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Solving problems of large sizea is an important goal for par-
allel machines with multiple CPU and memory resources. In
this paper, issues of efficient execution of overhead-sensitive
parallel irregular computation under memory constraints are
addressed. The irregular parallelism is modeled by task de-
pendence graphs with mixed granularities. The trade-off in
achieving both time and space efficiency is investigated. The
main difficulty of designing efficient run-time system sup-
port is caused by the use of fast communication primitives
available on modern parallel architectures. A run-time ac-
tive memory management scheme and new scheduling tech-
niques are proposed to improve memory utilization while
retaining good time efficiency, and a theoretical analysis on
correctness and performance is provided. This work is im-
plemented in the context of RAPID system [5] which pro-
vides run-time support for parallelizing irregular code on
distributed memory machines and the effectiveness of the
proposed techniques is verified on sparse Cholesky and LU
factorization with partial pivoting. The experimental re-
sults on Cray-T3D show that solvable problem sizes can be
increased substantially under limited memory capacities and
the loss of execution efficiency caused by the extra memory
managing overhead is reasonable.

1 Introduction

People resort to parallel machines for two reasons: 1) a sin-
gle CPU does not have enough computation power, and/or
2) a sequential machine does not have enough memory to
hold the whole data and code for an application. An enor-
mous amount of effort in parallel system research has been
spent on time-efficient parallelizations. This paper addresses
issues of efficient parallel execution of irregular computation
under a limited memory capacity on each processor and in-
vestigates the trade-off between time and space efficiency
since a time-efficient parallelization may lead to extra mem-
ory space requirements. The model for representing par-
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allelism originates from dwected acyclic data dependence
graphs with mixed granularities which can be derived from
partitioned codes. The applications that have been used to
demonstrate the effectiveness of this parallelism model are
sparse matrix problems [5, 17]. The main difficulties for
parallelizing sparse code are that the granularity of com-
putation and communication is non-uniform, dependence
structures may change dynamically and code performance
is sensitive to the software overhead introduced by system
support. The important techniques for dealing with this
class of irregular problems are scheduling optimization for
exploiting data locality and achieving load balancing, and
fast direct remote memory accessing for low-overhead asyn-
chronous communications (e.g., a few microwxonds). How-
ever all these optimization techniques impose extra memory
space requirements. For example, remote addresses need
to be known in advance at the time of performing direct
memory accesses and the accessible remote space must be
allocated in advance. A parallel program would have its per
processor space complexity M high as that of a sequential
program. Thus using advanced hardware support for fast
communication adds difficulties in designing software layers
to achieve high utilization for both processor and memory
resources.

In this paper, we present a new technique called active
memory management which incrementally allocates neces-
sary space that each processor needa, notifies collaborat-
ing processors of the allocated object addresses and recy-
cles space by deallocating those obsolete data objects. The
main challenge is how the allocation activities can be ef-
ficiently integrated into an on-going irregular computation
execution, wit bout significantly lowering the time efficiency
and creating deadlock situations. Since there will be sev-
eral dynamic space allocation points during a computation,
an important optimization is to reduce the number of al-
location points, hence to minimize memory management
overhead. We present scheduling techniques for optimizing
memory utilization and minimizing the potential overhead
for space allocation and address notification. The proposed
techniques are implemented in the RAPID software tool [5]
which parallelizes irregular applications at run-time. With a
carefully designed communication protocol that utilizes di-
rect memory access, RAPID delivers good performance for
sparse Cholesky and LU with pivoting [5, 6]. We have expe-
rienced that the sizes of problems that RAPID can solve are
restricted by the available amount of memory, and experi-
ments with incorporating the proposed memory optimizing
techniques show that solvable problem sizes with limited
memory space can be increased substantially without pay-
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ing too much extra control overhead.
Our work uses hardware support for directly accessing

remote memory, which is available in several modern par-
allel architectures and workstation clusters [10, 18]. Bene-
fits of the direct remote memory access mechanism are also
identified in the fast communication research such as active
messages. Thus we expect other software system researchers
can also benefit from our results in using fast communication
support to design software layers. Most of previous research
on scheduling [16, 19, 20] does not address memory issues.
In [I], a dynamic scheduling algorithm for directed acyclic
graphs is proposed with memory space usage SI /p + O(D)
on each processor, where S1 is the sequential space require-
ment, p is the total number of processors and D is the depth
of a DAG. This work provides a solid theoretical ground for
space-efficient scheduling, and it is still an open research
problem how to integrate their techniques in practical sys-
tems as indicated by the authors. Their space model is
different from ours and assumes a globally shared memory
pool. The Cilk [2] run-time system addresses the space effi-
ciency issue and its space complexity is 0(S1 ) per processor.
The RAPID [5] uses at most S1 space per processor. This
paper assumes that each processor has a maximum space
limit and the goal is to make the data space cost to be close
to SI /p per processor in order to solve laxge-scale problems.
The scheduling scheme we use is static in the run-time pre-
processing stage while [1] and [2] use dynamic scheduling.
This is mainly because in practice it is difficult to minimize
the run-time control overhead of dynamic scheduling in par-
allelizing sparse code with mixed granularities.

It should be noted that there exists other space overhead
which includes the space for the operating system kernel,
hash tables for indexing irregular objects, task dependence
graphs etc. This paper focuses on the optimization of space
usage dedicated to storing the content of data objects. The
rest of the paper is organized as follows. Section 2 describes
our parallelism and memory model. Section 3 presents the
active memory management scheme. Section 4 presents
memory efficient scheduling heuristics that reduce memory
requirements. Section 5 gives experimental results.

2 The computation and memory model

The computation model we use consists of a set of tasks and
a set of distinct data objects. Each task reads/writes a sub-
set of data objects. Data dependence graphs (DDG) derived
from partitioned code for modeling the interaction among
tasks normally have three types of dependencies: true, anti
and output [12]. In a DDG, some of anti or output de-
pendence edges could be redundant if they are subsumed
by other true data dependence edges. Other anti/output
dependence edges can be eliminated by program transfor-
mation. A transformed dependence graph contains true de-
pendencies only. An extension to the classical task graph
model is that commuting tasks can be marked in a task
graph so that it can capture parallelism arising from com-
mutative operations. The details on this parallelism model
are in [5, 7] and this paper deals with scheduling and execu-
tion of a transformed task graph with an acyclic structure
(DAG).

