
Space-Time Memory: A Parallel Programming
Abstraction for Interactive Multimedia Applications

Umakishore Ramachandran’ Rishiyur S. Nikhi12 Nissim Harell James M. Rehg2
Kathleen Knobe2

’ College of Computing, Georgia Insitute of Technology
2 Compaq Computer Corporation, Cambridge Research Laboratory (CRL)

Abstract

Realistic interactive multimedia involving vision, animation,
and multimedia collaboration is likely to become an im-
portant aspect of future computer applications. The scal-
able parallelism inherent in such applications coupled with
their computational demands make them ideal candidates
for SMPs and clusters of SMPs. These applications have
novel requirements that offer new kinds of challenges for
parallel system design.

We have designed a programming system called Stampede
that offers many functionalities needed to simplify devel-
opment of such applications (such as high-level data shar-
ing abstractions, dynamic cluster-wide threads, and multi-
ple address spaces). We have built Stampede and it runs
on clusters of SMPs. To date we have implemented two
applications on Stampede, one of which is discussed herein.

In this paper we describe a part of Stampede called Space-
Time Memory (STM). It is a novel data sharing abstraction
that enables interactive multimedia applications to manage
a collection of time-sequenced data items simply, efficiently,
and transparently across a cluster. STM relieves the ap-
plication programmer from low level synchronization and
data communication by providing a high level interface that
subsumes buffer management, inter-thread synchronization,
and location transparency for data produced and accessed
anywhere in the cluster. STM also automatically handles
garbage collection of data items that will no longer be ac-
cessed by any of the application threads. We discuss ease
of use issues for developing applications using STM, and
present preliminary performance results to show that STM’s
overhead is low.

1 Introduction

Emerging application domains such as interactive vision, an-
imation, and multimedia collaboration display dynamic s.x&
able parallelism. Due to their high computational require-
ments, they are good candidates for executing on parallel

Permission to make digital or hard copies of all Or Pan of this work for
personas or classroom use is granted without fee provided that

copies are not made or distributed for profit or commerciaf advan-
taoa and that copies bear this notice and the full citation On the first page.
Tocopy otherwise, to republish, to post on SBNBrS Or t0
redistribute to lists, requires prior specific permission and/or a fee.
PPoPP ‘99 5/99 Atlanta, GA, USA
(8 1999 ACM l-58113-100-3/99/0004...$5.00

architectures. SMPs and clusters of SMPs are attractive
platforms for exploiting the inherent scalable parallelism of
such applications. There are some aspects of these appli-
cations that set them apart from scientific applications that
have been the main target of high performance parallel com-
puting in recent years. First, time is an important attribute
in such emerging applications due to their interactive nature.
In particular, they require the efficient management of tem-
porally evolving data. For example, a stereo module in an
interactive vision application may require images with corre-
sponding timestamps from multiple cameras to compute its
output, or a gesture recognition module may need to analyze
a sliding window over a video stream. Second, both the data
structures as well as the producer-consumer relationships in
such applications are dynamic and unpredictable at compile
time. Existing programming systems for parallel computing
do not provide the application programmer with significant
support for such temporal requirements.

To address these problems we have developed an abstrac-
tion for parallel programming called Space-Time memory
(STM) - a dynamic concurrent distributed data structure
for holding time-sequenced data. STM addresses the com-
mon parallel programming requirements found in most in-
teractive applications, namely, buffer management, inter-
task synchronization, and meeting soft real-time constraints.
These facilities are useful for this application class even on
an SMP. However, in addition, our system provides the STM
abstraction transparently across clusters. Currently, STM
runs on a cluster of Alpha SMPs (running Digital Unix) in-
terconnected by Memory Channel. We have used STM to
implement the vision tracking component of an interactive
multimedia application called the Smart Kiosk.

The key contributions of this paper are:

l the presentation of the STM abstraction for parallel
programming, and its implementation;

l a demonstration of ease of use, using this abstraction
for programming interactive multimedia applications,
and

College of Computing, Georgia Institute of Technology, At-
lanta GA 30332, USA; {rama,nissim}Occ.gatech.edu
Compaq Computer Corporation, Cambridge Research Lab-
oratory, One Kendall Square, Bldg 700, Cambridge MA
02139, USA; {nikhil,rehg,knobe}@crl.dec.com

183

l a preliminary performance study using this abstraction
on a cluster of SMPs. In particular, we show that
STM’s significant programming advantage (over, say,
direct message-passing) incurs only low performance
overheads.

We begin by giving the application context, in Sec. 2. In
Sec. 3, we enumerate the parallel programming require-
ments engendered by interactive multimedia applications.
The Space-Time Memory abstraction, and the unusual gar-
bage collection problem in this class of applications are dis-
cussed in Sec. 4. Ease of use of STM is demonstrated via
programming examples in Sec. 5. Subsequently, we discuss
design rationales (Sec. 6) and present related work (Sec.
7). Preliminary performance results of STM are presented
in Sec. 8 and concluding remarks are in Sec. 9.

