with
analysing different variants of parallel programs differ-

ing in the language primitives concerning for example
synchronization, the kind of parallelism or the restric-
tions applying to shared variables. Typical examples
are the approaches of Chow and Harrison [l], Dwyer
and Clarke [5], Grunwald and Srinivasan [6], Long and
Clarke [22], or Srinivasan and Wolfe [30]. The majority
of these approaches is designed for problems which are
specific for parallel programs like mutual exclusion or
the detection of dead-locks and data races. In fact, only
a minority like Grunwald and Srinivasan’s approach [6]
is dealing with a problem known from sequential op-
timization: reaching-definitions analysis. Though they
indicate that reaching-definitions information is impor-
tant in sequential optimization for instance for com-
mon subexpression elimination, dead code elimination
or constant propagation, they do not present any op-
timization. Similarly this holds for the approaches of
Srinivasan, Hook, and Wolfe [29], Srinivasan and Wolfe
[30], and of Wolfe and Srinivasan [32]. They focus on
data structures and algorithms for transforming parallel
programs into SSA-like program representations, but do
not consider (classical) optimizations. An optimization
is proposed by Krishnamurthy and Yelick [19]. They
present an approach for optimizing remote accesses on
distributed memory machines. Note that this is a prob-
lem specific for parallel architectures.

There are only very few approaches dealing with
classical optimizations of explicitly parallel programs
as those of Lee, Midkiff and Padua [21] and Knoop
[11] dealing with constant propagation or of Knoop [10]
dealing with partial dead-code elimination. As demon-
strated by Midkiff and Padua [24] straightforward trans-
fers of sequential techniques fail, in particular for code
motion. This article contributes to revealing the inher-
ent reasons of these failures for code motion. As they do
not rely on a specific structural richness of the parallel
setting, we consider a setting as simple and as concise
as possible, which allows us to extract the problem’s
essence. However, our approach itself is not limited to
this setting.

Structure of the Article. In Section 2 we recall the es-
sential parts of the framework of [17], which are neces-
sary for developing our CM-algorithm for parallel pro-
grams. Subsequently, we show how to overcome the
pitfalls of CM in a parallel setting, and present our al-
gorithm, which is unique to eliminate partially redun-
dant computations in a parallel program in Section 3.
Section 4, finally, contains our conclusions.

This section sketches our setup, which has been pre-
sented in detail in [17]. We consider a parallel impera-
tive programming language with interleaving semantics.

Rz%llelism is syntactically expressed by means of a par
statement whose components are executed in parallel on
a shared memory. As usual, we assume that there are
neither jumps entering a component of a parallel state-
ment from outside nor vice versa.

Similar to [29] and [6], we represent a parallel pro-
gram by a nondeterministic parallel flow graph G* =
(N*, E*, s*, e*) with node set N* and edge set E* as
illustrated in Figure 2. As in a sequential flow graph,
nodes n E N* represent the statements, and edges (m, n)
E E* the nondeterministic branching structure of the
progam under consideration, while s* and e* denote the
distinct start node and end node of the graph. They are
assumed to represent the empty statement skip, and
to be free of incoming and outgoing edges, respectively.
Parallel statements are represented by subgraphs, which
are encapsulated by a ParBegin node and a ParEnd
node representing both skip. For clarity, ParBegin
nodes and Paz-End nodes are represented by ellipses in
the figures. Additionally, the component graphs of a
parallel statement are separated by two parallel lines as
shown in Figure 2.

Important in order to capture the interference of par-
allel components is the notion of an interleaving prede-
cessor of a node. In contrast to a sequential flow graph
G, where the set of nodes which might precede a node
n at runtime is precisely given by the set PTedG(n) of
its predecessors in the graph, in a parallel flow graph
the interleaving of parallel components must be taken
into account, too. A node n occurring in a component
of some parallel statement can at runtime also be pre-
ceded by any node of another component of this parallel
statement. As in [17] we denote these “potentially par-
allel” nodes of a node n ils its interleaving predecessors,
denoted by Pred.f$g(n). In the example of Figure 2
node 3 is the ‘Lordinary” predecessor of node 4, while
node 5 and node 6 are its interleaving predecessors.

