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Abstract 

Realistic interactive multimedia involving vision, animation, 
and multimedia collaboration is likely to become an im- 
portant aspect of future computer applications. The scal- 
able parallelism inherent in such applications coupled with 
their computational demands make them ideal candidates 
for SMPs and clusters of SMPs. These applications have 
novel requirements that offer new kinds of challenges for 
parallel system design. 

We have designed a programming system called Stampede 
that offers many functionalities needed to simplify devel- 
opment of such applications (such as high-level data shar- 
ing abstractions, dynamic cluster-wide threads, and multi- 
ple address spaces). We have built Stampede and it runs 
on clusters of SMPs. To date we have implemented two 
applications on Stampede, one of which is discussed herein. 

In this paper we describe a part of Stampede called Space- 
Time Memory (STM). It is a novel data sharing abstraction 
that enables interactive multimedia applications to manage 
a collection of time-sequenced data items simply, efficiently, 
and transparently across a cluster. STM relieves the ap- 
plication programmer from low level synchronization and 
data communication by providing a high level interface that 
subsumes buffer management, inter-thread synchronization, 
and location transparency for data produced and accessed 
anywhere in the cluster. STM also automatically handles 
garbage collection of data items that will no longer be ac- 
cessed by any of the application threads. We discuss ease 
of use issues for developing applications using STM, and 
present preliminary performance results to show that STM’s 
overhead is low. 

1 Introduction 

Emerging application domains such as interactive vision, an- 
imation, and multimedia collaboration display dynamic s.x& 
able parallelism. Due to their high computational require- 
ments, they are good candidates for executing on parallel 
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architectures. SMPs and clusters of SMPs are attractive 
platforms for exploiting the inherent scalable parallelism of 
such applications. There are some aspects of these appli- 
cations that set them apart from scientific applications that 
have been the main target of high performance parallel com- 
puting in recent years. First, time is an important attribute 
in such emerging applications due to their interactive nature. 
In particular, they require the efficient management of tem- 
porally evolving data. For example, a stereo module in an 
interactive vision application may require images with corre- 
sponding timestamps from multiple cameras to compute its 
output, or a gesture recognition module may need to analyze 
a sliding window over a video stream. Second, both the data 
structures as well as the producer-consumer relationships in 
such applications are dynamic and unpredictable at compile 
time. Existing programming systems for parallel computing 
do not provide the application programmer with significant 
support for such temporal requirements. 

To address these problems we have developed an abstrac- 
tion for parallel programming called Space-Time memory 
(STM) - a dynamic concurrent distributed data structure 
for holding time-sequenced data. STM addresses the com- 
mon parallel programming requirements found in most in- 
teractive applications, namely, buffer management, inter- 
task synchronization, and meeting soft real-time constraints. 
These facilities are useful for this application class even on 
an SMP. However, in addition, our system provides the STM 
abstraction transparently across clusters. Currently, STM 
runs on a cluster of Alpha SMPs (running Digital Unix) in- 
terconnected by Memory Channel. We have used STM to 
implement the vision tracking component of an interactive 
multimedia application called the Smart Kiosk. 

The key contributions of this paper are: 

l the presentation of the STM abstraction for parallel 
programming, and its implementation; 

l a demonstration of ease of use, using this abstraction 
for programming interactive multimedia applications, 
and 
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l a preliminary performance study using this abstraction 
on a cluster of SMPs. In particular, we show that 
STM’s significant programming advantage (over, say, 
direct message-passing) incurs only low performance 
overheads. 

We begin by giving the application context, in Sec. 2. In 
Sec. 3, we enumerate the parallel programming require- 
ments engendered by interactive multimedia applications. 
The Space-Time Memory abstraction, and the unusual gar- 
bage collection problem in this class of applications are dis- 
cussed in Sec. 4. Ease of use of STM is demonstrated via 
programming examples in Sec. 5. Subsequently, we discuss 
design rationales (Sec. 6) and present related work (Sec. 
7). Preliminary performance results of STM are presented 
in Sec. 8 and concluding remarks are in Sec. 9. 

2 Application Context 

The Smart Kiosk is a new type of public computer device 
under development at Compaq’s Cambridge Research Lab 
[22,4]. It is located in public spaces such as a store, museum, 
or airport and is designed to interact with multiple people in 
a natural, intuitive fashion. For example, we envision Smart 
Kiosks that entertain passers-by while providing directions 
and information on local events. The kiosk may initiate 
contact with customers, greeting them when they approach 
and acknowledging their departure. 