2 Application Context

The Smart Kiosk is a new type of public computer device
under development at Compaq’s Cambridge Research Lab
[22,4]. It is located in public spaces such as a store, museum,
or airport and is designed to interact with multiple people in
a natural, intuitive fashion. For example, we envision Smart
Kiosks that entertain passers-by while providing directions
and information on local events. The kiosk may initiate
contact with customers, greeting them when they approach
and acknowledging their departure.

A Smart Kiosk may employ a variety of input and out-
put devices for human-centered interaction: video cameras,
microphones, infrared and ultrasonic sensors, loudspeakers,
and touch screens. Computer vision techniques are used
to track, identify and recognize one or more customers in
the scene [17]. A future kiosk will use microphone arrays to
acquire speech input from customers, and will recognize cus-
tomer gestures. Synthetic emotive speaking faces [21] and
sophisticated graphics, in addition to Web-based informa-
tion displays, are currently used for the kiosk’s responses.

We believe that the Smart Kiosk has features that are typi-
cal of many emerging scalable applications, including mobile
robots, smart vehicles, intelligent rooms, and interactive an-
imation. These applications all have advanced input/output
modes (such as computer vision), very computationally de-
manding components with dynamic structure, and real-time
constraints because they interact with the real world.

Fig. 1 shows the software architecture of a Smart Kiosk.
The input analysis hierarchy attempts to understand the en-
vironment immediately in front of the kiosk. At the lowest
level, sensors provide regularly-paced streams of data, such
as images at 30 frames per second from a camera. In the
quiescent state, a blob tracker does simple repetitive image-
differencing to detect activity in the field of view. When
such an activity is detected, a color tracker can be initiated
that checks the color histogram of the interesting region of
the image, to refine the hypothesis that an interesting ob-
ject (e.g., a human) is in view. If successful, this in turn can
invoke higher-level analyzers to detect faces, human (articu-
lated) bodies, etc. Still higher-level analyzers look for gaze,
gestures, and so on. Similar hierarchies can exist for audio
and other input modalities, and these heirarchies can merge
as multiple modalities are combined to further refine the
understanding of the environment. See [17] for details.

3 Application Programming Requirements

The parallel structure of the Smart Kiosk is highly dynamic.
The environment in front of the kiosk (number of customers,
and their relative position) and the state of its conversation
with the customers affect which threads are running, their
relative computational demands, and their relative priorities
(e.g., threads that are currently part of a conversation with
a customer are more important than threads searching the
background for more customers).

A major problem in implementing this kind of application is
“buffer management”. This is illustrated in the simple vision
pipeline shown in Fig. 2. The digitizer produces digitized
images every 30th of a second. The Low-fi tracker and the
Hi-fi tracker analyze the frames produced by the digitizer
for objects of interest and produce their respective tracking
records. The decision module combines the analysis of such
lower level processing to produce a decision output which
drives the GUI that converses with the user. From this
example, it should be evident that even though the lowest
levels of the analysis hierarchy produce regular streams of
data items, four things contribute to complexity in buffer
management as we move up to higher levels:

Threads may not access their input datasets in a strict
stream-like manner. In order to conduct a convincing
real-time conversation with a human a thread (e.g., the
Hi-fi tracker) may prefer to receive the “latest” input
item available, skipping over earlier items. The conver-
sation may even result in cancelling activities initiated
earlier, so that they no longer need their input data
items. Consequently, producer-consumer relationships
are hints and not absolute, complicating efficient data
sharing especially in a cluster setting.

Datasets from different sources need to be combined,
correlating them temporally. For example, stereo vi-
sion combines data from two or more cameras, and
stereo audio combines data from two or more micro-
phones. Other analyzers may work multi-modally, e.g.,
by combining vision, audio, gestures and touch-screen
inputs.

Newly created threads may have to reanalyze ear-
lier data. For example, when a thread (e.g., a Low-fi
tracker) hypothesizes human presence, this may create
a new thread (e.g., a Hi-fi tracker) that runs a more
sophisticated articulated-body or face-recognition al-
gorithm on the region of interest, beginning again with
the original camera images that led to this hypothe-
sis. This dynamism complicates the recycling of data
buffers.

Since computations performed on the data increase in
sophistication as we move through the pipeline they
also take more time to be performed. Consequently,
not all the data that is produced at lower levels of the
processing will necessarily be used at the higher levels.
As a result, the datasets become temporally sparser
and sparser at higher levels of processing because they
correspond to higher- and higher-level hypotheses of
interesting events. For example, the lowest-level event
may be: “a new camera frame has been captured”,
whereas a higher-level event may be: “John has just

184

Figure 1: Software architecture of the Smart Kiosk.

Figure 2: A simple vision pipeline.

185

pointed at the bottom-left of the screen”. Neverthe-
less, we need to keep track of the “time of the hypoth-
esis” because of the interactive nature of the applica-
tion.

These algorithmic features bring up two requirements. First,
data items must be meaningfully associated with time and,
second, there must be a discipline of time that allows sys-
tematic reclamation of storage for data items (garbage col-
lection).

4 Space-Time Memory

CRL’s Stampede project addresses the parallel programming
requirements posed by such interactive multimedia appli-
cations. Stampede allows the creation of multiple address
spaces in the cluster and an unbounded number of dynami-
cally created application threads within each address space.
The threading model within an address space is basically
pthreads (POSIX threads) [S]. Stampede provides high-level
data sharing abstractions that allow threads to interact with
one another without regard to their physical locations in the
cluster, or the specific address spaces in which they execute.