The key for defining the operational semantics of
a parallel program is the notion of a parallel program
path. To this end we recall that the interleaving seman-
tics of parallel imperative programs can be defined via
a translation that reduces them to (much larger) non-
deterministic programs, which represent all the possible
interleavings explicitly. These “product” programs di-
rectly induce the notion of a (finite) feasible path of
a parallel program, or for short, of a parallel path: a
node sequence of a parallel program is a parallel path
if and only if it is a path in the corresponding product
program. We denote the set of all parallel paths from
m to n or to a predecessor of n by PP~e[m,n] and
PP~e[m,n[, respectively. In the remainder of this sec-
tion we recall how to perform unidirectional bitvector
data-flow analyses for parallel programs as easily and
as efficiently as for sequential ones.

Data-flow Analysis. In essence, data-flow analysis
(DFA) provides information about the program states
which may occur at some given program points during

execution (cf. [7, 26, 251). Theoretically well-founded
are DFAs based on abstract interpretation (cf. [CC?, 3,231).
Usually the abstract semantics is tailored to deal with
a specific problem, and is specified by a local semantic
functional I[]I : N* + (C + C). It gives abstract mean-
ing to every program statement (here: every node of a
parallel flow graph G* with node set N*) in terms of a
transformation function on a complete lattice (C, n, C,
I, T), whose elements express the DFA-information of
interest. In our framework this carries over to the par-
allel setting.

A local semantic functional can easily be extended
to cover parallel paths. This extension is the key for
defining the parallel version of the meet-over-all-paths
(MOP) approach in the sense of Kam and Ullman [8].
Its solution specifies the intuitively desired solution of
a DFA-problem. The MOP-approach (in the parallel
setting the PMOP-approach) directly mimics possible
program executions in that it “meets” (intersects) all
informations belonging to a program path starting in
s* and reaching the program point n E N* under con-
sideration.

The PMOP-Solution: VQ E C Vn E N*.
PMo~(n)(Co)=n{l[~~(Cg)~P~ppG*[s*,n[}

This directly reflects our desires, but is in general not ef-
fective. For unidirectional bitvector problems, however,
there exists an elegant and efficient way for computing
the PMOP-solution by means of a fixpoint computation.

Remark 2.1 The local semantic functional as intro-
duced above gives meaning to assignments rather than
to their right-hand side terms. Assignments are thus
implicitly considered atomic. However, interleavings
between the evaluation of right-hand side terms and
their subsequent assignments to the left-hand side vari-
able can easily be modelled by (conceptually) splitting
assignments of the form x := t into the sequence xt := t;

z:= xt, where zt is a fresh variable (cf. [lo]).

Bitvector Analyses. Unidirectional bitvector problems
are characterized by the simplicity of their local seman-
tic functional []I : N* + (L? + l?). It specifies the effect
of a node n on a particular component of the bitvec-
tor, where t3 is the lattice ((8, tt}, n, IZ) of Boolean
truth values with fl & tt and the logical “and” as meet
operation n (or its dual counterpart). Important for
our efficient fixpoint approach are the following obvi-
ous facts on the semantic domain .?B of the monotonic
Boolean functions B + B of bitvector analyses: (1) FB
consists of the constant functions Consttt and Constff,
together with the identity Ida on f3 only. (2) All func-
tions of FB are distributive. (3) FB, together with the

18

pointwise ordering between functions, forms a complete
lattice with least element Consta and greatest element
Con&, which is closed under function composition.
Based on these facts, the following lemma, which fol-
lows by a simple induction on q, will be the key to
the efficient computation of the “interleaving effect.” It
pin-points the specific nature of a domain of functions
which only consists of constant functions and the iden-
tity function on a set M.

Lemma 2.2 (Main Lemma)
Let fi : FB + .FB, 1 5 i 5 q, q E M, be functions on
.&. Then:ElkE{l,..., q}. fqO...OfiOfi=fk AvjE

{k + 1,. . . ,q}. fj =I&.