The proposed memory optimizing techniques are intended
for executing general task parallelism. The experiments are
conducted in the context of RAPID [5] which is a run-time
system that uses an inspector/executor approach [15] to par-
allelize irregular computations by embodying graph schedul-
ing techniques to optimize interleaved communication and

computation with mixed granularities. Its API includes a
set of library functions for specifying irregular data objects
and tasks that access these objects. The system then ex-
tracts a task dependence graph from data access patterns,
and executes tasks efficiently on a distributed memory ma-
chine. The goal is to reduce programmers’ job for solving
irregular problems on distributed memory machines without
compromising on performance. Figure 1 shows the run-time
parallelization process in RAPID. Each circle is an action
performed by the system and boxes og both sides of a circle
represent the input and output of the action. RAPID is tar-
geted at irregular applications which involve iterative com-
putation and have invariant or slowly changed dependence
structures, such as those in sparse matrix computation and
N-body galaxy simulations [8, 17]. The tssk communication
protocol of RAPID is optimized to have low overhead and as
a result, the RAPID is able to deliver good performance for
sparse code such as Cholesky factorization and triagular
solvers. It also produces reasonable performance for sparse
Gaussian Elimination with partial pivoting [6] which is an
open parallelization problem in the literature. We have also
used this system in parallelizing Newton’s method to solve
nonlinem systems.

We define some terms used in the task parallelism model
as follows.

Definition 1 Given a DA G G, a static schedule on p pro-
cessors dejines an ezecution order of tasks on each processor.
Each data object m is assigned to a unique owner processor.

Definition 2 The set of tasks on a processor P=, denoted
as TA(P, ), will read/write a subset of data objects, denoted
as DO(P. ).

Data objects in DO(P=) are differentiated in the follow-
ing way.

Definition 3 For each data object m E DO(PZ), if P. owns
m, then m is called a permanent object of P=; otherwise
m is called a volatile object of P.. Define PERM(P=)
as the set of permanent data objects on processor P= and
VOLA(PZ ) as the set of volatile data objects on processor
Px.

Permanent objects will stay allocated during a whole
computation on their owner processors.

Figure 2(a) shows a DAG with 20 tasks and 11 data ob-
jects dl,dz,. . . , dll. Each task is notated in a format of ei-
ther T[i, j], which means a task that reads di and updates dj,
or T~] which means a task that updates dj. A cyclic map-
ping of data objects is used, i.e., the owner of data object di
is processor (i–l) rnodp, wherep= 2, i = 1,2,..,11. And
the owner-compute rule is used to form task clusters. There-
fore PERM(PO) = {all, ds, ds, d7, dg, dll}, and PERM(P1) =
{dz, dl, d,, d8, dlO}. It is also easy to see that VOLA(P.) =
{d,}, VOLA(P1) = {dl, d,, d,, d~}. Parts (b) and (c) of Fig-
ure 2 are two schedules for the DAG in (a). We assume that
each task and each message cost one unit of time. Messages
are sent asynchronously as illustrated in part (b) and the
processor overhead for sending/receiving messages is not in-
cluded in the Gantt charts. It should be noted that a static
scheduling algorithm provides guidances to minimize paA-
lel times, but the prediction may not be accurate depending
on weight variations and other overhead in a run-time exe-
cution.
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Figure 1: The stages of run-time parallelization in RAPID
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Figure 2: (a) A DAG; (b) A schedule for the DAG on 2 processors; (c) Another schedule.

3 Activememory management

3.1 Basic ideas

Naturally if memory space is not sufficient to hold all data
objects, space recycling for volatile data will be necessary.
To maintain and reuse data space is not a new research issue,
but it is complicated by two supporting techniques for effi-
cient irregular computation with mixed granularities. They
are: 1) Integrating buffer space with user space to achieve
low overhead communication via direct remote memory ac-
cess (RMA) and avoid copying/buffering overhead. 2) Ex-
ploiting irregular parallelism via scheduler-guided data pre-
sendlng and asynchronous computation execution. The first
technique requires hardware support to directly deposit data
from user space on one processor to another without buffer-
ing and hand-shaking overhead. RMA is available in many
modern parallel architectures and workstation clusters [10],
but it requires that remote data addresses be known in ad-
vance. The second technique for exploiting asynchronous
irregular parallelism prevents us from discovering any reg-
ularity of space usage. In the original RAPID implementa-
tion [5], each processor allocates its volatile space at once
and notifies object addresses to collaborating processors. As
a result, the volatile space is quite large. For example, in
our previous sparse Cholesky factorization experiments [5],
the size of volatile object space could be 5 times as high
as the size of permanent object space. Table 1 shows some
typical ratios of the average amount of space used by both
volatile and permanent objects on each processor versus the
lower bound of space usage: S1/p. As the number of proces-
sors increases, the ratio is getting larger because more inter-

processor messages are needed and each processor owns less
permanent objects,

#processor I 2 4 8 16
ratio I 1.88 3.19 4.64 5.72

Table 1: Average ratios of per processor memory usage over
S1/p for sparse Cholesky factorization experiments.

We propose an approach called active rnemoy manage-
ment to reduce the space needed for volatile objects. The
basic idea is simple. During an execution, each proces-
sor repeats the following steps: predicts data usage in the
near future, allocates necessary space, notiiks new data ad-
dresses to collaborating processors and deallocates data ob-
jects when they become obsolete. The addresses are usu-
ally notified prior to when the corresponding data objects
are needed so that data pre-sending is allowed. In order
to support direct remote memory access and asynchronous
execution, the following difficulties must be addressed:

● Address consistency. An address for a data ob-
ject at one processor may become stale when this copy
of the data object becomes dead at that procesmr.
The address then must be invalidated on other proces-
sors since this data object may have a new address at
that processor. Data renaming would avoid this prob-
lem [4], but it creates more complexity in indexing data
objects and memory optimization.

● Address buffering. We will also use the RMA fea-
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ture to transfer addresses. tVithout providing address
buffering, a processor cannot re-send address informa-
tion unless the destination processor has read the pre-
vious address package. Wit h address buffering, addi-
tional overhead is needed for managing address buffers.