A novel component of Stampede is Space-Time Memory
(STM), a distributed data structure that addresses the com-
plex “buffer management” problem that arises in managing
temporally indexed data items as in the Smart Kiosk appli-
cation. Traditional data structures such as streams, queues
and lists are not sufficiently expressive to handle the require-
ments enumerated in the previous section.

STM can be envisioned as a two-dimensional table. Each
row, called a channel, has a system-wide unique id. A par-
ticular channel may be used as the storage area for an ac-
tivity (e.g. a digitizer thread producing digitized camera
images) to place the time-sequenced data records that it
produces. Every column in the table represents the tem-
porally correlated output records of activities that comprise
the computation. For example, in the vision pipeline in Fig.
2, the digitizer produces a frame Ft with a timestamp t. The
Low-fi tracker produces a tracking record LFt analyzing this
video frame. The decision module produces its output Dt
based on LFt. These three items are on different channels
of the STM and may be produced at different real times,
but they are all temporally correlated and occupy the same
column t in the STM. Similarly, all the items in the next
column of STM have the timestamp t + 1. Fig. 3 shows
an example of how the STM may be used to orchestrate
the activities of the vision processing pipeline introduced in
Fig. 2. The rectangular box at the output of each activity
in Fig. 2 is an STM channel. The items with timestamp 1
(Fl, LFl, HFl, and 01) in each of the four boxes in Fig. 2
is a column in the STM.

4.1 The API

The Space-Time memory API has operations to create a
channel dynamically, and for a thread to attach and detach
a channel. Each attachment is known as a connection, and a
thread may have multiple connections to the same channel.
Fig. 4 shows an overview of how channels are used. A
thread can put a data item into a channel via a given output
connection using the call:

f;
0

I 2 3 4 5 6 7 a
Channel 1 Frames

Channel 2 LOW-fi records

Channel 3 High-fi records

Channel 4 Decision records

* no reco,dpmduced al ,hiS COOrd,nQ,*

Figure 3: Mapping the vision pipeline to STM.

spd-channel-put-item (o-connection, timestamp,
buf-p, buf-size, . ..)

The item is descri,bed by the pointer buf -p and its buf -size
in bytes. A channel cannot have more than one item with
the same timestamp, but there is no constraint that items be
put into the channel in increasing or contiguous timestamp
order. Indeed, to increase throughput, a module may con-
tain replicated threads that pull items from a common input
channel, process them, and put items into a common out-
put channel. Depending on the relative speed of the threads
and the particular events they recognize, it may happen that
items are placed into the output channel out of order. Chan-
nels ca4 be created to hold a bounded or unbounded number
of items. The put call takes an additional flag that allows it
either to block or to return immediately with an error code
if a bounded output channel is full.

.
r-l STM

channel

co”” = “connecffon” (API: affaclVdefaCM . ..)

fs = “fimesfamp” (Speck, wildcard, . ..)

Figure 4: Overview of Stampede channel usage (relationship
of a channel to threads)

A thread can get an item from a channel via a given con-
nection using the call:

spd-channel-get-item (i-connection. timestamp,
t buf-p, & buf-size,
P timestamp-range, . ..I.

The timestamp can specify a particular value, or it can be
a wildcard requesting, for example, the newest/oldest value
currently in the channel, or the newest value not previously
gotten over any connection. As in the put call, a flag pa-
rameter specifies whether to block if a suitable item is cur-
rently unavailable, or to return immediately with an error
code. The parameters buf-p and buf-size can be used to
pass in a buffer to receive the item or, by passing NULL in
buf -p, the application can ask Stampede to allocate a buffer.
The timestamp-range parameter returns the timestamp of
the item returned, if available; if unavailable, it returns the
timestamps of the “neighboring” available items, if any.

186

The put and get operations are atomic. Even though a
channel is a distributed data structure and multiple threads
on multiple address spaces may simultaneously be perform-
ing operations on the channel, these operations appear to
all threads as if they occur in a particular serial order.

The semantics of put and get are copy-in and copy-out,
respectively. Thus, after a put, a thread may immediately
safely re-use its buffer. Similarly, after a successful get,
a client can safely modify the copy of the object that it
received without interfering with the channel or with other
threads. Of course, an application can still pass a datum by
reference- it merely passes a reference to the object through
STM, instead of the datum itself. The reference can be any
Stampede notion of object references.

Puts and gets, with copying semantics, are of course reminis-
cent of message-passing. However, unlike message-passing,
these are location-independent operations on a distributed
data structure. These operations are one-sided: there is
no “destination” thread/process in a put, nor any “source”
thread/process in a get. The abstraction is one of putting
items into and getting items from a temporally ordered col-
lection, concurrently, not of communicating between pro-
cesses.