Interference. The relevance of Main Lemma 2.2 for
bitvector problems is that it restricts the means of pos-
sible interference within a parallel program: each pos-
sible interference in a parallel program is due to a sin-
gle statement in a parallel component, whose execution
can be interleaved with the statement at the program
point n under consideration, i.e., one of n’s interleav-
ing predecessors of Predgyg(n). This is a consequence
of Main Lemma 2.2 and the fact that for each node
m E Pre&Fg (n), there exists a parallel path leading to
n, whose last step requires the execution of m. Together
with the obvious existence of a path to n that does not
require the execution of any statement of Predgfwg (n),
this implies that the only effect of interference is “de-
struction.” This motivates the introduction of the pred-
icate NonDest defined for each node n E N’ by

NonDest(n)=df
Vm E PredEpg (n). [ml E {Consttt,W3}

Only the constant function given by the precomputed
value of this predicate is used below to model interfer-
ence (cf. Definition 2.3), and in fact, the Parallel Bitvec-
tor Coincidence Theorem 2.4 guarantees that this mod-
elling is sufficient.

Synchronization. In order to leave a parallel state-
ment, all parallel components are required to terminate.
The information, which is necessary to model this effect,
can be computed by a hierarchical algorithm which only
considers purely sequential programs. The central idea
coincides with that of interprocedural DFA (cf. [9, 271):
we need to compute the effect of complete subgraphs,
in this case of complete parallel components. This in-
formation is computed in an “innermost” fashion and
then propagated to the next surrounding parallel state-
ment. In essence, the complete three-step procedure
A is a straightforward hierarchical adaptation of the
functional version of the maximal-fixed-point (MFP)
approach in the sense of Kam and Ullman [8] to the
parallel setting. Here we only consider the second step
realizing the synchronization at end nodes of parallel

statements in more detail. In essence, this step can
be reduced to the case of parallel statements G with
purely sequential components GI , . . . , G’k. Thus, the
global semantics [Gi]* of the component graphs Gi of
G, 1 5 i 5 k, can be computed as in the sequential
case. Afterwards, the global semantics o[G I* of G is
given by:

8[c’18* =

Const# if 3G’ E &(G). f end(G’)]D = Consts
Ida if VG’ E Gc(G). a end(G’)]D =I&
Cons& otherwise

where 4c (G) denotes the set {Gi, . . . , Gk}. Again, Main
Lemma 2.2 is the key for proving the correctness of
this step, i.e., [G J* coincides with the desired PMOP-
solution. As before the point is that a single statement
is responsible for the entire effect of a path through
a parallel statement. Thus, its effect is already given
by the projection of this path onto the parallel compo-
nent containing the vital statement. This is exploited in
the synchronization step above. Adapting this step will
be the key for overcoming the pitfalls of parallel CM
in Section 3. After the hierarchical preprocess, whose
correctness is a consequence of the Hierarchical Coin-
cidence Theorem of [17], the following equation system
is the key for characterizing the PMOP-solution of a
unidirectional bitvector problem algorithmically:

Definition 2.3 The functional [1 : N* +,.Ta is de-
fined as the greatest solution of the equation system
given by: [n 10 =

I

I&3 if n=a*
o[P.@(n) m;fonig-$@fg(n)) 1 n ConStNonDest(n)

n(I[m] 0 1 m m17f c Pred@ (n)} n constNonDest(n)
otherwise

where pfg denotes a function, which maps a node of a
parallel subgraph to the smallest parallel subgraph con-
taining it, and where start is a function, which maps a
graph to its start node, and where Ng denotes the set
of end nodes of parallel subgraphs.

In analogy to the MFP-solution of [8] for the se-
quential case, we can now define the PMFPBV-solution
of unidirectional bitvector problems for the parallel set-
ting:

The PMFPsv-Solution:

VbEBVnEN*.PMFPsv(n)(b)=fn]B(b)

As in the sequential case, the PMFPBv-solution is prac-
tically relevant because it can efficiently be computed.
Moreover, it coincides with the desired PMOP-solution
(cf. [17]):

19

Theorem 2.4 (Parallel BV-Coincidence Th.)
Given a parallel flow graph G*, and a local semantic
functional [] : N* -+ FL?, the PMOP-solution and the
PMFPBv -solution coincide.