A Smart Kiosk may employ a variety of input and out- 
put devices for human-centered interaction: video cameras, 
microphones, infrared and ultrasonic sensors, loudspeakers, 
and touch screens. Computer vision techniques are used 
to track, identify and recognize one or more customers in 
the scene [17]. A future kiosk will use microphone arrays to 
acquire speech input from customers, and will recognize cus- 
tomer gestures. Synthetic emotive speaking faces [21] and 
sophisticated graphics, in addition to Web-based informa- 
tion displays, are currently used for the kiosk’s responses. 

We believe that the Smart Kiosk has features that are typi- 
cal of many emerging scalable applications, including mobile 
robots, smart vehicles, intelligent rooms, and interactive an- 
imation. These applications all have advanced input/output 
modes (such as computer vision), very computationally de- 
manding components with dynamic structure, and real-time 
constraints because they interact with the real world. 

Fig. 1 shows the software architecture of a Smart Kiosk. 
The input analysis hierarchy attempts to understand the en- 
vironment immediately in front of the kiosk. At the lowest 
level, sensors provide regularly-paced streams of data, such 
as images at 30 frames per second from a camera. In the 
quiescent state, a blob tracker does simple repetitive image- 
differencing to detect activity in the field of view. When 
such an activity is detected, a color tracker can be initiated 
that checks the color histogram of the interesting region of 
the image, to refine the hypothesis that an interesting ob- 
ject (e.g., a human) is in view. If successful, this in turn can 
invoke higher-level analyzers to detect faces, human (articu- 
lated) bodies, etc. Still higher-level analyzers look for gaze, 
gestures, and so on. Similar hierarchies can exist for audio 
and other input modalities, and these heirarchies can merge 
as multiple modalities are combined to further refine the 
understanding of the environment. See [17] for details. 

3 Application Programming Requirements 

The parallel structure of the Smart Kiosk is highly dynamic. 
The environment in front of the kiosk (number of customers, 
and their relative position) and the state of its conversation 
with the customers affect which threads are running, their 
relative computational demands, and their relative priorities 
(e.g., threads that are currently part of a conversation with 
a customer are more important than threads searching the 
background for more customers). 

A major problem in implementing this kind of application is 
“buffer management”. This is illustrated in the simple vision 
pipeline shown in Fig. 2. The digitizer produces digitized 
images every 30th of a second. The Low-fi tracker and the 
Hi-fi tracker analyze the frames produced by the digitizer 
for objects of interest and produce their respective tracking 
records. The decision module combines the analysis of such 
lower level processing to produce a decision output which 
drives the GUI that converses with the user. From this 
example, it should be evident that even though the lowest 
levels of the analysis hierarchy produce regular streams of 
data items, four things contribute to complexity in buffer 
management as we move up to higher levels: 

Threads may not access their input datasets in a strict 
stream-like manner. In order to conduct a convincing 
real-time conversation with a human a thread (e.g., the 
Hi-fi tracker) may prefer to receive the “latest” input 
item available, skipping over earlier items. The conver- 
sation may even result in cancelling activities initiated 
earlier, so that they no longer need their input data 
items. Consequently, producer-consumer relationships 
are hints and not absolute, complicating efficient data 
sharing especially in a cluster setting. 

Datasets from different sources need to be combined, 
correlating them temporally. For example, stereo vi- 
sion combines data from two or more cameras, and 
stereo audio combines data from two or more micro- 
phones. Other analyzers may work multi-modally, e.g., 
by combining vision, audio, gestures and touch-screen 
inputs. 

Newly created threads may have to reanalyze ear- 
lier data. For example, when a thread (e.g., a Low-fi 
tracker) hypothesizes human presence, this may create 
a new thread (e.g., a Hi-fi tracker) that runs a more 
sophisticated articulated-body or face-recognition al- 
gorithm on the region of interest, beginning again with 
the original camera images that led to this hypothe- 
sis. This dynamism complicates the recycling of data 
buffers. 

Since computations performed on the data increase in 
sophistication as we move through the pipeline they 
also take more time to be performed. Consequently, 
not all the data that is produced at lower levels of the 
processing will necessarily be used at the higher levels. 
As a result, the datasets become temporally sparser 
and sparser at higher levels of processing because they 
correspond to higher- and higher-level hypotheses of 
interesting events. For example, the lowest-level event 
may be: “a new camera frame has been captured”, 
whereas a higher-level event may be: “John has just 
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Figure 1: Software architecture of the Smart Kiosk. 

Figure 2: A simple vision pipeline. 
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pointed at the bottom-left of the screen”. Neverthe- 
less, we need to keep track of the “time of the hypoth- 
esis” because of the interactive nature of the applica- 
tion. 

These algorithmic features bring up two requirements. First, 
data items must be meaningfully associated with time and, 
second, there must be a discipline of time that allows sys- 
tematic reclamation of storage for data items (garbage col- 
lection). 