4.2 Garbage Collection

In dealing with timestamped data in this application do-
main we encounter an unusual notion of garbage collection,
where “reachability” concerns timestamps and not memory
addresses. If physical memory were infinite, STM’s put and
get primitives would be adequate to orchestrate the produc-
tion and access to time-sequenced data in any application.
However, in practice it is necessary to garbage collect data
items that will no longer be accessed by any thread. When
can we reclaim an item from a timestamp-indexed collec-
tion? The problem is analogous to the classical “space leak”
situation where, whenever a table is reachable from the com-
putation, no item in that table can be garbage collected on
the basis of reachability alone, even if there are items that
will never be accessed subsequently in the computation. A
complication is the fact that application code can do arith-
metic on timestamps. Timestamp-based GC is orthogonal
to any classical address-based GC of the STM’s host lan-
guage. This section discusses the guarantees provided by
the STM for producing and accessing time-sequenced data,
and the guarantees that the application must provide to en-
able garbage collection.

To enable garbage collection of an STM item, the API pro-
vides a consume (connection, timestamp) operation by which
the application declares to STM that this item is garbage
from the perspective of a particular connection. STM can
safely garbage collect an item once it has determined that
the item can no longer be accessed through any existing
connection or any future connection to this channel. So the
discipline imposed by STM on the application programmer
is to get an item from a channel, use it, and mark it as con-
sumed. An object X in a channel is in one of three states
with respect to each input connection ic attaching that chan-
nel to some thread. Initially, X is “unseen”. When a get
operation is performed on X over connection ic, then X
is in the “open” state with respect to ic. Finally, when a
consume operation is performed on the object, it transitions
to the “consumed” state. We also say that an item is “un-
consumed” if it is unseen or open. The contract between

the runtime system and the application is as follows: The
runtime system guarantees that an item will not be garbage
collected at least until it has been marked consumed on all
the connections that have access to it. An application thread
has to guarantee to mark each item on its input connections
as consumed. The consume operation can specify a particu-
lar object (i.e., with a particular timestamp), or it can spec-
ify all objects up to and including a particular timestamp.
In the latter case, some objects will move directly into the
consumed state, even though the thread never performed a
get operation on them.

Similarly, there are rules that govern the timestamp values
that can be associated with items produced by a thread on
a connection. A thread can associate a timestamp t with
an item it produces so long as this thread has an item X
with timestamp t currently in the open state on one of its
input connections. This addresses the common case (e.g.,
the Low-fi tracker thread in Fig. 2) where a thread gets
an item from its input connection, processes it, produces
a timestamped output (correlated to the timestamp of the
item it is processing, possibly even the same timestamp) as
a result of the processing, and marks the item consumed.
We say that the output item inherits the timestamp of the
input item.

However, there are situations where timestamped output
may have to be generated without getting an item from the
STM. This is in general true for application “source” threads
that have no input connections (e.g., the digitizer thread in
Fig. 2, with the corresponding code fragment shown in Fig.
6), or a root thread in a task connectivity graph that drives
the whole computation. For this purpose, the STM main-
tains a state variable for each thread called virtual time. An
application may choose any application-specific entity as the
virtual time. For example, in the vision pipeline (Fig. 2),
the frame number associated with each camera image may
be chosen as the virtual time. The current visibility of a
thread is the minimum of its virtual time and the times-
tamps of any items that it currently has open on any of its
input connections. When a thread puts an item, it can give
it any timestamp 2 its current visibility. When a thread cre-
ates a new thread, it can initialize the child thread’s initial
virtual time to any value 2 its own current visibility. When
a thread creates a new input connection to a channel, it im-
plicitly marks as consumed on that connection all items <
its current visibility. A thread can explicitly change its own
virtual time to any value 1 its current visibility. In most
cases, a thread can set its own virtual time to the special
value INFINITY because the timestamps of items it puts
are simply inherited from those that it gets.

These rules enable the runtime system to transitively com-
pute a global minimum &in, which is the minimum of:

l virtual times of all the threads, and

l timestamps of all unconsumed items on all input con-
nections of all channels.

This is the smallest timestamp value that can possibly be as-
sociated with an item produced by any thread in the system.
It is impossible for any current thread, or any subsequently
created thread, ever to refer to an object with timestamp
less than the global minimum. Thus, all objects in all chan-
nels with lower timestamps can safely be garbage collected.
Stampede’s runtime system has a distributed algorithm that

187

periodically recomputes this value and garbage collects dead
items. To ensure that this global minimum advances and
thus garbage collection is not stymied a thread must guar-
antee that it will advance its virtual time, for which STM
provides an API call.

The consume call is reminiscent of reference counting. How-
ever, this is misleading because the number of consumers
of an item is unknown- a thread may skip over items on
its input connections, and new connections can be created
dynamically. These interesting and subtle issues, as well as
our distributed, concurrent garbage collection algorithm are
described in greater detail in a separate paper [16].

4.3 Synchronization with Real-time

The virtual time and timestamps described above with re-
spect to STM are merely an indexing system for data items,
and do not in of themselves have any direct connection with
real time. For pacing a thread relative to real time, Stam-
pede provides an API for loose temporal synchrony that is
borrowed from the Beehive system [20]. Essentially, a thread
can declare real time “ticks” at which it will re-synchronize
with real time, along with a tolerance and an exception han-
dler. As the thread executes, after each “tick”, it performs a
Stampede call attempting to synchronize with real time. If
it is early, the thread waits until that synchrony is achieved.
It if is late by more than the specified tolerance, Stampede
calls the thread’s registered exception handler which can
attempt to recover from this slippage. Using these mecha-
nisms, for example, the digitizer in the vision pipeline can
pace itself to grab images from a camera and put them into
its output channel at 30 frames per second, using absolute
frame numbers as timestamps.