3 Code Motion for Parallel Programs

In this section we develop our CM-algorithm for par-
allel programs, and demonstrate how to overcome the
pitfalls illustrated in Section 1. In order to allow a sim-
ple and unparameterized notation we develop our algo-
rithm with respect to an arbitrary, but specific program
G’ and an arbitrary, but specific computation t. With-
out loss of generality we assume that the right-hand side
terms of assignments contain at most one operator, i.e.,
we consider 3-address code. Additionally, we assume
that all edges leading to a node outside the set of end
nodes of parallel statements with more than one pre-
decessor have been split by inserting a synthetic node.
This is typical for CM-transformations (cf. [4,12,14]) in
order to avoid the blocking of the code motion process
by edges leading from a node with more than one suc-
cessor to a node with more than one predecessor, which
in sequential optimization are called critical edges.

3.1 Admissible Code Motion

As mentioned in Section 1 a CM-transformation CM
must preserve the semantics. Intuitively, this requires
that CM is admissible, i.e., safe and correct: “safe”
means that on no program path the computation of a
new value is introduced by inserting a computation oft;
“correct” means that at program sites where the tempo-
rary h replaces an original computation of t, it always
represents the same value as t. A sufficient condition,
which is usually considered for code motion, is that two
computations of trepresent the same value on a path if
no operand of t is modified between them. Thus, CM
is admissible if Ins&CM implies safety, and ReplacecM
implies correctness, where Ins&CM and RepIacecM are
two predicates for nodes specifying the insertion and
replacement points of CM. Note that the admissibility
constraint holds analogously for the sequential and the
parallel setting. In the following section we define the
as-early-as-possible placement valid for the sequential
setting. Subsequently, we show how to modify the DFA-
analyses in order to overcome the pitfalls of code motion
for parallel programs, when transferring the placement
strategy to the parallel setting.

3.2 Earliest Down-Safe Placements

For sequential programs computational (and simultane-
ously executional) optimality can be obtained by plac-
ing computations at their “earliest (down-safe)” compu-
tation points, and by subsequently replacing all original

computations by the temporary introduced for the com-
putation under consideration. A node n is earliest (for
t), if it is

down-safe, i.e., if the value oft is required on every
continuation of a program execution leaving n and
reaching the end node,

not up-safe, i.e., if the value of t is not already
available at n, and if it is

either the start node, or if the placement of t in
some of n’s predecessors would not be safe (it would
introduce a new value on some path) or would not
be transparent due to a modification of one of t’s
operands (a computation there would not yield the
same value as in n).

Thus, the insertion points of the as-early-as-possible
placement can be induced from the set of up-safe and
down-safe program points. We are therefore simply left
with specifying the local semantic functionals []I,, :
N*+(B-+D) and [Ids : N* + (B + Z?) for up-safety
and down-safety. They are defined for each node n of
the argument program as shown below, where Transp
and Comp denote as usual two local predicates being
true for a node n, if n does not modify an operand of
the computation t under consideration (i.e., the value
oft is transparent for n (Transp (n))), and if it contains
a computation of t (Comp (n)), respectively:2

if Transp (n) A Comp (n)
if Transp (n) A 7 Comp (n)

Consta otherwise

{

Cons& if Camp(n)

[n lds=df Ida if -~Comp (n) A Transp (n)
Consta otherwise

These are just the semantic functionals known from
the sequential case.3 They can directly be fed into
the generic algorithm of the framework of [17] (cf. Sec-
tion 2), which then computes the set of up-safe and
down-safe program points for sequential and parallel
programs. Subsequently placing the computations at
the “earliest down-safe” computation points and replac-
ing all original computations by a reference to the corre-
sponding temporary, leads to computationally (and si-
multaneously also executionally) optimal results in the
sequential setting. However, for parallel programs nei-
ther executional optimality nor correctness of the trans-
formation is guaranteed (see Section 1). In the following
section we show how to elegantly overcome these prob-
lems.

‘Note that up-safety requires a forward analysis of the argument
program, whereas down-safety requires a backward analysis.

sin the literature these definitions are usually given in the
following equivalent form:
[n],,(b)= (b v Camp(n)) A Tmnsp(n) and [n],8(a)=
Camp(n) v (Tramp(n) A b).

