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Abstract

The state-of-the-art ARM processors provide multiple cores
and SIMD instructions. OpenCL is a promising program-
ming model for utilizing such parallel processing capability
because of its SPMD programming model and built-in vector
support. Moreover, it provides portability between multicore
ARM processors and accelerators in embedded systems. In
this paper, we introduce the design and implementation of
an efficient OpenCL framework for multicore ARM pro-
cessors. Computational tasks in a program are implemented
as OpenCL kernels and run on all CPU cores in parallel
by our OpenCL framework. Vector operations and built-in
functions in OpenCL kernels are optimized using the NEON
SIMD instruction set. We evaluate our OpenCL framework
using 37 benchmark applications. The result shows that our
approach is effective and promising.

Categories and Subject Descriptors D.3.4 [PROGRAM-

MING LANGUAGES]: Processors—Code generation, Com-
pilers, Optimizations, Run-time environments

General Terms Design, Experimentation, Languages, Mea-
surement, Performance

Keywords Embedded System, Multicore, OpenCL, SIMD

1. Introduction

ARM processors are widely used for embedded systems
including smartphones, tablets, netbooks, and so on. The
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state-of-the-art ARM processors (e.g., ARM Cortex-A9 and
Cortex-A15 MPCore) have multiple cores (dual- or quad-
core) and support a 64- and 128-bit SIMD instruction set
(i.e., NEON[6] instructions). Compute-intensive applica-
tions such as 3D gaming, physics simulation, image process-
ing, and augmented reality may enhance the performance
by utilizing the parallel processing capability of the ARM
processors. To achieve this, an easy and efficient parallel
programming model is required.

OpenCL (Open Computing Language)[16] is an open
standard for general purpose parallel programming devel-
oped by the Khronos Group. It mainly targets accelerators
in heterogeneous computing systems, such as GPUs[4, 20],
Intel Xeon Phi coprocessors[12], Cell BE processors[18],
and FPGAs[3]. Compute-intensive and data-parallel tasks
in a program are implemented as SPMD-threaded OpenCL
kernels using the OpenCL C programming language that is
similar to C99. Then, they can be offloaded to many pro-
cessing elements within an accelerator. However, OpenCL
can also be used as a programming model for multicore
CPUs[10, 12, 18]. An OpenCL kernel is not offloaded, but
run on multiple CPU cores in parallel.

There are some reasons why OpenCL is promising for
parallel programming in multicore ARM processors. First,
because of the SPMD nature of OpenCL kernels, the OpenCL
programming model fits data-parallel programs well. Heavy
computational workloads in embedded systems usually have
the data parallelism. Second, OpenCL C provides built-in
vector types and operators. It enables programmers to easily
vectorize OpenCL kernels by hand. The OpenCL C com-
piler can translate a vector operation to one or more NEON
instructions. The result may outperform the auto-vectorized
code generated by optimizing compilers. Third, and the most
important of all, OpenCL provides portability across differ-
ent types of processors. Many embedded system-on-chips
(SoCs) such as Samsung Exynos, NVIDIA Tegra, and TI
OMAP contain both an ARM processor and an accelerator.

33



Using OpenCL frameworks for accelerators (e.g., OpenCL
SDK for ARM Mali GPUs[5]), an OpenCL application can
also run on the accelerators without any modification.

In this paper, we present an OpenCL framework for
multicore ARM processors. The prior studies proposed
methods to compile and execute applications written in
OpenCL[10, 12, 18] or other accelerator programming mod-
els such as CUDA[11, 15, 24] on multicore CPUs. But they
target x86 processors, while our work focuses on ARM pro-
cessors for embedded systems. Our OpenCL framework is
composed of an OpenCL runtime and an OpenCL C com-

piler. The OpenCL runtime schedules commands issued
by the OpenCL applications, manages memory objects,
and executes OpenCL kernels on all CPU cores in paral-
lel. The OpenCL C compiler transforms an OpenCL ker-
nel to the ARM binary. It adopts the work-item coalescing
technique[18] to execute multiple kernel instances on a sin-
gle core efficiently. Also, it optimizes vector operations and
built-in functions in OpenCL C using the NEON instruction
set of ARM processors.