4 Space-Time Memory 

CRL’s Stampede project addresses the parallel programming 
requirements posed by such interactive multimedia appli- 
cations. Stampede allows the creation of multiple address 
spaces in the cluster and an unbounded number of dynami- 
cally created application threads within each address space. 
The threading model within an address space is basically 
pthreads (POSIX threads) [S]. Stampede provides high-level 
data sharing abstractions that allow threads to interact with 
one another without regard to their physical locations in the 
cluster, or the specific address spaces in which they execute. 

A novel component of Stampede is Space-Time Memory 
(STM), a distributed data structure that addresses the com- 
plex “buffer management” problem that arises in managing 
temporally indexed data items as in the Smart Kiosk appli- 
cation. Traditional data structures such as streams, queues 
and lists are not sufficiently expressive to handle the require- 
ments enumerated in the previous section. 

STM can be envisioned as a two-dimensional table. Each 
row, called a channel, has a system-wide unique id. A par- 
ticular channel may be used as the storage area for an ac- 
tivity (e.g. a digitizer thread producing digitized camera 
images) to place the time-sequenced data records that it 
produces. Every column in the table represents the tem- 
porally correlated output records of activities that comprise 
the computation. For example, in the vision pipeline in Fig. 
2, the digitizer produces a frame Ft with a timestamp t. The 
Low-fi tracker produces a tracking record LFt analyzing this 
video frame. The decision module produces its output Dt 
based on LFt. These three items are on different channels 
of the STM and may be produced at different real times, 
but they are all temporally correlated and occupy the same 
column t in the STM. Similarly, all the items in the next 
column of STM have the timestamp t + 1. Fig. 3 shows 
an example of how the STM may be used to orchestrate 
the activities of the vision processing pipeline introduced in 
Fig. 2. The rectangular box at the output of each activity 
in Fig. 2 is an STM channel. The items with timestamp 1 
(Fl, LFl, HFl, and 01) in each of the four boxes in Fig. 2 
is a column in the STM. 

4.1 The API 

The Space-Time memory API has operations to create a 
channel dynamically, and for a thread to attach and detach 
a channel. Each attachment is known as a connection, and a 
thread may have multiple connections to the same channel. 
Fig. 4 shows an overview of how channels are used. A 
thread can put a data item into a channel via a given output 
connection using the call: 

f; 
0 

I 2 3 4 5 6 7 a 
Channel 1 Frames 

Channel 2 LOW-fi records 

Channel 3 High-fi records 

Channel 4 Decision records 

* no reco,dpmduced al ,hiS COOrd,nQ,* 

Figure 3: Mapping the vision pipeline to STM. 

spd-channel-put-item (o-connection, timestamp, 
buf-p, buf-size, . ..) 

The item is descri,bed by the pointer buf -p and its buf -size 
in bytes. A channel cannot have more than one item with 
the same timestamp, but there is no constraint that items be 
put into the channel in increasing or contiguous timestamp 
order. Indeed, to increase throughput, a module may con- 
tain replicated threads that pull items from a common input 
channel, process them, and put items into a common out- 
put channel. Depending on the relative speed of the threads 
and the particular events they recognize, it may happen that 
items are placed into the output channel out of order. Chan- 
nels ca4 be created to hold a bounded or unbounded number 
of items. The put call takes an additional flag that allows it 
either to block or to return immediately with an error code 
if a bounded output channel is full. 

. 
r-l STM 

channel 

co”” = “connecffon” (API: affaclVdefaCM . ..) 

fs = “fimesfamp” (Speck, wildcard, . ..) 

Figure 4: Overview of Stampede channel usage (relationship 
of a channel to threads) 

A thread can get an item from a channel via a given con- 
nection using the call: 

spd-channel-get-item (i-connection. timestamp, 
t buf-p, & buf-size, 
P timestamp-range, . ..I. 

The timestamp can specify a particular value, or it can be 
a wildcard requesting, for example, the newest/oldest value 
currently in the channel, or the newest value not previously 
gotten over any connection. As in the put call, a flag pa- 
rameter specifies whether to block if a suitable item is cur- 
rently unavailable, or to return immediately with an error 
code. The parameters buf-p and buf-size can be used to 
pass in a buffer to receive the item or, by passing NULL in 
buf -p, the application can ask Stampede to allocate a buffer. 
The timestamp-range parameter returns the timestamp of 
the item returned, if available; if unavailable, it returns the 
timestamps of the “neighboring” available items, if any. 
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The put and get operations are atomic. Even though a 
channel is a distributed data structure and multiple threads 
on multiple address spaces may simultaneously be perform- 
ing operations on the channel, these operations appear to 
all threads as if they occur in a particular serial order. 