20

3.3 Overcoming the Pitfalls

3.3.1 Optimality

As illustrated in Section 1, the relation “computation-
ally better” is inappropriate for comparing the efficiency
of parallel programs. Hence, a strategy aiming at com-
putational optimality like the as-earliest-as-possible one
is inappropriate, too. As a new measure we introduce
the relation “executionally better.” As usual for code
motion, assignments with a trivial right-hand side term
(i.e., a variable or a constant) are considered to be for
free, and assignments whose right-hand side term in-
volves an operator are assumed to have unit costs.4
Now the execution time of a parallel program path is
given (structurally) as follows: for a parallel statement
it is the maximum of the execution times of its com-
ponents for the considered execution, and for a parallel
program path, i.e., the sequential composition of ele-
mentary and parallel statements, it is the sum of the
execution times of its components.

An admissible CM-transformation CM is execvtion-
ally better than an admissible CM-transformation CM’
if and only if for all paths p from the start node to the
end node of the program the execution time of p in the
program resulting from CM is less or equal to that of
p in the program resulting from CM’.5 Moreover, CM
is executionally optimal if and only if it is executionally
better than any other admissible code motion transfor-
mation. As executional optimality cannot be achieved
in general, we will present an efficient algorithm which
guarantees executional improvement only.

Note that in contrast to “computationally better,”
the relation “executionally better” separates the pro-
grams of Figure 2(b) and (c) as desired.

3.3.2 Recursive,,Assignments

The observation that an independent treatment of “re-
cursive” assignments can lead to the loss of sequential
consistency, is caused by the fact that recursive state-
ments both compute and modify t. This property can-
not be distinguished from a simple use in our abstract
domain. While this distinction is unnecessary in the se-
quential setting, and unnecessary in the parallel one as
long as one is only interested in the up-safety or down-
safety property, this distinction is vital when using these
properties for the placement transformation because of
interference. This problem, however, can easily and el-
egantly be overcome in our framework by implicitly de-
composing recursive assignments 2 := t in parallel state-
ments into sequences xt := t; x := xt, which are consid-
ered atomic, and where xt is a fresh variable (cf. Remark

4Thus, we are implicitly assuming that all variables are shared.
However, our results carry over to a refined model distinguishing be-
tween shared and local variables.

5Note that this relation is reflexive. Ezecutionally at least as good
would thus be the more precise, however, uglier term.

2.1): rather than changing the argument program, this
implicit decomposition is realized by associating two se-
mantic functions with recursive assignments (in parallel
components). In fact, this is sufficient to completely de-
couple all computation patterns and their occurrences.
Considering the examples in Figure 3(a) and (c) and
the computation of down-safety for illustration, the ef-
fect of this implicit decomposition is that the predicate
NonDest is set to false for nodes occurring in a paral-
lel statement, whose right-hand side term contains an
operand being assigned to in a parallel relative by a
recursive or non-recursive assignment. In effect, this
(together with the modification of Section 3.3.3) pre-
vents the transformations displayed in Figures 3(b) and
(d), and in Figures 4(b), (c), and (d). Note that this
is a semantic must for the transformations of Figures
3(d) and 4(d) b ecause they are semantically incorrect,
and it is a profitabiEity must for the transformations of
Figures 4(b) and (c) as without additional (runtime!)
information none of these transformations guarantees
profitability, or is preferable to its counterpart.

3.3.3 Up-Safety and Down-Safety

The modification here must reestablish the two facts
that (1) up-safety of a program point n guarantees that
the computation under consideration can be made avail-
able in a temporary at n, and that (2) down-safety
guarantees that the value of a temporary initialized at
n can be used on every terminating program continua-
tion. Denoting the new properties up-safepar and down-
Safepar, this is illustrated for up-safePar in Figure 8.