● Deadlock. Because a message sending may be sus-
pended if the destination address is not available, the
remote processor expecting this message may enter a
spinning cycle, which may create a deadlock. The tra-
ditional send/receive deadlock issue is complicated by
the address availability problem.

● Data consistency. When a remote message sending
is suspended, the local content of the message may be
modified by a subsequent computation or by other pro-
cessors before it is actually sent out. At the receiving
site, the processor only checks the availability of the
data object baaed on its name. Is it possible to receive
a wrong copy?

3.2 Our approach

We briefly discuss our approach in dealing with the afore-
mentioned difficulties.

● For address consistency, we could use a classical cache
coherence protocol such as write-invalidate. But it in-
troduces a substantial amount of overhead to maintain
the correctness. We have taken a simple approach in
which a volatile object is considered as obsolete if no
task will use this object with the same name any more.
In this way, a volatile object at each processor will
be only allocated once. When it becomes obsolete, no
other processors will use the address of this data object
anymore. This criterion is weaker than the criterion
baaed on data copies and could lead to a slightly l~ger
memory requirement, but it reduces the complexity of
maintaining address consistency.

. For addrms btiering, since address packages me sent
infrequently, in our implementation we will not sup-
port address buffering in order to avoid the overhead of
buffer managing. Each processor has one buffer spree
for every other processor in order to receive addresses
from them. If a previous address package has not been
consumed by a destination processor, the source pro-
cessor will not be able to send a new address package
to this destination processor.

. For deadlock and data consistency, we carefully de-
sign the execution protocol and will prove there is no
deadlock and data inconsistency.

For the above approach, the space requirement on each
processor in our scheme is estimated as follows.

Definition 4 A volatile object m on a processor is alive at
a position if m is accessed atthis position, or if it has been
accessed before and will stil 1 be accessed after this position.
Otherwise m is dead (or called obsolete).

Definition 5 For any task TW on processor P= (i. e., TW c
TA(P. )), we compute the memory requirement at T. on
P= as:

MEM.J?EQ(TW, P=) =
z

aizeof(m) +

mEPERM(Pz)

m as alive at TU

x sizeof(m).

mEV’OLA(P=)

Then the minimum memory requirement of a schedule is:

MIN-MEM = ~p,x{ max (MEM-REQ(TW, P=))}.
, TWETA(Pa)

Definition 6 If the MIN-MEM value for a given schedule
is greater than the available memory space per processor,
then this schedule is called a non-executable schedule
under the memoy wnstraint.

In the schedule of Figure 2(b), on processor PI, the
volatile object d3 is dead after task T[ds, dIO], dS is dead
after T[ds, dlo]. If we assume each data object is of unit
size, it is easy to calculate that MEhf_R13Q(T[d8, dg], Po) =
7, MEMREQ(T[dT, ds], PI ) = 9 and MIN_MEM = 9.
However for the schedule in Figure 2(c), the MIN-MEM
equals to 8 because the lifetime of volatile objects dT and ds
are disjoint on PI so that they can share the same space.

3.3 The execution model

We present our active memory management scheme inte-
grated with the execution model ss follows. First we in-
troduce the concept of Memory Allocation Point (MAP).
MAPs are positions between two consecutive tasks in the
partial tssk schedule of a processor and are inserted dynam-
ically based on memory space availability. The tirst MAP
is always at the beginning of schedule execution on each
processor. Each MAP does the following:

●

●

●

Deallocate space for those volatile objects that will not
be accessed after the current execution point. Instead
of dynamically checking if a data object is dead at a
certain point, which is quite expensive at run-time, the
dead point information can be statically calculated by
performing a data flow analysis on a given DAG with
a complexity proportional to the size of the graph.

Allocate volatile space for tasks to be executed after
the current point following the execution chain. As-
suming that T1, Tz, . . . are the rest of tasks at that
processor, the zdlocation will stop after Tk if space for
Tk+l cannot be allocated. The next MAP will be at
the position right before Tk+l.

Assemble address packages for other processors. The
address packages for different proc~rs could be dif-
ferent depending on what objects are to be accessed
at other processors.

Figure 3(a) illustrates MAPs and address notification
in executing the schedule of Figure 2(c). If the available
amount of memory is 8 for each processor, then there are
2 units of memory for volatile objects on P1. In addition
to the MAPs at the beginning of two task chains, there is
another MAP right after task T[5, 10] on PI at which space
for ds and d5 will be freed and space for dT is allocated. The
address for d? on P1 is then notified to Po. PO will send the
content of dT to PI using RMA after it receives the address
of dT

After being augmented with the MAP device, the system
now has five different states of execution:

. REC. Waiting for receiving desired data objects. If
a processor is in the REC state, it can not proceed
unless all the data objects the current task needs are
available locally.
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Figure 3: (a) Ihstraticm of memory allocation points for volatile objects in executing the schedule of Figure 2(c); (b) The
execution flow with memory allocation points.

● EXE. Executing a task computation. EXE is appar-

ently a nonblocking state.

● SND. Sending messages. In the SND state, if the
remote address of a message is not available, this mes-
sage is enqueued and the control returns to the normal
execution. Of course it is under one assumption that
the suspended sending queue should be never over-
flowed. In the worst case, the queue length is O(e),
where e is the number of edges in a task graph.

● MAP. Performing an MAP’s actions. A processor
could be blocked in the MAP state when it attempts
to send out address paxkages to other processors but
a previous address package has not been consumed by
a destination processor.

● END. Entering an ending stage when all the tasks
assigned to a processor complete execution. However
this processor still needs to clear up the sending queue
in order not to hold back any message. A processor in
the END state might be blocked if it does not receive
addresses for those messages suspended in the sending
queue.

The execution flow and the interaction among different
statea in our scheme are depicted in Figure 3(b). There are
three blocking states and two important operations must be
conducted in those blocking states: 1) RA reads address
packages and 2) CQ checks the suspended sending queue.
Whenever a processor is idle in one of the blocking states,
it will invoke RA to see if any new address package arrives
and then invoke CQ to dispatch ready messages, i.e., those
of which remote addresses are now available. RA and CQ
must be conducted frequently to clear the sending queue
as soon as possible so that the whole execution can evolve
quickly.