The semantics of put and get are copy-in and copy-out, 
respectively. Thus, after a put, a thread may immediately 
safely re-use its buffer. Similarly, after a successful get, 
a client can safely modify the copy of the object that it 
received without interfering with the channel or with other 
threads. Of course, an application can still pass a datum by 
reference- it merely passes a reference to the object through 
STM, instead of the datum itself. The reference can be any 
Stampede notion of object references. 

Puts and gets, with copying semantics, are of course reminis- 
cent of message-passing. However, unlike message-passing, 
these are location-independent operations on a distributed 
data structure. These operations are one-sided: there is 
no “destination” thread/process in a put, nor any “source” 
thread/process in a get. The abstraction is one of putting 
items into and getting items from a temporally ordered col- 
lection, concurrently, not of communicating between pro- 
cesses. 

4.2 Garbage Collection 

In dealing with timestamped data in this application do- 
main we encounter an unusual notion of garbage collection, 
where “reachability” concerns timestamps and not memory 
addresses. If physical memory were infinite, STM’s put and 
get primitives would be adequate to orchestrate the produc- 
tion and access to time-sequenced data in any application. 
However, in practice it is necessary to garbage collect data 
items that will no longer be accessed by any thread. When 
can we reclaim an item from a timestamp-indexed collec- 
tion? The problem is analogous to the classical “space leak” 
situation where, whenever a table is reachable from the com- 
putation, no item in that table can be garbage collected on 
the basis of reachability alone, even if there are items that 
will never be accessed subsequently in the computation. A 
complication is the fact that application code can do arith- 
metic on timestamps. Timestamp-based GC is orthogonal 
to any classical address-based GC of the STM’s host lan- 
guage. This section discusses the guarantees provided by 
the STM for producing and accessing time-sequenced data, 
and the guarantees that the application must provide to en- 
able garbage collection. 

To enable garbage collection of an STM item, the API pro- 
vides a consume (connection, timestamp) operation by which 
the application declares to STM that this item is garbage 
from the perspective of a particular connection. STM can 
safely garbage collect an item once it has determined that 
the item can no longer be accessed through any existing 
connection or any future connection to this channel. So the 
discipline imposed by STM on the application programmer 
is to get an item from a channel, use it, and mark it as con- 
sumed. An object X in a channel is in one of three states 
with respect to each input connection ic attaching that chan- 
nel to some thread. Initially, X is “unseen”. When a get 
operation is performed on X over connection ic, then X 
is in the “open” state with respect to ic. Finally, when a 
consume operation is performed on the object, it transitions 
to the “consumed” state. We also say that an item is “un- 
consumed” if it is unseen or open. The contract between 

the runtime system and the application is as follows: The 
runtime system guarantees that an item will not be garbage 
collected at least until it has been marked consumed on all 
the connections that have access to it. An application thread 
has to guarantee to mark each item on its input connections 
as consumed. The consume operation can specify a particu- 
lar object (i.e., with a particular timestamp), or it can spec- 
ify all objects up to and including a particular timestamp. 
In the latter case, some objects will move directly into the 
consumed state, even though the thread never performed a 
get operation on them. 

Similarly, there are rules that govern the timestamp values 
that can be associated with items produced by a thread on 
a connection. A thread can associate a timestamp t with 
an item it produces so long as this thread has an item X 
with timestamp t currently in the open state on one of its 
input connections. This addresses the common case (e.g., 
the Low-fi tracker thread in Fig. 2) where a thread gets 
an item from its input connection, processes it, produces 
a timestamped output (correlated to the timestamp of the 
item it is processing, possibly even the same timestamp) as 
a result of the processing, and marks the item consumed. 
We say that the output item inherits the timestamp of the 
input item. 

However, there are situations where timestamped output 
may have to be generated without getting an item from the 
STM. This is in general true for application “source” threads 
that have no input connections (e.g., the digitizer thread in 
Fig. 2, with the corresponding code fragment shown in Fig. 
6), or a root thread in a task connectivity graph that drives 
the whole computation. For this purpose, the STM main- 
tains a state variable for each thread called virtual time. An 
application may choose any application-specific entity as the 
virtual time. For example, in the vision pipeline (Fig. 2), 
the frame number associated with each camera image may 
be chosen as the virtual time. The current visibility of a 
thread is the minimum of its virtual time and the times- 
tamps of any items that it currently has open on any of its 
input connections. When a thread puts an item, it can give 
it any timestamp 2 its current visibility. When a thread cre- 
ates a new thread, it can initialize the child thread’s initial 
virtual time to any value 2 its own current visibility. When 
a thread creates a new input connection to a channel, it im- 
plicitly marks as consumed on that connection all items < 
its current visibility. A thread can explicitly change its own 
virtual time to any value 1 its current visibility. In most 
cases, a thread can set its own virtual time to the special 
value INFINITY because the timestamps of items it puts 
are simply inherited from those that it gets. 