To reestablish fact (1) on up-safety, it is sufficient
to modify the synchronization step, when computing
the semantics of parallel statements. In fact, the exit
of a parallel statement is up-safePa,., if and only if the
computation under consideration is available on enter-
ing the parallel statement and the parallel statement
is transparent for it, or if it is made available by one
of the parallel components, and none of the nodes of
its same-level parallel relatives destroys the availability
information. This is simply achieved by modifying the
synchronization step of the three-step procedure A of
Section 2 as follows:

1lq* =

i

Consttt if 3G’ E &(G). [ena!]D = Con& A
Vm E Nodes(&(@\G’). 1 m] # Constg

Ida if VG’ E &(G). [end(G’)]II = Ida
Constff otherwise

In order to guarantee that a temporary initialized on
entering a parallel statement can be used at least once
on every program continuation reaching the end node,
the same modification as above proposed for up-safety

21

c] : Up-Safety

M= (5)

Figure 8: Up-safety refinement.

would suffice. This is illustrated in Figure 9(a). How-
ever, this would still allow moving a computation from
a single component of a parallel program statement,
where its execution is possibly for free, to a sequential
program part, where it definitely counts. Thus, in order
to never impair a program execution, we require that
the entry of a parallel statement is down-safepa, only
if all its components satisfy this property and none of
them contains an assignment modifying t as illustrated
in Figure 9(b). I? this situation moving a computation
out of a parallel statement is safe as it is simultaneously
moved out of all of its components, and hence, in partic-
ular, out of any corresponding bottleneck component.

As for up-safety,,, modifying the synchronization
step of procedure A of Section 2 is sufficient:

o[cm* =

Consttt if VG’ E 6c(C?). [end(G’)]n = Cons& A
Vm E Nodes(&(G)). I[m] # Constfl

I& if VG’ E SC(~). [end(G’) I= IdB
Con&g otherwise

3.3.4 The Parallel CM-Transformation

After computing the set of up-safepar and down-safe,,,
nodes the insertion points of our parallel CM-transform-
ation are computed along the lines of Section 3.2 us-
ing up-safety,,, and down-safety,,,. Subsequently, all
original computations occurring in a Safe,,, node are

a) b)
1 1

2 2
I

17

18 A

17

18 k

0 : Down-Safety M=[6) 0 : Down-safety M = (6.10,14)

Figure 9: Down-safety refinement.

replaced by the corresponding temporary, i.e., the inser-
tion and replacement predicates are defined by Insert(n)
=df Earlie.stpar(n), and Replace(n)=@ Camp(n) A
Safe,,,(n), where SafepoT denotes the disjunction of
up-safe,,,(n) and down-safe,,,(n), and Earliest,,,(n)
the conjunction of down-safe,,,(n) and the disjunction
of n is equal to t,he start node and there is a predecessor
of n failing the predicate Safe,,,..

Intuitively, this transformation moves computations
as far as possible in the opposite direction of the control
flow while maintaining admissibility and the parallelism
of the argument program. In contrast, a “pure” as-
early-as-possible placement strategy maintains admis-
sibility only. The new placement strategy realized by
our algorithm for parallel code motion is an adequate
natural adaption of the as-early-as-possible placement
strategy for sequential programs to the parallel setting.
The correctness and the profitability of our new algo-
rithm are rather straightforward to prove. Moreover, we
conjecture that it is impossible to improve this transfor-
mation without an explicit consideration of the bottle-
neck components of parallel statements. The example
of Figure 10 illustrates the power of the complete trans-
formation. It is particularly highlighted by the different
treatment of the terms a + b, c + d, e + f, g + h, and
j + Ic. The transformation removes the loop invariant
computations of g + h and j + k by placing them in-
side the parallel statement in front of their respective
loops. Similarly, this holds for the computation of c+d,
which remains inside the parallel statement as its com-
putation can be for free at this point, whereas it would
definitely count at an earlier program point. In con-

22

trast, the computation of a + b can safely be placed
outside the parallel statement as it is computed in both
parallel components. Combining this with the fact that
a + b is also computed in the left branch leaving node
6, a + b can safely be moved to node 1.

a) b)

Figure 10: The power of the complete transformation.

4 Conclusions

Using the framework of [17] it is possible to transfer
unidirectional bitvector analyses to parallel programs,
and to solve them as efficiently as for sequential ones.
This is highly relevant in practice because of the broad
variety of powerful classical optimizations like code mo-
tion [14], strength reduction [13], partial dead-code elim-
ination [15], and assignment motion [16], which only
require bitvector analyses of this type. However, trans-
ferring transformations to the parallel setting is more
problematic as we demonstrated here by means of code
motion. The point is that thinking in terms of “inter-
leaved” program paths is insufficient when considering
performance. Our algorithm takes this observation into
account. It is unique in eliminating partially redundant
computations in a parallel program, while guaranteeing
safety and executional improvement. It is worth noting
that all the required modifications concern the generic
algorithm of the framework only. Thus programmers

applying the framework do not have to bother about
them at all.