3.4 Correctness and deadlock issue

One of the necessary deadlock conditions is circular waiting.
In the following theorem, we can show that our execution
scheme can prevent deadlocks by breaking up possible cir-
cular waiting chains.

Another possibility of incorrectness could be caused by
message suspending. Some data objects may not be sent out
because their remote addresses are not available and this
brings up a question: could they be overwritten by another
task, either locally or remotely. We analyze this issue and
prove that this will never happen by using the property of
a transformed graph called dependence-completeness [5].

Theorem 1 The ezecution with the active memoy man-
agement is deadlock free and has no data inconsistence.

Proof: First we observe the following fact.
Fact I: If a processor is waiting for receiving a data

object, then the local address for this data object must have
already been notified to its predecessors.

Now we will prove by induction.
Induction base: At the beginning of each processor’s

schedule, it must be an MAP. Since at the beginning all the
address buffers are available, no processor will be blocked.
Also all the entry tasks (i.e., without any predecessor) will
start executing.

Induction assumption: There exists a task 2’= such
that all its parents have been already executed and all tasks
scheduled before Tz on the same processor have been exe-
cuted. We need to show that task T= will be executed, i.e.,
it will not be trapped in a deadlock situation.

Suppose not, i.e., a deadlock situation happens, the in-
volved processors must be blocked in a circular waiting chain.
According to the state transitions shown in Figure 3(b),
there are three possible blocking states in the execution
scheme. Therefore, a processor in a deadlock situation must
enter one of the three blocking states. Let P= be T=’s pro-
cessor. The state of P. can be either MAP or REC. First
let’s assume P, is in the REC state. We discuss the fol-
lowing cases based on possible states of the other involved
processors.

Case 1: All the other processors are also in the REC
state. According to the induction assumption, all T=’s par-
ents have been executed. The only reason that P= can not
receive a data object for T. is that this data object has not
been sent out from a remote processor PY. Since all T’=’s
predecessors are finished, the only cause for PV not to send
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a data object out ISthe un-availability of its remote address
on P=. According to Fact I, the address must be already
sent out to Pv if P. is waiting to receive that object. Hence
Py will eventually read that address through RA and de-
liver the message to P.. Therefore task T. will be able to
execute.

Case 2: All the other processors are in the MAP state.
Since each processor (including P, which is in the REC
state) will invoke RA which frees local address buffers, the
remote processors waiting to send addresses to these buffers
should be able to continue and transit to the REC state (re-
fer to Figure 3(b)). Therefore the situation will evolve into
the same one discussed in Case 1.

Case 3: Each involved processor is either in the MAP
state or in the REC state. Similar to Case 2, a processor
in the MAP state will proceed to the REC state eventually,
whether other processors in the circular waiting chain are
either in the MAP or in the REC state because in both
cases, they will invoke RA to release their address buffers.
Therefore the situation evolves into the same one as Case
1.

Case 4: One or more involved processors are in the
END state. For any processor in the END state, it will send
all the suspended messages out because of Fact I and get
out of the circular waiting chain. Therefore, the remaining
chain only includes processors in either the MAP state or
the REC state. And from the previous cases, we know that
the chain will be eventually broken, and the execution will
evolve forward.

If P= is in the MAP state, since it will proceed to REC
state eventually, the proof is similar to the above.

As for the data consistency, the proof is similax to the
one in [7] given the task graph is dependence complete. ■

Apparently the main overhead for execution under mem-
ory constraint in this scheme is caused by the insertion of
MAPs. Minimizing memory requirements can reduce the
number of MAPs, which would reduce the execution over-
head. However it requires reordering tasks in an execution.
In the next section we will discuss the trade-off between
memory and time-efficient scheduling optimizations.

4 Space and time efficient scheduling

In [5] a time-efficient scheduling algorithm which contains a
two-stage mapping process has been used. At the first stage
tasks are clustered to exploit data locality using DSC [21]
or the owner-compute rule, i.e., all the tasks that modify
the same object are assigned to the same cluster. Clusters
are then mapped to physical processors using a load balanc-
ing criterion. For simplicity of the description, we assume
that each task modifies onl$l one object in this section. The
second stage is to order t&s on each processor to overlap
communication with computation so that maximum inter-
procesaor parallelism is explored. This ordering algorithm is
called RCP [20]. A RCP schedule is time efficient, but may
not be space-efficient because it executes tasks in the order
of importance baaed on the critical path information, which
may require more memory to hold volatile objects.

We discuss two heuristics to improve memory utilization
while maintaining a good time efficiency as much as possi-
ble. The idea is to have volatile objects referenced w early
as possible once they are available in the local memory. This
shortens the lifetime of volatile objects and potentially re-
duces the memory requirement on each processor.

4.1 M PO: Memory-priority guided ordering

In this approach, taaks are first clustered and mapped to
processors according to the strategies described above. At
the second stage, tasks are ordered on each processor by us-
ing the MPO heuristic described below. This heuristic sim-
ulates the execution of tasks following task dependencies. A
task during scheduling is called ready if its predecessors have
been executed already and the needed data objects can be
received at this point. At the beginning, no volatile object is
allocated. When a task is chosen to be scheduled, all volatile
objects this taak needs are allocated. At each scheduling cy-
cle, each processor selects and executes a ready task with the
highest memory priority. We define the memory priority of
a task as the number of objects which have been allocated
for this task versus the total number of objects needed to
execute the task. If there is a tie, the task with the high-
est critical path priority, i.e., the length of the longest path
from this task to an exit task, is selected. The goal of the
heuristic is to produce a schedule that reuses volatile ob-
jects as soon as possible. The ordering algorithm is listed in
Figure 4. The main difficulty in designing this algorithm is
to keep a low complexity in updating the memory priorities
of unscheduled tasks. At line (5), it is enough to update
the memory priorities of the children and the siblings of the
newly scheduled task because only those tasks are possible
candidates to become ready t~ks in the next round. The
memory priorities of the children of these candidate tasks
are to be updated in the future after the candidate tasks
are scheduled. The total time complexity of the scheduling
algorithm is O(ve) where u is the number of tasks and e is
the number of dependence edges.