These rules enable the runtime system to transitively com- 
pute a global minimum &in, which is the minimum of: 

l virtual times of all the threads, and 

l timestamps of all unconsumed items on all input con- 
nections of all channels. 

This is the smallest timestamp value that can possibly be as- 
sociated with an item produced by any thread in the system. 
It is impossible for any current thread, or any subsequently 
created thread, ever to refer to an object with timestamp 
less than the global minimum. Thus, all objects in all chan- 
nels with lower timestamps can safely be garbage collected. 
Stampede’s runtime system has a distributed algorithm that 
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periodically recomputes this value and garbage collects dead 
items. To ensure that this global minimum advances and 
thus garbage collection is not stymied a thread must guar- 
antee that it will advance its virtual time, for which STM 
provides an API call. 

The consume call is reminiscent of reference counting. How- 
ever, this is misleading because the number of consumers 
of an item is unknown- a thread may skip over items on 
its input connections, and new connections can be created 
dynamically. These interesting and subtle issues, as well as 
our distributed, concurrent garbage collection algorithm are 
described in greater detail in a separate paper [16]. 

4.3 Synchronization with Real-time 

The virtual time and timestamps described above with re- 
spect to STM are merely an indexing system for data items, 
and do not in of themselves have any direct connection with 
real time. For pacing a thread relative to real time, Stam- 
pede provides an API for loose temporal synchrony that is 
borrowed from the Beehive system [20]. Essentially, a thread 
can declare real time “ticks” at which it will re-synchronize 
with real time, along with a tolerance and an exception han- 
dler. As the thread executes, after each “tick”, it performs a 
Stampede call attempting to synchronize with real time. If 
it is early, the thread waits until that synchrony is achieved. 
It if is late by more than the specified tolerance, Stampede 
calls the thread’s registered exception handler which can 
attempt to recover from this slippage. Using these mecha- 
nisms, for example, the digitizer in the vision pipeline can 
pace itself to grab images from a camera and put them into 
its output channel at 30 frames per second, using absolute 
frame numbers as timestamps. 

5 Programming Examples 

In this section, we show some STM programming examples. 
Fig. 5 shows the relationship of an application thread to 
the STM abstraction. The only interaction it has with the 
other threads in the application is via the STM channels it is 
connected to on the input and output sides. Other than the 
specific calls to the STM to get, put, or consume an item, 
the thread executes its sequential algorithm. 

Figure 5: Relationship of an application thread to STM. 

For the vision pipeline in Fig. 2, we present code fragments 
for the digitizer thread and a tracker thread in Figs. 6 and 
7, respectively. 

Digitizer thread 

. . . 
/* create an output connection to an STM channel */ 
ocom = spdsttach_output_channel(video_frame_cha) 
/* specify mapping between vt tick and elapsed real-time */ 
spd-tginit (TO-DIGITIZE. 33) 

/* frame’count will be used as the virtual time marker 
for the digitizer */ 

frame-count = 0 
while (True) { 

frame-buf = allocate_frama_buffarO 
frame-buf + digitize-frame0 

/* put a timestamped output record of the frame */ 
spd-channel-putitem(ocom, frame-count, frame-buf) 

/* advance digitizer’s virtual time a/ 
frame-count++ 

/* announce digitizer’s neu, virtual time to STM */ 
spdliet-virtual-time(frame_count) 

/* synchronize digitizer’s virtual time with real-time */ 
spd-tg-sync-~~-~~~~~~(TG-DIGITIzE) 

1 

Figure 6: Digitizer code using the STM calls. 

Tracker thread 

. . . 
/* announce to STM that the thread’s virtual time is 

+infinity for the purposes of garbage collection */ 
spd-set-virtualfime(+infinity) 

/* create on inout connection to the STM channel for 
getting video frames from the digitizer t/ 

icorn-frame = spdattachinput-channel(vidao-frame-than) 

/* create an output connection to an STM channel for 
placing tracker output records t/ 

ocom = spdattach_output_channel(model-location-than) 

while (True) { 
location-buf = allocate_location_bufferO 

/* get the most recent frame produced by the digitizer, 
and record its timestamp in Tk */ 

(frame-buf, Tk) = spd-channelgetitem(iconn_frame. 
STKLATEST-UNSEEN) 

/* tracker algorithm for detecting target model 
in video frame */ 

location-buf e detect_target(frame_buf) 

/* put the location of the detected target in STM channel 
corresponding to tracker’s output records t/ 

spdxhannel-putitem(oconn, Tk, location-buf) 