We implement our OpenCL framework and evaluate
the performance using 37 benchmark applications from
OpenCL samples in AMD APP SDK[4], Parboil bench-
marks[25], and SNU NPB suite[22]. To the best of our
knowledge, this is the first work to evaluate a rich set of
OpenCL applications on a multicore embedded processor.
The experimental results show that our OpenCL framework
is efficient and OpenCL is a promising programming model
for multicore ARM processors. The major contributions of
this paper are the following:

• We introduce the design and implementation of an ef-
ficient OpenCL framework for multicore ARM proces-
sors. Especially, we propose the optimization techniques
for OpenCL kernels that use NEON instructions, and im-
plement them into our OpenCL C compiler.

• We evaluate our OpenCL framework with a quad-core
ARM processor. From the experimental result, we show
the effectiveness of the framework design and the NEON
optimization techniques.

• We compare the performance of our OpenCL framework
with that of another parallel programming model (i.e.,
OpenMP) and another OpenCL framework for ARM pro-
cessors (i.e., PGCL[26]). We show that OpenCL applica-
tions combined with our OpenCL framework can achieve
high performance on multicore ARM processors.

The rest of the paper is organized as follows. Section 2
describes the structure of our OpenCL framework, and Sec-
tion 3 introduces the NEON optimization techniques in de-
tail. Section 4 explains the target systems and benchmark
applications used for the experiments. Section 5 shows and
discusses the experimental results of our OpenCL frame-
work. Section 6 describes the related work, and Section 7
concludes the paper.

2. The OpenCL Framework

This section describes the design and implementation of our
OpenCL framework.

2.1 Programming Model and OpenCL C

The OpenCL standard defines OpenCL API functions and
OpenCL C programming language. A host program is writ-
ten in high-level programming languages for CPUs, such
as C and C++. It uses OpenCL API functions to manage
OpenCL objects and to enqueue commands to command-
queues. When it enqueues a kernel execution command, it
defines an index space called NDRange. An instance of the
kernel is executed for each point in the NDRange. OpenCL
C is used to write kernels. It is derived from the C99 specifi-
cation, and adds some extensions and restrictions.

OpenCL C supports built-in vector types and operators.
A vector type is defined with the type of elements (i.e., one
of char, uchar, short, ushort, int, uint, long, ulong,
float, and double) followed by the number of elements
n, where n ∈ {2, 3, 4, 8, 16}. Operators in C (e.g., +, -, *,
and /) operate on built-in vector types. The operations are
performed component-wise. OpenCL C also provides a rich
set of built-in functions, including the following:

• Functions to query the global ID (get global id(n)),
work-group ID (get group id(n)), and local ID
(get local id(n)) of the current work-item. The argu-
ment n specifies the dimension which should be one of 0,
1, and 2.

• Functions for explicit type conversions. These functions
are in the form of convert destType(x). For example,
the convert int4(x) function converts the argument x
to an int4 vector. The arguments can be either a scalar
value or a vector with the size 4. If the argument is a
scalar, it is replicated across all lanes of the vector.

• Tens of math functions such as sin(x), cos(x), and
exp(x). Each built-in math function may take a vec-
tor as an argument. In this case, the function operates
component-wise and returns the result as a vector with
the same size.

• Functions to read data from (or write data to) an image
object. In a kernel, buffer objects are treated as arrays and
can be accessed using the array subscript operator ([]).
However, elements in an image object can only be read
and written with the built-in functions.

2.2 OpenCL Platform on ARM Processors

Our OpenCL framework targets multicore ARM processors
in embedded systems. Thus, the ARM processor acts as
both a host processor and an OpenCL device. Since ARM
processors have only a few cores, it is not beneficial to
execute all work-items in an NDRange concurrently. This
also causes significant context switching overhead. Instead,
we adopt work-group level parallelism. Every core becomes
a compute unit and, at the same time, a single processing
element in the compute unit. Work-groups in the NDRange
are distributed to the cores and executed in parallel. All
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Figure 1. The OpenCL runtime.

work-items in the same work-group are executed on the
same core sequentially one by one.

A host thread executes the host program on a core. One
of the cores should execute both the host program and work-
groups assigned to it. OpenCL host programs usually en-
queues commands to command-queues and just waits until
the commands are completed. In this case, the overhead of
the host thread is negligible. If the host program performs a
compute-intensive task while a kernel is running, however,
the host thread may degrade the performance of the kernel.