For example, Figure 2(b) is a schedule produced by RCP
while (c) is a schedule produced by MPO. The ordering dif-
ference between Figure 2(b) and (c) is that on processor 1,
T[7, 8] is executed at time 6 by RCP while T[3, 10] is cho-
sen instead at time 6 by MPO. The reason is that for RCP,
T[7, 8] haa a longer path from this task to an exit task (the
path is T[7, 8], T[8], T[8, 9] with length 4 because communi-
cation delay is also included) than other unscheduled tasks
on PI. For MPO, T[3, 10] has a higher memory priority 1
because data ds and dlo are all available locally at time 6,
and 2’[7, 8]’s memory priority is 0.5 because the space for
d7 has not been allocated before time 6. As a result, the
MPO schedule has a less memory requirement but leads to
a longer parallel time.

4.2 DTS: Data-access directed time-slicing

DTS is a more aggressive task ordering algorithm in opti-
mizing space when memory usage is of primary importance.
The design is baaed on the fact that the memory usage of
a processor can be optimized if each volatile object has a
short life-span on this processor, namely the time period
from the allocation of this object to the deallocation of this
object is short. According to this principle, the heuristic
for ordering tasks on the same processor is to execute tasks
that access the same volatile object as close ss possible. The
baaic idea of DTS is to slice the computation graph baaed
on data acceasing patterns of tasks so that all tasks within
the same slice access a small group of volatile objects. Taaks
are scheduled on physical processors slice by slice, and tasks
within each slice are ordered using dependence and critical
path information.

We briefly discuss the algorithm as follows. For a given
DAG G in which a set of taaks V = {2’1,TZ, . . . . TV} operatea
on a set of data objects D = {all, dz, . . . . d~}, we construct a
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(1) while there is at least a un-scheduled task
(2) Find a processor P. that has the earliest idle time;
(3) Schedule a ready task T. that has the highest priority on processor Pz;
(4) Allocate all volatile objects that Tm uses and that have not been allocated yet on processor Pz;
(5) Update the priorities of Tz’s children and siblings on processor Pz;
(6) Update the ready task list on each processor;
(7) end-while

Figure4: The MPO algorithm.

data connection graph (DCG) inwhich eacbnode represents
a distinct data object, and each edge represents a temporal
order of data accessing duringa teak computation. A cycle
mayoccur ifaccesses oftwodata objects are interleaved. For
simplicity, we use the same name for a data object and its
corresponciing data node when no confusion will be caused.
To construct a DCG, the following rules are applied.

●

●

●

Ifatask T, uses butdoes notmodify data object di, or
Tzonly modifies object d; and does not use any other
objects, weassociatetask Tz with data object nodedt.

It is possible that a task is associated with multiple
data nodes and in this case doubly directed edges are
added among those data nodes to make them strongly
connected.

A directed edge is added from data node di to data
nodedj ifthere exists ataak dependence edge (T=,Tv)
such thatT= is wociated with data node d; andTV is
associated with dati~nodedj.

The his.ttworules reflect the temporal order ofdataac-
cessing during a computation. Then we construct strongly
connected components from a DCG and the edges among
the components constitute a DAG. A task only appears in
one component. Each component is associated with a set
of tasks that use/modify data objects in this component,
and is considered for scheduling in one slice. At run-time,
each processor will execute tasks slice by slice following a
topological order of slices imposed by dependencies among
corresponding strongly connected components.

It should be noted that a topological order of slices only
imposes aconatraint on task ordering. A processor aeeign-
ment of teaks following the owner-compute rule must be
supplied before using the DTS to produce an actual sched-
ule. When referring to a DTS schedule below, we assume
a task assignment R is implicitly included. In producing a
DTS schedule, we use a priority based precedence scheduling
approach. Priorities preassigned totadcsb aaedont heslices
they belong to. For two ready tasks in the same slice, the
teskwith a higher critical path priority is scheduled first. If
there is a ready task that has a slice priority lower than some
other unscheduled tasks on the same processor, this task will
not be scheduled until all the tasks that have higher slice pri-
orities on this processor are scheduled. 13ythis way we can
guarantee that on each processor tasks are executed slice by
slice according to the derived slice order. The overall com-
plexity of the DTS algorithm is O(e(log u + log m)), where
e is the number of edges in the original DAG G.

Figure 5 shows an example of DTS ordering for the DAG
in Figure 2(a). Part (a) is the DCG and we mark the data
name for each node. Since the DCG itself is a DAG, each
node is a maximal strongly connected component and is
treated as one slice. A topological order of those nodes pro-
duces a slice order: dl + d3 + dd -) ds + d7 + da + dz.

Each processor will execute tasks following this slice order
as shown in Part (b). The memory requirement MIN-MEM
is 7, compared to 9 in Figure 2(b) produced by RCP and 8
in Figure 2(c) by MPO. But the schedule length increases
from RCP, through MPO to DTS because less and less crit-
ical path information is used.

DTS can lead to good memory utilization. The following
theorem gives a memory bound for the DTS algorithm. The
corollaries from this theorem on an important class of irreg-
ular problems firmly support our design. First a definition
is introduced.

Definition 7 Given any processor assignment R for a slice
L, the volatile space requirement on processor P=, denoted
as VP=(R, L), is defined as the amount of space needed to
allocate for the volatile objects used in eaxcuting tasksof L
on P.. The rnazimum volatile space requirement for L under
R is then defined as H(R, L) = maxvp= Vp. (R, L).

Assuming that a task assignment R following the owner-
compute rule produces an even distribution of data space
for permanent data objects among processors, we can show
the following results.

Theorem 2 Given a DTS schedule on p processors which
consists of k slices La, i = 1,2, . . . . k, (assume it is also a
valid topological order) and a task assignment R, the sched-
ule is executable under S1 /p + h space per processor, where
S1 is the sequential space complexity, h = maxa H(R, Li ).