/* mark the video frame consumed */ 
spd_channel-consumeitems_until (icorm-frame, Tk 1 

1 

Figure 7: Tracker code using the STM calls. 
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It can be seen from the code fragments that the extent of 
application modification required to use the STM is small 
and localized to the specific regions where a thread would 
need to communicate with its peers under any parallel pro- 
gramming regime. More importantly, all such communica- 
tion and synchronization are encapsulated in the get, put, 
and consume calls. The threads never have to synchronize 
explicitly with other threads, nor do they have to know the 
existence of other threads in the applications. All that a 
particular thread needs to know is the names of the chan- 
nels it should expect inputs from and the channels to which 
it should send its outputs (see Fig. 5). Thus STM relieves 
the application programmer from low level synchronization 
and buffer management. Moreover, the virtual time and 
timestamp mechanisms of the STM provide a powerful fa- 
cility for the application programmer to temporally corre- 
late disparate data items produced at different real times by 
different threads in a complex application. 

Space limitations prevent us from presenting more elaborate 
programming examples here. The program represented by 
the code fragments in Figs. 7 and 6 could perhaps have been 
written using straight message-passing, except that the STM 
code is still simpler because of its location-independence 
(producer and consumer need not be aware of each other), 
and because the consumer has the capability of transpar- 
ently skipping inputs (using the STM-LATESTJNSEEN flag in 
its get call). A more elaborate example would involve dy- 
namic thread and channel creation, dynamic attachments 
to channels, multiple producers and consumers for a chan- 
nel with complex production and consumption patterns etc.. 
These features, along with STM’s automatic garbage collec- 
tion, would be difficult to reproduce with message-passing 

The vision group at CRL has adopted the Stampede sys- 
tem as its development platform. In addition to the Smart 
Kiosk system we described in this paper, Stampede is also 
being used in another application called image-based ren- 
dering [lo, 181. 

6 Design Rationale 

In designing the STM abstraction, we have attempted to 
keep the interface simple and intuitive. We provide the rea- 
soning behind some of the design choices we made along the 
way: 

l Virtual versus Real timestamps: Despite the fact 
that the primary intent of this abstraction is to sup- 
port interactive applications, we chose an application- 
derived quantity to be used as timestamps. We did not 
see any particular benefit to using real time for tem- 
poral correlation. Besides, it was not clear how the 
runtime could make correlations (using real-time) be- 
tween independent streams that may use different sam- 
pling rates on input data (e.g., voice versus video). We 
chose to allow the application to specify the mapping 
of the virtual time ticks to real time, and use that rela- 
tionship purely for scheduling the threads (i.e., pacing 
an individual thread’s activity) and not for temporal 
correlation. 

l Virtual Time Management: As mentioned in Sec. 
4.2 a “source” thread (with no input connections) must 

manage its virtual time explicitly, purely for the pur- 
pose of garbage collection, whereas most other threads 
implicitly inherit time based on what is available on 
their input connections, A more complex and con- 
trived alternative would have been to let source threads 
make input connections to a “dummy” channel whose 
items can be regarded as “time ticks”. 

Connections to Channels: A design choice is to 
allow operations directly on channels instead of via 
explicit connections, thus simplifying the API. How- 
ever, (1) from an application perspective, this is limit- 
ing since a thread loses the flexibility to have multiple 
connections to the same channel. Such a flexibility 
would be valuable for instance if a thread wants to 
create a debugging or a monitoring connection to the 
same channel in addition to the one that it may need 
for data communication. While the same functional- 
ity could be achieved by creating a monitoring thread, 
we think that connections are a more intuitive and ef- 
ficient way to achieve this functionality. (2) From a 
performance perspective, connections can play a cru- 
cial role in optimizing communication especially in a 
cluster setting by providing a hint to the runtime sys- 
tem as to who may be potential consumers for a data 
item produced on a channel (so that data can be com- 
municated early). 

Garbage Collection: STM provides transparent gar- 
bage collection by performing reachability analysis on 
timestamps. In a cluster, this could be quite expensive 
since the put and get operations on a channel are lo- 
cation transparent, and can be performed by threads 
anywhere in the cluster that have connections to that 
channel. The alternative would have been to associate 
a reference count and garbage collect an item as soon 
as its reference count goes to zero. However, in some 
dynamic applications a producer may not know how 
many consumers there may be for an item it produces 
(consider, for example, the Digitizer in Fig. 2). As 
a compromise we allow a put operation to specify an 
optional reference count (a special value indicates that 
the consumer count is unknown to the producer). The 
runtime employs two different algorithms. The first 
algorithm uses reference counts. A second algorithm 
based on reachability analysis is run less frequently to 
garbage collect items with unknown reference counts. 