5 Programming Examples

In this section, we show some STM programming examples.
Fig. 5 shows the relationship of an application thread to
the STM abstraction. The only interaction it has with the
other threads in the application is via the STM channels it is
connected to on the input and output sides. Other than the
specific calls to the STM to get, put, or consume an item,
the thread executes its sequential algorithm.

Figure 5: Relationship of an application thread to STM.

For the vision pipeline in Fig. 2, we present code fragments
for the digitizer thread and a tracker thread in Figs. 6 and
7, respectively.

Digitizer thread

. . .
/* create an output connection to an STM channel */
ocom = spdsttach_output_channel(video_frame_cha)
/* specify mapping between vt tick and elapsed real-time */
spd-tginit (TO-DIGITIZE. 33)

/* frame’count will be used as the virtual time marker
for the digitizer */

frame-count = 0
while (True) {

frame-buf = allocate_frama_buffarO
frame-buf + digitize-frame0

/* put a timestamped output record of the frame */
spd-channel-putitem(ocom, frame-count, frame-buf)

/* advance digitizer’s virtual time a/
frame-count++

/* announce digitizer’s neu, virtual time to STM */
spdliet-virtual-time(frame_count)

/* synchronize digitizer’s virtual time with real-time */
spd-tg-sync-~~-~~~~~~(TG-DIGITIzE)

1

Figure 6: Digitizer code using the STM calls.

Tracker thread

. . .
/* announce to STM that the thread’s virtual time is

+infinity for the purposes of garbage collection */
spd-set-virtualfime(+infinity)

/* create on inout connection to the STM channel for
getting video frames from the digitizer t/

icorn-frame = spdattachinput-channel(vidao-frame-than)

/* create an output connection to an STM channel for
placing tracker output records t/

ocom = spdattach_output_channel(model-location-than)

while (True) {
location-buf = allocate_location_bufferO

/* get the most recent frame produced by the digitizer,
and record its timestamp in Tk */

(frame-buf, Tk) = spd-channelgetitem(iconn_frame.
STKLATEST-UNSEEN)

/* tracker algorithm for detecting target model
in video frame */

location-buf e detect_target(frame_buf)

/* put the location of the detected target in STM channel
corresponding to tracker’s output records t/

spdxhannel-putitem(oconn, Tk, location-buf)

/* mark the video frame consumed */
spd_channel-consumeitems_until (icorm-frame, Tk 1

1

Figure 7: Tracker code using the STM calls.

188

It can be seen from the code fragments that the extent of
application modification required to use the STM is small
and localized to the specific regions where a thread would
need to communicate with its peers under any parallel pro-
gramming regime. More importantly, all such communica-
tion and synchronization are encapsulated in the get, put,
and consume calls. The threads never have to synchronize
explicitly with other threads, nor do they have to know the
existence of other threads in the applications. All that a
particular thread needs to know is the names of the chan-
nels it should expect inputs from and the channels to which
it should send its outputs (see Fig. 5). Thus STM relieves
the application programmer from low level synchronization
and buffer management. Moreover, the virtual time and
timestamp mechanisms of the STM provide a powerful fa-
cility for the application programmer to temporally corre-
late disparate data items produced at different real times by
different threads in a complex application.

Space limitations prevent us from presenting more elaborate
programming examples here. The program represented by
the code fragments in Figs. 7 and 6 could perhaps have been
written using straight message-passing, except that the STM
code is still simpler because of its location-independence
(producer and consumer need not be aware of each other),
and because the consumer has the capability of transpar-
ently skipping inputs (using the STM-LATESTJNSEEN flag in
its get call). A more elaborate example would involve dy-
namic thread and channel creation, dynamic attachments
to channels, multiple producers and consumers for a chan-
nel with complex production and consumption patterns etc..
These features, along with STM’s automatic garbage collec-
tion, would be difficult to reproduce with message-passing

The vision group at CRL has adopted the Stampede sys-
tem as its development platform. In addition to the Smart
Kiosk system we described in this paper, Stampede is also
being used in another application called image-based ren-
dering [lo, 181.

6 Design Rationale

In designing the STM abstraction, we have attempted to
keep the interface simple and intuitive. We provide the rea-
soning behind some of the design choices we made along the
way:

l Virtual versus Real timestamps: Despite the fact
that the primary intent of this abstraction is to sup-
port interactive applications, we chose an application-
derived quantity to be used as timestamps. We did not
see any particular benefit to using real time for tem-
poral correlation. Besides, it was not clear how the
runtime could make correlations (using real-time) be-
tween independent streams that may use different sam-
pling rates on input data (e.g., voice versus video). We
chose to allow the application to specify the mapping
of the virtual time ticks to real time, and use that rela-
tionship purely for scheduling the threads (i.e., pacing
an individual thread’s activity) and not for temporal
correlation.

l Virtual Time Management: As mentioned in Sec.
4.2 a “source” thread (with no input connections) must

manage its virtual time explicitly, purely for the pur-
pose of garbage collection, whereas most other threads
implicitly inherit time based on what is available on
their input connections, A more complex and con-
trived alternative would have been to let source threads
make input connections to a “dummy” channel whose
items can be regarded as “time ticks”.