Proof: First of all, since R leads to an even distribution of
permanent data objects, the permanent data space needed
on each processor is S1/p. Suppose a task T= in slice La
needs to allocate space for a volatile data object d. If i = 1,
there should be enough space for d according to the defini-
tion of h. If i >1, then we claim that all the space allocated
to the volatile data objects associated with slices L1,. . . ,Li _ 1
can be freed. Therefore the extra h space will be enough for
executing tasks in Li.

Now we need to show the above claim is correct. Sup-
pose not and there is a volatile data object d’ that can not
be deallocated after slice Li-l, and d’ is associated with La,
a < i. Then there is at least one task TM~ Lj, j ~ i, that
uses d’. If Tv also modifies d’, then d’ is a permanent data
object; if TV does not modify d’, then accordhg to the DTS
algorithm, Tv should belong to slice La instead of Lj. Thus
there is a contradictory.

Corollary 1 If the DCG of a task gmph is a DAG and each
object is of unit size, the DTS produces a schedule which
can be executed on p processors using S1/p + 1 space per
processor, where S1 is the sequential space complexity.
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Proof: If a DCG is acyclic, then each data node in the DCG
constitutes a strongly connected component itself. There
fore each slice is associated with only one data object which
implies that the h detined in Theorem 2 is 1. Therefore the
corollary is proven.

Corollary 2 For the 1-D wlumn-block based sparse L U task
gruphs {6], a DTS schedule is executable under S1/p + w
space per processor at run-time. For the 2-D block based
sparse Cholesk~ graphs [5], a D TS schedule is executable un-
der S1 /p + w space per-processor. Here w is the size of the
largest column block of the partitioned input matrix and nor-
mally w << S1 /p.

Proof: (sketch) The DTS algorithm produces acyclic DCGS
for the 1-D column-block based sparse LU task graphs. Each
data object is a column block of size at most w. According
to Corollary 1, each processor will at most need w volatile
space to execute a DTS schedule for sparse LU.

In the 2-D block based sparse Cholesky approach [5],
task graphs can be structured layer by layer. Each layer
represents the elimination process on the submatrix start-
ing from column block k. Let A’ be the number of blocks in
both dimensions of the input matrix. At elimination step k,
the Cholesky factor computed from the diagonal block Akk
will be used to scale all the ‘blocks in the kth column block,
i.e., Aik’s (k < i < N). Ancl the Alk’S will then be used to
update the rest of matrix, i.e., Aaj’sl k < i ~ N, k < j < i.
All these updating tzwks at step k belong to the same s~lce
associated with data objects Alk’s (k < i ~ N). Hence the
extra space needed to execute a slice is the summation of
the blocks in column block k. According to Theorem 2, a
DTS schedule for the Cholesky can execute with S1/p + w
space on each processor.

If the available memory space for each processor is known,
say AVAZLJ4EM, the time efficiency of the DTS algo-
rithm can be further optimized by merging several con-
secutive slices if memory is sufficient for those slices, and
then applying the priority baaed scheduling algorithm on

P,cco P.% I

die

die

SIicc

di.x

SIkc

SIicc

1

2

3

4

5

6

7
1

M

H
T[1,6]

T[3,8]

T[3,10]

E
T[4]

T[4,8]

T[5,81

T[5,10]

T[7,8]

T[7,1O

T[8]

T(2]

0’
1

2

3

4

5

1

6

7

8

9

1

II

12

13

14

15

16
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DTS schedule for the DAG on 2 processors.

(01) space~eq = H(R, Ll); k’ = 1;
(02) Let slice L; be L1;
(03) for i=2 to k do
(04) if space-req + H(R, La) ~ AVAIL_MEM
(05) Merge L; to L;, ;
(06) spacexeq = space-req + II(R, Li );
(07) else
(08) k’=k’+l;
(09) Let slice Lj, be Li ;
(lo) spmx-req = H(R, Li) ;
(11) endif
(12) end-for

Figure 6: The DTS slice merging algorithm.

the merged slices. Assuming there are k slices and a valid
slice order is Ll, Lz, . . .. Lk, for a given task assignment R,
the merging strategy is summarized in Figure 6. A set of
new slices L!, L\, . . .. L~, will be generated. The complexity
of the merging process is O(u).

5 Experimental results

We have implemented the proposed active memory man-
agement scheme and the memory efficient scheduling heuris-
tics in the context of RAPID system on Cray-T3D and
Meiko CS-2. In this section we will report the performance
of our approach on T3D for two irregular codes. 1) Sparse
Cholesky factorization. The task graph h= a static depen-
dence structure if the nonzero pattern of a sparse matrix
is given at the run-time preprocessing stage. A 2-D block
data mapping is used, which can expose more parallelism
and give better scalability [14]. 2) Sparse LU (Gaussian
Elimination) with partial pivoting. This problem has a un-
predictable dynamic dependence structure. Its paralleliza-
tions on shared memory platforms are addressed in [11]. But
its efficient parallelization on distributed memoy machines
still remains an open problem in the scientific computing lit-
erature. We use a static symbolic factorization approach to
avoid the data structure variation and 1-D data mapping to
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Percentage, 100% 75% 50% 40%
PT ‘Increase #MAp s PT Increase I #!vfAPs PT mcresse #MAP s PT increase

P=2 I 3.8% 3.75 7.77, I cc w cc m
P=4 12.0% 2.00 18.5% I 7.38 33.6%
P=8 12.4% 2.00 25.3%

~ :::
~s.i’yo 5:2 51t%

P=16 17.6% 2.00 39.0% 7 45.7yo 3.85 56.8%

P=32 22.0% 1.98 42.l~o I 2.3.5 61.3% 3.16 65.1%

Table 2: Effectiveness of the run-time execution scheme for sparse Cholesky on Cray-T3D.

Percentage 100% 75% 50% 40%

PT ‘Increase #MAP s PT ‘increase #MAP s PT “Increase #MAP s PT 1ncrease

P=2 o% w m cm ccl cm
P=4 0.4~o 3;0 15.5yo m 03 00 cc

P=8 1% 2.00 11.1% 5.63 37.5%
P=16 1.470 2.00 18.3% 2.94 18.1~0 4:0 32?%
P=32 2.1% 1.72 13.8% 2.38 15.6% 3.06 16.7%

Table 3: Effectiveness of the run-time execution scheme for sparse LU on Cray-T3D.

eliminate communication in partial pivoting and row swap-
ping operations [6]. Each node of T3D has 64 MB memory
and can reach 103 MFLOPS with the BLAS-3 DGEMM rou-
tine. The RMA primitive SHMEM-PUT can achieve 2.71M
overhead with 128 MB/s bandwidth.