7 Related Work 

The STM abstraction may be viewed as a form of struc- 
tured shared memory. In this sense it is related to re- 
cent distributed shared memory systems (such as Cashmere 
[13], Shasta [19], and Treadmarks [ll]). DSM systems typi- 
cally offer the same API as any hardware SMP system and 
therefore are too low level to simplify programming of the 
complex synchronization and communication requirements 
found in interactive multimedia applications (as mentioned 
earlier, STM is useful even on an SMP). Further, from a 
performance perspective DSM systems are not particularly 
well-suited for supporting applications with highly dynamic 
sharing characteristics. 

There have been several language designs for parallel com- 
puting such as Linda [l], Orca [2], and Cid [15]. The data 
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sharing abstractions in these languages are at a lower level 
than STM; of course, they could be used to implement STM. 

Temporal correlation of independent data streams is a key 
distinguishing feature of our work from all prior work. The 
work most closely related to ours is the Beehive [20] soft- 
ware DSM system developed by one of the authors and his 
colleagues at the Georgia Institute of Technology. The delta 
consistency memory model of Beehive is well-suited for ap- 
plications that have the ability to tolerate a certain amount 
of staleness in the global state information. Beehive has 
been used for real-time computation of computer graphical 
simulations of animated figures. STM is a higher level struc- 
tured shared memory that can use the lower-level temporal 
synchronization and consistency guarantees of Beehive. 

The idea of Space-Time memory has also been used in opti- 
mistic distributed discrete-event simulation [9, 51. The pur- 
pose and hence the design of Space-Time memory in those 
systems is very different from ours. In those systems, Space- 
Time memory is used to allow a computation to roll-back to 
an earlier state when events are received out of order. In this 
paper, we have proposed Space-Time Memory as the funda- 
mental building block around which the entire application 
is constructed. 

8 Performance 

In addition to simplifying programming, STM has the po- 
tential to provide good performance on clusters, for several 
reasons. First, synchronization and data transfer are com- 
bined in STM, permitting fewer communications. Second, 
connections provide useful hints for optimizing data com- 
munication across clusters. Third, sharing across address 
spaces is orchestrated via the STM abstraction which can 
therefore optimize it in a more targeted manner than the 
indiscriminate sharing that can occur in a DSM system for 
dynamic applications. 

In this section we provide some preliminary performance 
numbers for STM. 

8.1 Platform and Limits 

Before we look at Stampede performance it is useful to ex- 
amine the performance that we hope to achieve and the 
performance limits of our platform. 

The Stampede system is implemented on a cluster of Al- 
phaserver 4100’s (SMPs with four 400 MHz EV5 ALpha 
processors each) interconnected by Memory Channel, run- 
ning Digital Unix 4.0. The vision tracking component of the 
Smart Kiosk [17] and an image-based rendering application 
[lo] have been implemented on top of Stampede[l8]. 

A typical digitizing video camera (with associated frame 
grabbers, etc.) delivers 30 images per second, where each 
image has 320x240 pixels and each pixel has 24 bits of 
color. Thus, each frame has 230400 Bytes, the total band- 
width is 6.912 MegaBytes/sec, and the inter-frame latency 
is 33.33 milliseconds. We will use B, msecs, usecs and MB/s 
as abbreviations for Bytes, milliseconds, microseconds and 
MegaBytes per second, respectively. 

STM is built on top of CLF, our homegrown low level packet 
transport layer. CLF provides reliable, ordered point-to-, 
point packet transport between Stampede address spaces, 

with the illusion of an infinite packet queue. It exploits 
shared memory within an SMP, and any available network 
between SMPs, in&ding Digital Memory Channel [6], My- 
rinet [3], Tandem’s ServerNet [7], and if none of these are 
available, ordinary UDP over a LAN. In our tables below, we 
show numbers for Memory Channel and for UDP running 
over a 100 Mbit/s FDDI LAN (max 12.5 MB/s). 

Minimum one-way end to end latencies achievable under 
CLF are shown in Table 8, for various packet sizes up to 
8152 Bytes, the MTU or maximum packet size under CLF. 
The minimum latencies (for 8 Bytes) fortshared memory and 
Memory Channel are somewhat high because CLF itself is 
multi-threaded (in-order to preserve the illusion of an infi- 
nite queue) and so communication involves some number of 
synchronizations and context switches (truly “raw” latencies 
would be less than 5 usecs). 

Maximum bandwidths achievable under CLF are shown in 
Table 9, for various packet sizes. The rightmost column as- 
sumes that a sender waits for an acknowledgement from a re- 
ceiver after sending an image-worth of data (230400 Bytes), 
and hence has somewhat lower bandwidths than the col- 
umn to its left, which does not involve such a wait. Any 
code that involves some coordination per image frame (as in 
STM) cannot exceed this limit. 