Connections to Channels: A design choice is to
allow operations directly on channels instead of via
explicit connections, thus simplifying the API. How-
ever, (1) from an application perspective, this is limit-
ing since a thread loses the flexibility to have multiple
connections to the same channel. Such a flexibility
would be valuable for instance if a thread wants to
create a debugging or a monitoring connection to the
same channel in addition to the one that it may need
for data communication. While the same functional-
ity could be achieved by creating a monitoring thread,
we think that connections are a more intuitive and ef-
ficient way to achieve this functionality. (2) From a
performance perspective, connections can play a cru-
cial role in optimizing communication especially in a
cluster setting by providing a hint to the runtime sys-
tem as to who may be potential consumers for a data
item produced on a channel (so that data can be com-
municated early).

Garbage Collection: STM provides transparent gar-
bage collection by performing reachability analysis on
timestamps. In a cluster, this could be quite expensive
since the put and get operations on a channel are lo-
cation transparent, and can be performed by threads
anywhere in the cluster that have connections to that
channel. The alternative would have been to associate
a reference count and garbage collect an item as soon
as its reference count goes to zero. However, in some
dynamic applications a producer may not know how
many consumers there may be for an item it produces
(consider, for example, the Digitizer in Fig. 2). As
a compromise we allow a put operation to specify an
optional reference count (a special value indicates that
the consumer count is unknown to the producer). The
runtime employs two different algorithms. The first
algorithm uses reference counts. A second algorithm
based on reachability analysis is run less frequently to
garbage collect items with unknown reference counts.

7 Related Work

The STM abstraction may be viewed as a form of struc-
tured shared memory. In this sense it is related to re-
cent distributed shared memory systems (such as Cashmere
[13], Shasta [19], and Treadmarks [ll]). DSM systems typi-
cally offer the same API as any hardware SMP system and
therefore are too low level to simplify programming of the
complex synchronization and communication requirements
found in interactive multimedia applications (as mentioned
earlier, STM is useful even on an SMP). Further, from a
performance perspective DSM systems are not particularly
well-suited for supporting applications with highly dynamic
sharing characteristics.

There have been several language designs for parallel com-
puting such as Linda [l], Orca [2], and Cid [15]. The data

189

sharing abstractions in these languages are at a lower level
than STM; of course, they could be used to implement STM.

Temporal correlation of independent data streams is a key
distinguishing feature of our work from all prior work. The
work most closely related to ours is the Beehive [20] soft-
ware DSM system developed by one of the authors and his
colleagues at the Georgia Institute of Technology. The delta
consistency memory model of Beehive is well-suited for ap-
plications that have the ability to tolerate a certain amount
of staleness in the global state information. Beehive has
been used for real-time computation of computer graphical
simulations of animated figures. STM is a higher level struc-
tured shared memory that can use the lower-level temporal
synchronization and consistency guarantees of Beehive.

The idea of Space-Time memory has also been used in opti-
mistic distributed discrete-event simulation [9, 51. The pur-
pose and hence the design of Space-Time memory in those
systems is very different from ours. In those systems, Space-
Time memory is used to allow a computation to roll-back to
an earlier state when events are received out of order. In this
paper, we have proposed Space-Time Memory as the funda-
mental building block around which the entire application
is constructed.

8 Performance

In addition to simplifying programming, STM has the po-
tential to provide good performance on clusters, for several
reasons. First, synchronization and data transfer are com-
bined in STM, permitting fewer communications. Second,
connections provide useful hints for optimizing data com-
munication across clusters. Third, sharing across address
spaces is orchestrated via the STM abstraction which can
therefore optimize it in a more targeted manner than the
indiscriminate sharing that can occur in a DSM system for
dynamic applications.

In this section we provide some preliminary performance
numbers for STM.

8.1 Platform and Limits

Before we look at Stampede performance it is useful to ex-
amine the performance that we hope to achieve and the
performance limits of our platform.

The Stampede system is implemented on a cluster of Al-
phaserver 4100’s (SMPs with four 400 MHz EV5 ALpha
processors each) interconnected by Memory Channel, run-
ning Digital Unix 4.0. The vision tracking component of the
Smart Kiosk [17] and an image-based rendering application
[lo] have been implemented on top of Stampede[l8].

A typical digitizing video camera (with associated frame
grabbers, etc.) delivers 30 images per second, where each
image has 320x240 pixels and each pixel has 24 bits of
color. Thus, each frame has 230400 Bytes, the total band-
width is 6.912 MegaBytes/sec, and the inter-frame latency
is 33.33 milliseconds. We will use B, msecs, usecs and MB/s
as abbreviations for Bytes, milliseconds, microseconds and
MegaBytes per second, respectively.