We will examine how the memory managing scheme im-
pacts the parallel performimce if the available amount of
memory space is short and multiple MAPs are needed, and
study the effectiveness of scheduling heuristics in reducing
memory requirements. We have conducted experiments on
a number of testing sparse matrices. The representative
matrices are Hawell-Boeing matrices BCSSTK 15 and BC-
SSTK24 arising from structural engineering analysis, and
“goodwin” matrix from a fluid mechanics problem. These
matrices are of medium sizes (dimensions ranging from 3500
to 7320) and solvable with any one of the three scheduling
heuristics so that we can compare their performance. Ex-
periments with other matrices reach similar conclusions.

5.1 Overhead of the active memory management scheme

We examine the overhead of the memory managing scheme
under ciitTerentmemory constraints by manually controlling
the available memory space on each processor to be 75%,
50%, 40% and 25~o of TOT, where TOT is the total memory
space needed for a given task schedule without any space
recycling. To obtain TOT, we fist calculate the summation
of the space for permanent and volatile objects accessed on
each processor, and then let TOT be the maximum value
among all processors.

The average results for sparse Cholesky factorization with
BCSSTK15 and 24 are listed in Table 2. The RCP ordering
is used in this case. Column “PT increase” is the ratio of
parallel time increase after using our memory management
scheme under different memory constraints. The compari-
son base is the parallel time of a RCP schedule with 100%
memory available and without any memory managing over-
head. The same setting applies to the sparse LU experi-
ments in Table 3. Entries marked with “cc?’ imply that the
schedule is non-executable under that memory constraint.
And the numbers in the column of #MAP are average num-
bers of MAPs on each processor. In cases they are fhctional,
it is because diflerent processors may have different number
of MAPs. The results basically show the trend that the

performance degradation increases as the number of proces-
sors increases and as the available memory space decreases,
but the degradation ratio is reasonable comparing to the
amount of memory saved. For example, the memory man-
aging scheme can save 60% memory space while the parallel
times are degraded by 51-65%.

It can be observed that a schedule is more likely to be
executable under reduced memory capacity when the num-
ber of processors increases. This is because more processors
lead to more volatile objects on each processor, which gives
the memory scheme more flexibility to allocate and deallo-
cate. That is why even with 40% of the maximum memory
requirement, the schedules are still executable on 8, 16 and
32 processors.

Table 3 lists the run-time performance for sparse LU with
pivoting on the “goodwin” matrix. The overall parallel time
slowdown of sparse LU is better than that of sparse Cholesky
(refer to Table 2). The parallel times only increase about
17-32% when only 40% of the total needed memory is avail-
able. The reason is that the 1-D data mapping results in a
less number of data objects and computation tasks, which
leads to less memory managing overhead because the mem-
ory managing overhead increases with the number of data
objects and tasks. The 1-D data mapping also produces
relatively coarser gained computation. Therefore the over-
all time is less sensitive to the overhead caused by memory
managing activities. The 1-D data mapping also accounts
for more “co” entries appeared in this table because it pro-
duces larger data objects which reduces the freedom of allo-
cation within a certain amount of memory space,

5.2 Effectiveness and comparisons of the memory schedul-
ing heuristics

We examine the memory efficient scheduling heuristics from
two aspects. First we examine how much memory can be
saved by using MPO and DTS. We define memory scala-
bility (or memory reduction ratio) as SI /S~, where SI is
the sequential space requirement, S: is the per processor
space requirement for a schedule produced by algorithm A
on p processors. Figure 7 shows the memory reduction ra-
tios for the three scheduling algorithms and the upper-most
curve in each graph is for S1/p, which is the perfect mem-
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ory scalability. It can be seen that the MPO significantly
reduces the memory requirement while DTS has the mem-
ory requirement close to the optimum. This is consistent
with Corollaries 1 and 2. On the other hand, although RCP
is very time efficient, it is not memory scalable, pmticuhrly
for sparse LU.

0: 5 10 15 20 25 so 35
W

(a)

.:Sltp
a DTS
x MPo /

(b)

Figure 7: Memory scalability comparison of the three
scheduling heuristics. (a) Sparse Cholesky; (b) Sparse LU.

The second issue is how time-efficient the memory-efficient
schedules are. Tablea 4, 6 and 7 compzme parallel execution
times between difTerent scheduling algorithms under differ-
ent memory constraints. In these tables, if algorithm A is
being compared with B (i. e., A vs. B), each entry is calcu-
lated as PTB/PTA – 1. In case an entry is marked by an “*”,
it implies that the corresponding B schedule is executable
under that memory constraint while the corresponding A
schedule is not executable. If an entry is marked by a “-”,
it implies that both A and B schedules are non-executable
under that memory constraint.

Table 4 shows that the actual parallel time increases
when switching from RCP scheduling to MPO scheduling.
The result is surprising. The difference is negligible and
sometimes MPO schedules even outperform RCP schedules
while the predicted parallel times of RCP are better than
those of MPO. This is because even though MPO does not
use as much critical path information as RCP does, it re-

1 Mere. Perce, 75% 50% 40yo 25%

m

(a)

I Mere. Perce. 75% 5070 4070 25% ~

I P=2 I *

EIE&!id
(b)

Table 4: Parallel execution time comparisons between
scheduling algorithms: RCP vs. MPO. (a) For sparse
Cholesky; (b) For sparse LU;

duces the number of MAPs needed (Table 5 shows an exam-
ple of the reductions of number of MAPs by MPO scheduling
heuristic) which in turn can improve the execution efficiency.
Furthermore, reusing a data object as soon as possible such
as in MPO potentially improves caching performance be-
cause it tends to improve temporal locality. These factors
are mixed together, making the final parallel execution times
of MPO schedules still competitive to those of RCP sched-
ules.