Communication Packet size (Bytes) 
medium 8 128 1024 4096 8152 

Shared Memory 17 20 37 90 164 
(within an SMP) 
Memory Channel 19 23 42 147 293 
(between SMPs) 

UDP/LAN 227 280 441 983 1423 
(between SMPs) 

Figure 8: Minimum one-way send/receive latencies (in 
usecs) for CLF, for miscellaneous packet sizes. 

Comm. 
medium 
Shared 

Memory 
(within 
SMP) 

Memory 
Channel 
(betw. 
SMPs) 

UDP/LAN 
(betw. 
SMPs) 

l- Packet size (Bytes) 
8 128 

2.3 26.3 

2.3 21.8 

0.13 1.95 

1024 4096 
76.3 

35.5 

10.1 

93.5 

37.0 

11.9 

8152 
95.9 

37.1 

12.0 

Figure 9: Max bandwidths (in MB/s) for CLF, for miscel- 
laneous packet sizes. Rightmost column (*) assumes an ack 
after every 230400 Bytes (size of an image). 
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8.2 STM performance 

We designed various microbenchmarks to measure the basic 
costs of the frequent STM API calls: put, get and consume. 

Fig. 10 shows the average one-way latencies for various pay- 
load sizes up to 8112 Bytes (the maximum STM payload in 
one CLF packet). The experiment sets up a producer thread 
in one address space that puts items into a channel and 
a thread in another address space that gets and consumes 
these items from the channel. We measure the total latency 
from before the put until after the consume. Depending on 
whether the channel data structure is co-located with the 
producer or the consumer, this could take two, four or more 
round-trip communications. In addition, these operations 
will involve a number of thread synchronizations and con- 
text switches (because manipulating a channel is done with 
a lock, and remote channel requests are handled by a server 
thread). Keeping this in mind, the STM numbers are in line 
with the one-way latencies in Fig. 8. Also, these latencies 
are still well below the 33 msec frame rate of video camera. 

] Communication ] Packet size (Bytes) 
medium 18 128 1024 4096 8112 

Memorv Channel 
(between SMPs) 

1 242 1 254 1 352 1 607 1 900 

UDP/LAN 449 487 691 1357 2078 
(between SMPs) 

Figure 10: Minimum STM one-way latencies (in usecs) for 
a put on one address space and a get and consume on an- 
other address space, with the channel co-located with the 
consumer. 

Fig. 11 shows bandwidths for image-size payloads (230400 
Bytes). In column A, a producer on one address spaces does 
repeated puts, and a consumer on another address space 
does repeated gets and consumes. Because of the synchro- 
nization between puts and gets and consumes, the data is 
moved in bursts, one item at a time. The bandwidths are 
thus much less than the raw CLF bandwidths of the right- 
most column of Fig. 9, although they are still comfortably 
above the basic camera image rate of 6.912 MB/s. In col- 
umn B, there are two producers on two different address 
spaces and two consumers on another address space. In this 
case, one consumer can be involved in data movement while 
the other consumer is involved in synchronization with its 
producer, and vice versa, thus increasing total bandwidth 
seen by the two consumers. We can see that these total 
bandwidths approach the raw CLF bandwidths of Fig. 9. 

9 Concluding Remarks 

The full implementation of the Stampede system is com- 
plete and we are now embarking on more detailed perfor- 
mance analysis and tuning of the system. In particular we 
would like to use information about the current connections 
to a channel to pre-emptively send data towards consumers, 
thereby improving latency and bandwidth through the chan- 
nel. This must be done with caution because consumers 
can skip timestamps, so sending such data would be wasted 
work. We are also porting Stampede to run under Windows 

Figure 11: Maximum total STM bandwidth (in MB/s) 
at the consumer address space for image-sized payloads 
(230400 Bytes). Column A has one producer (doing put’s) 
on one address space and one consumer (doing get’s and 
consume’s) on another address space. Column B has two 
producers on two address spaces and two consumers on a 
third address space. 

NT and over MPI [14], and working towards releasing it to 
researchers outside CRL. 

There are several directions for future research. In complex 
applications such as the Smart Kiosk, efficient resource man- 
agement to ensure that critical activities are completed in a 
timely manner is crucial. A companion paper [12] discusses 
support for integrating task and data parallelism in such 
dynamic applications. It explores optimal latency-reducing 
schedules for task- and data-parallel decompositions. We 
are looking at several new applications for Stampede in this 
class of interactive, realistic multimedia applications, both 
at CRL and at Georgia Institute of Technology. 
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