
BDDT: Block-level Dynamic Dependence Analysis
for Deterministic Task-Based Parallelism

George Tzenakis† Angelos Papatriantafyllou† John Kesapides† Polyvios Pratikakis†
Hans Vandierendonck†‡ Dimitrios S. Nikolopoulos†

†Institute of Computer Science, FORTH
‡Department of Computer Science, Ghent University

{tzenakis,angelpap,kesapid,hvdieren,dsn}@ics.forth.gr

Categories and Subject Descriptors D [1]: 3

General Terms Performance

1. Introduction
Task-parallel programming models [1, 4, 6] offer a more ab-
stract, more structured way for expressing parallelism compared
to threads. In these systems the programmer describes the parts of
the program that can be computed in parallel, and does not have to
manually create and manage the threads of execution. Such mod-
els still require the programmer to manually find and enforce any
ordering or memory dependencies among tasks, and also maintain
the inherent nondeterminism found in threads, which makes them
hard to test and debug, as some executions might not be easy to
reproduce. Implicitly parallel models [2, 5, 7, 8] further extend
task-parallel models with automatic inference of dependencies; the
programmer annotates the program [2, 3, 5, 8]; the system then
discovers parallelization and manage dependencies transparently.

Dynamic dependence analysis can discover more parallelism
than is possible to describe statically in the program, as it only syn-
chronizes tasks that actually access the same resources. To benefit
program performance, a dependence analysis must (i) be accurate,
so that it does not discover false dependencies; and (ii) have low
overhead, so that it does not nullify the benefit of discovering ex-
tra parallelism. Existing systems require the programmer to restrict
task footprints into either whole and isolated program objects, one-
dimensional array ranges, or static compile-time regions. This may
cause false dependencies in programs where tasks have partially
overlapping or unstructured (irregular) memory footprints, or dis-
allow tasks that operate on a multidimensional tile of a large array.
To solve these issues, existing systems use copies, such as mar-
shalling all the relevant row parts of a multidimensional array tile
into a buffer, and unmarshalling the result back into the array af-
ter the task is done. These techniques incur high overhead, and are
cumbersome and error-prone for the programmer to use.

This poster abstract presents a task-parallel runtime system that
dynamically discovers and resolves dependencies deterministically
among parallel tasks, producing executions equivalent to a sequen-
tial execution. Lifting the above restrictions of existing systems,

Copyright is held by the author/owner(s).
PPoPP’12, February 25–29, 2012, New Orleans, Louisiana, USA.
ACM 978-1-4503-1160-1/12/02.

BDDT allows the programmer to specify detailed task footprints
on any, potentially non-contiguous, memory address range or mul-
tidimensional array tile. We use a block-based dependence analysis
with arbitrary granularity, making it easier to apply to existing C
programs without having to restructure object or array allocation,
introduce buffers and marshalling, or change the granularity of task
arguments.

Overall, we make the following contributions:

• We present a novel technique for block-based, dynamic task
dependence analysis that allows task arguments spanning arbi-
trary –potentially non-contiguous– memory ranges, argument
overlapping across tasks, and dependence tracking at any gran-
ularity. The analysis is tunable, and facilitates balancing accu-
racy and performance. It is also deterministic, in that it always
preserves the sequential program order for all read-after-write
memory accesses.

• We have implemented this dependence analysis in BDDT, a
runtime system for scheduling parallel tasks. Our implemen-
tation is adaptive, the programmer can enable or disable the
dependence analysis for each task argument independently to
minimize overhead when the analysis is not necessary.

• We have evaluated the performance of our runtime system on a
representative set of benchmarks; BDDT performs better than
SMPSs (an existing state-of-the-art task runtime that imple-
ments dynamic dependence analysis), and is able to handle
tasks with one order of magnitude finer granularity than SMPSs
(Figure 1(a)). In several benchmarks, dynamic dependence
analysis in BDDT discovers additional parallelism, producing
speedups of up to 3.6× compared to OpenMP (Figure 1(b)).

2. Dataflow Execution Engine Design
BDDT uses a dataflow execution engine based on block-level de-
pendence analysis for identifying parallel tasks. We assume a pro-
gramming language where tasks are annotated –through language
keywords or directives– with data access attributes, corresponding
to three access patterns: read (IN), write (OUT) and read/write (IN-
OUT). The language runtime system detects dependencies between
tasks, by comparing the access properties of arguments of different
tasks that overlap in memory. BDDT splits arguments into virtual
memory blocks of configurable size and analyzes dependencies be-
tween blocks. Similarly to whole-object dependence analysis used
in tools such as SMPSs and SvS, block-based analysis detects true
or anti-dependencies between blocks by comparing block starting
addresses and checking their access attributes.

Block-based analysis can detect dependencies between tasks
that whole object analysis does not; partially overalapping argu-

301



ments are dependencies if a task writes on the overlapping part.
Moreover, it supports tasks with non-contiguous arguments in
memory, such as a tile of a multidimensional array. BDDT allows
the programmer to adjust block granularity to be coarse enough to
amortize overhead, yet fine enough to avoid false positives.

Each task in the program goes through four stages: task issue
performs dependence analysis; task scheduling releases a task for
execution when all its dependencies are resolved and inserts the
task in a worker’s queue; task execution executes it; task release
resolves pending dependencies on the executed task, potentially re-
leasing new tasks. Dynamic dependence analysis causes overheads
in the issue and release stages. We design the data structures used in
the dependence analysis specifically to minimize these overheads.

To efficiently and transparently maintain and retrieve task-
argument metadata, we design a custom memory allocator that
allows for fast lookup of metadata while still hiding metadata man-
agement in the runtime system. The memory allocator forces al-
location in such a way that the location of metadata is efficiently
deduced from the memory address.