STM is built on top of CLF, our homegrown low level packet
transport layer. CLF provides reliable, ordered point-to-,
point packet transport between Stampede address spaces,

with the illusion of an infinite packet queue. It exploits
shared memory within an SMP, and any available network
between SMPs, in&ding Digital Memory Channel [6], My-
rinet [3], Tandem’s ServerNet [7], and if none of these are
available, ordinary UDP over a LAN. In our tables below, we
show numbers for Memory Channel and for UDP running
over a 100 Mbit/s FDDI LAN (max 12.5 MB/s).

Minimum one-way end to end latencies achievable under
CLF are shown in Table 8, for various packet sizes up to
8152 Bytes, the MTU or maximum packet size under CLF.
The minimum latencies (for 8 Bytes) fortshared memory and
Memory Channel are somewhat high because CLF itself is
multi-threaded (in-order to preserve the illusion of an infi-
nite queue) and so communication involves some number of
synchronizations and context switches (truly “raw” latencies
would be less than 5 usecs).

Maximum bandwidths achievable under CLF are shown in
Table 9, for various packet sizes. The rightmost column as-
sumes that a sender waits for an acknowledgement from a re-
ceiver after sending an image-worth of data (230400 Bytes),
and hence has somewhat lower bandwidths than the col-
umn to its left, which does not involve such a wait. Any
code that involves some coordination per image frame (as in
STM) cannot exceed this limit.

Communication Packet size (Bytes)
medium 8 128 1024 4096 8152

Shared Memory 17 20 37 90 164
(within an SMP)
Memory Channel 19 23 42 147 293
(between SMPs)

UDP/LAN 227 280 441 983 1423
(between SMPs)

Figure 8: Minimum one-way send/receive latencies (in
usecs) for CLF, for miscellaneous packet sizes.

Comm.
medium
Shared

Memory
(within
SMP)

Memory
Channel
(betw.
SMPs)

UDP/LAN
(betw.
SMPs)

l- Packet size (Bytes)
8 128

2.3 26.3

2.3 21.8

0.13 1.95

1024 4096
76.3

35.5

10.1

93.5

37.0

11.9

8152
95.9

37.1

12.0

Figure 9: Max bandwidths (in MB/s) for CLF, for miscel-
laneous packet sizes. Rightmost column (*) assumes an ack
after every 230400 Bytes (size of an image).

190

8.2 STM performance

We designed various microbenchmarks to measure the basic
costs of the frequent STM API calls: put, get and consume.

Fig. 10 shows the average one-way latencies for various pay-
load sizes up to 8112 Bytes (the maximum STM payload in
one CLF packet). The experiment sets up a producer thread
in one address space that puts items into a channel and
a thread in another address space that gets and consumes
these items from the channel. We measure the total latency
from before the put until after the consume. Depending on
whether the channel data structure is co-located with the
producer or the consumer, this could take two, four or more
round-trip communications. In addition, these operations
will involve a number of thread synchronizations and con-
text switches (because manipulating a channel is done with
a lock, and remote channel requests are handled by a server
thread). Keeping this in mind, the STM numbers are in line
with the one-way latencies in Fig. 8. Also, these latencies
are still well below the 33 msec frame rate of video camera.

] Communication] Packet size (Bytes)
medium 18 128 1024 4096 8112

Memorv Channel
(between SMPs)

1 242 1 254 1 352 1 607 1 900

UDP/LAN 449 487 691 1357 2078
(between SMPs)

Figure 10: Minimum STM one-way latencies (in usecs) for
a put on one address space and a get and consume on an-
other address space, with the channel co-located with the
consumer.

Fig. 11 shows bandwidths for image-size payloads (230400
Bytes). In column A, a producer on one address spaces does
repeated puts, and a consumer on another address space
does repeated gets and consumes. Because of the synchro-
nization between puts and gets and consumes, the data is
moved in bursts, one item at a time. The bandwidths are
thus much less than the raw CLF bandwidths of the right-
most column of Fig. 9, although they are still comfortably
above the basic camera image rate of 6.912 MB/s. In col-
umn B, there are two producers on two different address
spaces and two consumers on another address space. In this
case, one consumer can be involved in data movement while
the other consumer is involved in synchronization with its
producer, and vice versa, thus increasing total bandwidth
seen by the two consumers. We can see that these total
bandwidths approach the raw CLF bandwidths of Fig. 9.

9 Concluding Remarks

The full implementation of the Stampede system is com-
plete and we are now embarking on more detailed perfor-
mance analysis and tuning of the system. In particular we
would like to use information about the current connections
to a channel to pre-emptively send data towards consumers,
thereby improving latency and bandwidth through the chan-
nel. This must be done with caution because consumers
can skip timestamps, so sending such data would be wasted
work. We are also porting Stampede to run under Windows

Figure 11: Maximum total STM bandwidth (in MB/s)
at the consumer address space for image-sized payloads
(230400 Bytes). Column A has one producer (doing put’s)
on one address space and one consumer (doing get’s and
consume’s) on another address space. Column B has two
producers on two address spaces and two consumers on a
third address space.

NT and over MPI [14], and working towards releasing it to
researchers outside CRL.