( Mere. Perce. ] 75% 50% 40% 25% 1
I P=2 4/3 CcJjca cO/00 COjca

P=4 2j2 7.8/4 cQ/7.3 Wjoo
P=8 2/2 3.3/3 5.3/4 W/m

P=16 2/2 3/2.9 3.9/3.3 8.3/6.6
F’=32 2/2 2.22 f2.19 313 5.6/5.2

Table 5: Average number of MAPs for sparse Cholesky:
RCP VS. MPO.

DTS is a more aggressive memory-saving algorithm, but
it does not utilize the critical path information in slicing
the computation. In Table 6, we show the parallel time
slowdown between MPO and DTS schedules. It is pretty
clear that MPO outperforms DTS substantially in terms of
parallel time, even though DTS is more eflicient in mem-
ory usage. The difference is especially significant when the
number of processors is large. This is because MPO not
only optimizes the memory usage, but also optimizes paral-
lel time. But there are times we do need DTS, for example,
in the LU cases when only 25% memory is available, the
DTS schedules are executable on 16 processors, while the
MPO schedules are too space costly to run. In addition, the
performance difference between two algorithms for LU are
bigger than the difference for Cholesky. Again this is be-
cause the sparse LU tasks are relatively more coarse grained
and they are more sensitive to different task orderings.

However, when the available amount of memory space is
known, DTS schedules can be further optimized by the slice
merging process d~cussed in Section 4.2. We have compared
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I Mere. Perce. 75% 50% 40% 25%

P=2 I 4.4% - - -
P=4
P=8
P=16
P=32

9.0% 10.!?70 3.9% -
22.1% 25.4’%. 28.370 *
45.5% 45.6% 47.9% 31.9%
89.6’% 87.4% 86.9% 71.7%

(a)

~ Mere. Perce. 75% 50% 40% 25% 1
P=2 2.7% - - -

I P=4 20.4% - - -
P=8 43.9% 34.4% 14.470 - I
P=16 60.9% 59.9% 44.7~o *
P=32 115% 116% 94.5yo 75.5yo

(b)

Table 6: Parallel execution time comparisons between
scheduling algorithms: MPO vs. DTS. (a) For sparse
Choleaky; (b) For sparse LU.

the RCP to the DTS with slice merging in Table 7. The re-
sults are very encouraging. Not only are there many caaes
in which DTS schedules are executable while RCP sched-
ules are not, but also the parallel times of DTS schedules
are very close to those of RCP schedules. This is because
merged slices give the scheduler more flexibility in utilizing
critical path information and DTS is also effectively improv-
ing cache performance. Thus the DTS algorithm with slice
merging is very valuable when the problem size is big and
the available amount of memory space is known.

r=’

P=4
P=8

P=16
P=32

J.D7C -

1.0%’ -1.lYO * -
4.8% 5.5% 6.1% *
5.3?4 13.8% 9.4% *
9.7% 12.1% 13.1’ZO 19.870

\ Mere. Perce.

1 P=2

L
P=4
P=8

P=16
P=32

(a)

75% 50% 40% 25%
*

-10.3% - - -
3.9% -12.7% * -
-9.6% -2.4% 1.9% *
21.6% 12.8% 22.4% *

(b)

Table 7: Parallel execution time comparisons between
scheduling algorithms: RCP vs. DTS ~th slice merging.
(a) For sparse Cholesky; (b) For sparse LU.

5.3 Solving large problems

We demonstrate the performance of the new scheme for solv-
ing the previously-unsolvable problem instances on Cray-
T3D. In this experiment, we use nonzero patterns of an
Harwell-Boeing matrix BCSSTK33. The original RAPID

sparse LU code can solve BCSSTK33 if we take data from
column/row 1 up to 5600, and produces 419 MFLOPS on
64 processors. The number of nonzero elements (after fill-
in, the same below) involved is 3.88 million. The MFLOPS
calculation does not include extra floating point operations
introduced by the over-estimation of the static factorization
scheme [6]. The new system can now mlve BCSSTK33 if we
take data from column/row 1 up to 6080 with 9.49 millions
of non-zeros (i.e., the problem size is increased by 145%).
The absolute performance is listed in Table 8. In terms of
single node performance, we get 22 MFLOPS per node on
16 nodes and 9.9 MFLOPS per node on 64 nodes. These
numbers are pretty good for Cray-T3D considering that the
code has been parallelized by a software tool.

- #proc PT(Seconds) Ave. #MAPs MFLOPS

16 41.8 5.63 353.1
32 25.9 4.09 569.2
64 23.3 3.78 634.0

Table 8: Performance of sparse LU with partial pivoting on
Cray-T3D.

6 Conclusions

Optimizing memory usage is important to solving large par-
allel scientific applications and the software support is com-
plicated when applications have irregular computation and
data accem patterns. The main contribution of this work
is the development of an efficient active memory manag-
ing scheme and scheduling optimization techniques in sup
porting the use of low-overhead communication primitives
available on modern processor architectures. The proposed
techniques integrated with the RAPID run-time library sys-
tem can simplify parsJlel programming of irregular code to
achieve both good time and space efficiency. The theoretical
analysis on the correctness and memory performance cor-
roborates the design of our techniques. Experiments with
overhead-sensitive sparae matrix codes show that the over-
head introduced by the memory managing activities is ac-
ceptable comparing to the amount of space saved. The MPO
heuristic is competitive to the critical path scheduling al-
gorithm and it delivers good memory and time efficiency.
The DTS is more aggressive in memory-saving and achieves
competitive time efficiency when slice merging is conducted.
DTS is suitable for the situation when space resource is the
most critical factor. Another possible application of the
DTS algorithm is to guide data placement in memory for
shared data objects to improve both spatial and temporal
locality. One future work is to extend our results for more
complicated task dependence structures [3, 9, 13].

The experiments have also revealed that other space lim-
iting factors, such as the storage of dependence information
in our current implementation, affect the ability to process
larger problem instances. For the examples we have tested,
dependence structures can take from 18% to 50% of the total
memory space. Although a complete dependence structure
is needed for scheduling at the inspector stage, it is possible
to distribute the dependence structure during the executor
stage. However we found that space freed from irregular
dependence structures usually contains many small pieces
and is hard to be re-utilized. To address this fragmenta-
tion problem, it is necessary to develop a special memory
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allocator.
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