We developed our algorithm for a minimum parallel
setting in order to focus on the essence of the prob-
lems one encounters when transferring code motion to
parallel programs. However, our technique can also be
applied to extended settings, e.g. comprising explicit
synchronization or extensions to task-parallel languages
e.g. in the fashion of Java. This leads to extremely ef-
ficient however less precise analyses. We are currently
empirically investigating the impact of language exten-
sions to precision.

Acknowledgements. We thank Jiirgen Vollmer for his
contributions during the development of the analysis
framework for parallel programs.

References

[l] J.-H. Chow and W. L. Harrison. Compile time
analysis of parallel programs that share memory.
In Conf. Rec. 19th Symp. Principles Prog. Lang.
(POPL’SQ, pages 130 - 142. ACM, NY, 1992.

[2] P. Cousot and R. Cousot. Abstract interpreta-
tion: A unified lattice model for static analysis
of programs by construction or approximation of
fixpoints. In Conf. Rec. 4th Symp. Principles of
Prog. Lang. (POPL ‘7?), pages 238 - 252. ACM,
NY, 1977.

[3] P. Cousot and R. Cousot. Abstract interpretation
frameworks. .I. Logic and Computation, 2(4):511-
547, 1992.

[4] D. M. Dhamdhere. Practical adaptation of the
global optimization algorithm of Morel and Ren-
voise. ACM Trans. Prog. Lang. Syst., 13(2):291 -
294, 1991. Tech. Corr.

[5] M. B. Dwyer and L. A. Clarke. Data flow analy-
sis for verifying properties of concurrent programs.
In Proc. 2nd ACM SIGSOFT’94 Symp. on Foun-
dations of Software Eng. (FSE’94), volume 19,5 of
Software Eng. Notes, pages 62 - 75, 1994.

[S] D. Grunwald and H. Srinivasan. Data flow equa-
tions for explicitly parallel programs. In Proc.
ACM SIGPLAN Symp. on Principles of Parallel
Progr. (PPoPP’93)) volume 28,7 of ACM SIG-
PLAN Not., pages 159-168,1993.

[7] M. S. Hecht. Flow Analysis of Computer Programs.
Elsevier, North-Holland, 1977.

[S] J. B. Ram and J. D. Ullman. Monotone data flow
analysis frameworks. Acta Informatica, 7~305 -
317, 1977.

23

[9] J. Knoop. Optimal Interprocedural Program Opti-
mization: A new Framework and its Application.
PhD thesis, Univ. of Kiel, Germany, 1993. LNCS
Tutorial 1428, Springer-V., 1998.

[lo] J. Knoop. Eliminating partially dead code in ex-
plicitly parallel programs. TCS, 196(1-2):365 - 393,
1998. (Special issue devoted to Euro-Par’96).

[ll] J. Knoop. Parallel constant propagation. In Proc.
4th Europ. Conf. on Parallel Processing (Euro-
Par’98), LNCS 1470, pages 445 - 455. Springer-V.,
1998.

[12] J. Knoop, 0. Riithing, and B. Steffen. Lazy code
motion. In Proc. ACM SIGPLAN Conf on Prog.
Lang. Design and Impl. (PLDI’92), volume 27,7 of
ACM SIGPLAN Not., pages 224 - 234, 1992.

[13] J. Knoop, 0. Riithing, and B. Steffen. Lazy
strength reduction. J. Prog. Lang., 1(1):71-91,
1993.

[14] J. Knoop, 0. Riithing, and B. Steffen. Optimal
code motion: Theory and practice. ACM B-ans.
Prog. Lang. Syst., 16(4):1117-1155, 1994.

[15] J. Knoop, 0. Riithing, and B. Steffen. Partial dead
code elimination. In Proc. ACM SIGPLAN Conf.
on Prog. Lang. Design and Impl. (PLDI’Sd), vol-
ume 29,6 of ACM SIGPLAN Not., pages 147 - 158,
1994.