There are several directions for future research. In complex
applications such as the Smart Kiosk, efficient resource man-
agement to ensure that critical activities are completed in a
timely manner is crucial. A companion paper [12] discusses
support for integrating task and data parallelism in such
dynamic applications. It explores optimal latency-reducing
schedules for task- and data-parallel decompositions. We
are looking at several new applications for Stampede in this
class of interactive, realistic multimedia applications, both
at CRL and at Georgia Institute of Technology.

References

PI

PI

[31

[41

[51

PI

[71

PI

S. Ahuja, N. Carriero, and G. David. Linda and Friends.
IEEE Computer, 19(8):26-34, August 1986.

H. E. Bal, A. E. Tanenbaum, and M. F. Kaashoek.
Orca: A Language for Distributed Programming. ACM
SIGPLAN Notices, 25(5):17-24, May 1990.

N. J. Boden, D. Cohen, R. E. Felderman, A. E. Ku-
lawik, C. L. Seitz, J. N. Seizovic, and W.-K. Su.
Myrinet - a gigabit-per-second local-area network,
Draft 16 Nov 1994.

A. D. Christian and B. L. Avery. Digital Smart Kiosk
Project. In ACM SIGCHI ‘98, pages 155-162, Los An-
geles, CA, April 18-23 1998.

K. Ghosh and R. M. Fujimoto. Parallel Discrete Event
Simulation Using Space-Time Memory. In 2&h Interna-
tional Conference on Parallel Processing (ICPP), Au-
gust 1991.

R. Gillett. MEMORY CHANNEL Network for PCI: An
Optimized Cluster Interconnect. IEEE Micro, pages
12-18, February 1996.

R. W. Horst and D. Garcia. Servernet SAN I/O Ar-
chitecture. In Hot Interconnects Symposium V, Kresge
Auditotium, Stanford University, Stanford CA, August
21-23 1997. See also www.servernet.com.

IEEE. Threads standard POSIX 1003.lc-1995 (also
ISO/IEC 9945-1:1996), 1996.

191

[9] D. R. Jefferson. Virtual Time. ACM Transactions
on Programming Languages and Systems, 7(3):404-425,
July 1985.

[lo] S. B. Kang. A Survey of Image-based Rendering Tech-
niques. Technical Report CRL 97/4, Cambridge Re-
search Lab., Digital Equipment Corp., August 1997.

[ll] P. Keleher, A. Cox, S. Dwarkadas, and W. Zwaenepoel.
TreadMarks: Distributed Shared Memory on Standard
Workstations and Operating Systems. In Proc. Winter
Usenix, 1994.

[12] K. Knobe, J. M. Rehg, A. Chauhan, R. S. Nikhil, and
U. Ramachandran. Dynamic Task and Data Parahelism
Using Space-Time Memory. In preparation.

[13] L. Kontothanassis, G. Hunt, R. Stets, N. Hardav-
ellas, M. Cierniak, S. Parthasarathy, W. Meira,
S. Dwarkadas, and M. Scott. VM-Based Shared Mem-
ory on Low-Latency Remote-Memory-Access Networks.
In Proc. Intl. Symp. on Computer Architecture (ISCA)
1997, Denver, Colorado, June 1997.

[14] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, May 1994. www.mpi-
forum.org.

[15] R. S. Nikhil. Cid: A Parallel “Shared-memory” C for
Distributed Memory Machines. In Proc. 7th. An. Wk-
shp. on Languages and Compilers for Parallel Comput-
ing (LCPC), Ithaca, NY, Springer-Verlag LNCS 892,
pages 376-390, August 8-10 1994.

[16] R. S. Nikhil and U. Ramachandran. Garbage Collec-
tion of Timestamped Data in Stampede, January 1999.
(submitted for publication).

[17] J. M. Rehg, M. Loughlin, and K. Waters. Vision for a
Smart Kiosk. In Computer Vision and Pattern Recog-
nition, pages 690-696, San Juan, Puerto Rico, June
17-19 1997.

[18] J. M. Rehg, U. Ramachandran, R. H. Halstead, Jr.,
C. Joerg, L. Kontothanassis, and R. S. Nikhil. Spsce-
Time Memory: A Parallel Programming Abstraction
for Dynamic Vision Applications. Technical Report
CRL 97/2, Digital Equipment Corp. Cambridge Re-
search Lab, April 1997.

[19] D. J. Scales, K. Gharachorloo, and C. A. Thekkath.
Shasta: A Low Overhead, Software-Only Approach for
Supporting Fine-Grain Shared Memory. In Proc. 7th.
ASPLOS, Boston MA, October 1996.

[20] A. Singla, U. Ramachandran, and J. Hodgins. Tem-
poral Notions of Synchronization and Consistency in
Beehive. In 9th Annual ACM Symposium on Parallel
Algorithms and Architectures, June 1997.

[21] K. Waters and T. Levergood. An Automatic Lip-
Synchronization Algorithm for Synthetic Faces. Multi-
media Tools and Applications, 1(4):349-366, Nov 1995.

[22] K. Waters, J. M. Rehg, M. Loughlin, S. B. Kang, and
D. Terzopoulos. Visual Sensing of Humans for Active
Public Interfaces. In R. Cipolla and A. Pentland, edi-
tors, Computer Vision for Human-Machine Interaction,
pages 83-96. Cambridge University Press, 1998.

192