The dependence analysis on blocks is similar to dependence
tracking on whole objects, although a task argument may consist
of multiple blocks. We have designed a mechanism that allows
multiple blocks to share the same metadata information to reduce
overhead. Critical dependence tracking operations operate on one
metadata element instead of multiple, which greatly reduces the
overhead of dependence tracking. We extend this mechanism to
track strided arguments—usually multidimensional array tiles: are
tracked on each block individually, the runtime system registers a
single metadata element for the whole sparse region.

To detect dependencies between tasks, we consider that each
block is assigned a new metadata element as new tasks write to it.
In principle, each new writing task (i.e., a task that has an output
or input/output annotation) creates a new metadata element for the
block. All subsequent reading tasks use the same metadata. This
divides the task graph into groups of tasks that may execute con-
currently and each such group is tracked using a different metadata
element. This design allows for an efficient characterization of con-
currency while limiting the complexity of the data structures.

3. Implementation
The BDDT block-level runtime system consists of a custom block-
based memory allocator; metadata structures for dependence anal-
ysis; and a task scheduler.
BDDT Memory Allocator BDDT requires that all memory that
constitutes shared state between parallel tasks is allocated through
the custom memory allocator. The allocator partitions the virtual
address space in slabs containing fixed size blocks and services
memory allocation requests from such slabs. Data blocks are al-
located at the beginning of the slab and the corresponding meta-
data indices are allocated at the end. By using slabs of fixed size
and alignment, we can calculate the address of a block’s metadata
through very simple and efficient integer arithmetic on the block
address, which also increases locality on metadata.
Dependence Analysis The dependence analysis assigns a new
version to each block as tasks write new data to it. To do this, BDDT
maintains a chain of metadata elements accessed through a meta-
data array (indexed by the block index stored in the slab), which
holds the metadata for each data block. Each metadata element cor-
responds to a version of the data block, created when a task writes
to it. The metadata element includes pointers to the dependent tasks
that wait on the corresponding version of the data block, used to
resolve task dependencies. Every task element points to metadata
elements for all task arguments, an atomic join counter that tracks
unresolved dependencies, a function that is the task code, and the
actual data, which can be strided array tiles.

5 10 15 20

Threads

0

2000

4000

6000

8000

T
im

e
 (

m
s)

Total time

Task issue

SMPSS

(a) BDDT, SMPSs on Jacobi

5 10 15 20

Threads

0

5000

10000

15000

20000

25000

T
im

e
 (

m
s)

Total time

Task issue

OpenMP

(b) BDDT, OpenMP on Cholesky

BDDT performs dependence analysis on a per-block basis, de-
pending on the access mode (IN, OUT, INOUT). In each case, the
runtime system registers a metadata element for a block when it is
first touched. For strided arguments, the runtime system registers a
single metadata element for all blocks of the argument, as a single
metadata array entry.
Task Scheduling BDDT is based on a master-worker program
model. The master is responsible for task issue and dependence
analysis, issuing ready tasks to the workers in round-robin order.
The workers concurrently perform task scheduling, execution and
release. BDDT schedules a task for execution whenever all its de-
pendencies are satisfied. Each worker thread has its own concur-
rent queue of ready tasks. Upon task completion, the worker walks
through the stacks of all of its metadata elements, decrements the
join counters of tasks registered with the metadata elements, and
releases for execution those tasks with no pending dependencies.
Empty workers steal ready tasks from other workers.

4. Conclusions
BDDT is a runtime system that performs dynamic dependence
analysis to schedule parallel tasks with memory footprints that
span arbitrary memory ranges, producing deterministic execu-
tion. BDDT implements efficient and highly concurrent task in-
stantiation, dependence analysis and scheduling techniques. In a
set of benchmarks BDDT has similar or better performance than
OpenMP, outperforming it by up to a factor of 3.8× at best. BDDT
has lower overhead and a more efficient runtime implementation
than SMPSs.

References
[1] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,

X. Teruel, P. Unnikrishnan, and G. Zhang. The Design of OpenMP
Tasks. IEEE TPDS, 20(3):404–418, 2009.

[2] M. J. Best, S. Mottishaw, C. Mustard, M. Roth, A. Fedorova, and
A. Brownsword. Synchronization via Scheduling: Techniques for Effi-
ciently Managing Shared State. In PLDI, 2011.

[3] R. Bocchino, V. S. Adve, D. Dig, S. V. Adve, S. Heumann, R. Komu-
ravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian. A Type and
Effect System for Deterministic Parallel Java. In OOPSLA, 2009.

[4] K. Fatahalian, D. R. Horn, T. J. Knight, L. Leem, M. Houston, J. Y.
Park, M. Erez, M. Ren, A. Aiken, W. J. Dally, and P. Hanrahan. Sequoia:
Programming the Memory Hierarchy. In SC, 2006.

[5] J. C. Jenista, Y. H. Eom, and B. Demsky. OoOJava: Software Out-of-
Order Execution. In PPoPP, 2011.

[6] C. E. Leiserson. The Cilk++ Concurrency Platform. The Journal of
Supercomputing, 51(3):244–257, 2010.

[7] J. M. Pérez, P. Bellens, R. M. Badia, and J. Labarta. CellSs: Making it
Easier to Program the Cell Broadband Engine Processor. IBM Journal
of Research and Development, 51(5):593–604, 2007.

[8] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Hierarchical
Task-Based Programming With StarSs. International Journal of High
Perfomance Computing Applications, 23(3):284–299, 2009.

302


	Introduction
	Dataflow Execution Engine Design
	Implementation
	Conclusions