[16] J. Knoop, 0. Riithing, and B. Steffen. The power
of assignment motion. In Proc. ACM SIGPLAN
Conf. on Prog. Lang. Design and Impl. (PLDI’95),
volume 30,6 of ACM SIGPLAN Not., pages 233 -
245, 1995.

[17] J. Knoop, B. Steffen, and J. Vollmer. Parallelism
for free: Efficient and optimal bitvector analyses
for parallel programs. ACM lYans. Prog. Lang.
Syst., 18(3):268 - 299, 1996.

[18] A. Krishnamurthy and K. Yelick. Optimizing
parallel SPMD programs. In Proc. 7th Int.
Conf. on Lang. and Compilers for Parallel Comp.
(LCPC’94), LNCS 892, pages 331- 345. Springer-
v., 1994.

[19] A. Krishnamurthy and K. Yelick. Optimizing par-
allel programs with explicit synchronization. In
Proc. ACM SIGPLAN Conf. on Prog. Lang. De-
sign and Impl. (PLDI’95), volume 30,6 of ACM
SIGPLAN Not., pages 196 - 204, 1995.

[20] L. L-port. How to make a multiprocessor com-
puter that correctly executes multiprocess pro-
grams. IEEE Tbs. Comput., 28(9):690 - 691,
1979.

[21] J. Lee, S. P. Midkiff, and D. A. Padua. Concurrent
static single assignment form and constant prop-
agation for explicitly parallel programs. In Proc.
10th Int. Conf. on Lang. and Compilers for Paral-
lel Comp. (LCPC’97), pages 114 - 130, 1997.

[22] D. Long and L. Clarke. Data flow analysis of con-
current systems that use the rendezvous model of
synchronization. In Proc. ACM SIGSOFT Symp.
on Testing, Analysis, and Verification (TAV’gl),
volume 16 of Software Eng. Notes, pages 21 - 35,
1991.

[23] K. Marriot. Frameworks for abstract interpreta-
tion. Acta Injormatica, 30:103 - 129, 1993.

[24] S. P. Midkiff and D. A. Padua. Issues in the opti-
mization of parallel programs. In Proc. Int. Conf.
on Parallel Processing, Vol. II, pages 105 - 113,
1990.

[25] S. S. Muchnick. Advanced Compiler Design and
Implementation. Morgan Kaufmann, San Fran-
cisco, CA, 1997.

[26] S. S. Muchnick and N. D. Jones, editors. Program
Flow Analysis: Theory and Applications. Prentice
Hall, Englewood Cliffs, NJ, 1981.

[27] M. Sharir and A. Pnueli. Two approaches to inter-
procedural data flow analysis. In S. S. Muchnick
and N. D. Jones, editors, Program Flow Analysis:
Theory and Applications, chapter 7, pages 189 -
233. Prentice Hall, Englewood Cliffs, NJ, 1981.

[28] D. Shasha and M. Snir. Efficient and correct execu-
tion of parallel programs that share memory. ACM
nans. Prog. Lang. Syst., 10(2):282 - 312, 1988.

[29] H. Srinivasan, J. Hook, and M. Wolfe. Static single
assignment form for explicitly parallel programs. In
Conf. Rec. 20th Symp. on Principles of Prog. Lang.
(POPL ‘93), pages 260 - 272. ACM, NY, 1993.

[30] H. Srinivasan and M. Wolfe. Analyzing pro-
grams with explicit parallelism. In Proc. 4th Int.
Conf. on Lang. and Compilers for Parallel Comp.
(LCPC’SI), LNCS 589, pages 405 - 419. Springer-
v., 1991.

[31] M. Wolfe. High performance Compilers for Parallel
Computing. Addison-Wesley, NY, 1996.

[32] M. Wolfe and H. Srinivasan. Data structures for
optimizing programs with explicit parallelism. In
Proc. 1st Int. Conf. of the Austrian Center for Par-
allel Computation, LNCS 591, pages 139 - 156.
Springer-V., 1991.

[33] H. Zima and B. Chapman. Super-compilers for Par-
allel and Vector Computers. Addison-Wesley, NY,
1991.

24