All memory regions of the OpenCL device (i.e., global,
constant, local and private) are placed in the main mem-
ory. Buffer and image objects are created in the main mem-
ory using the malloc() function. Since the device mem-
ory is logically distinct from the main memory, however, the
host program cannot access these objects directly. Instead, it
should use memory commands (i.e., commands to copy data
from/to the device memory).

2.3 OpenCL Runtime

Our OpenCL runtime provides an implementation of OpenCL
API functions for the host program. To schedule and execute
commands, the runtime creates a scheduler thread, a device

thread, and a CU thread for each compute unit (i.e., each
CPU core) besides the host thread. Figure 1 illustrates how
these threads work. The host program enqueues commands
to command-queues and defines the execution order between
them using the OpenCL API functions. The scheduler thread
dequeues commands that are ready to execute (i.e., all pre-
ceding commands are finished) from the command-queues.
Then, it enqueues these commands to a ready queue that is
shared with the device thread. The device thread fetches and
executes commands in the ready queue. Memory commands
are executed on the device thread using the memcpy() func-
tion. For a kernel execution command, the device thread
evenly distributes work-groups in the NDRange to the CU
threads and waits until all work-groups are completed. Each
CU thread actually executes the assigned work-groups on a
CPU core.

The scheduler thread goes to sleep after it checks all
command-queues. When a new command is enqueued to
a command-queue, the host thread wakes up the scheduler

__kernel void foo(__global int* dst,

__global int* src, int offset) {

int id = get_global_id(0);

dst[id] = src[id] + offset;

}

Kernel

#include <builtins.h>

#define get_global_id(N) \

(__global_id[N] + (N == 0 ? __i : \

(N == 1 ? __j : __k)))

int __i, __j, __k;

void foo(int* dst, int* src, int offset) {

int id;

for (__k = 0; __k < __local_size[2]; __k++) {

for (__j = 0; __j < __local_size[1]; __j++) {

for (__i = 0; __i < __local_size[0]; __i++) {

id = get_global_id(0);

dst[id] = src[id] + offset;

}

}

}

}

Work-group function

...

typedef ... float2;

typedef ... float3;

...

float sin(float x);

float2 sin(float2 x);

...

Built-in header

Object file

Built-in library

Executable file

Figure 2. The compilation process of a kernel.

thread. In addition, the device thread wakes up the scheduler
thread whenever it finishes the execution of a command.
Similarly, the device thread sleeps if the ready queue is
empty, and the scheduler thread wakes up the device thread
after it enqueues a command to the command queue. As a
result, our OpenCL runtime minimizes the overhead of the
scheduler thread and the device thread. The dashed arrows
in Figure 1 illustrates this mechanism.

2.4 OpenCL C Compiler

Figure 2 shows the compilation process of a kernel. Our
OpenCL C compiler translates a kernel to a work-group

function ( 1©), and compiles it to an ARM binary ( 2© and 3©).
The work-group function is a C++ function that executes
all work-items in a single work-group sequentially. The CU
threads in the OpenCL runtime call this function for each
work-group.

There are two ways to implement the work-group func-
tion. Gummaraju et al.[10] call the setjmp() function at
the end of a work-item to switch to the next work-item. On
the other hand, Lee et al.[18] encloses the kernel code with
a triply nested loop. If the kernel contains barriers, it is sep-
arated by barriers and each part is enclosed by a loop indi-
vidually. This is called work-item coalescing. Our source-

to-source translator adopts the work-item coalescing tech-
nique. Figure 2 shows an example of a work-group func-
tion. The array global id and local size indicates
the global ID of the first work-item in the work-group and
the size of the work-group, respectively. They are initialized
by the CU thread before the function is called. The variables
i, j, and k indicate the local ID of the current work-

item. The details of the work-item coalescing are omitted
due to the page limit and can be found in the paper written
by Lee et al.[18].

Our OpenCL C compiler uses a native compiler (i.e.,
GCC) for the steps 2© and 3©. Hence optimizations in GCC
are naturally applied to kernels and boost the performance
of the kernel. The work-group function may contain built-
in types and functions of OpenCL C. To support them, the
work-group function is compiled with a built-in header ( 2©)
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1 #include <arm_neon.h>
2 uint32x4_t double_elements(uint32x4_t input) {
3 return vaddq_u32(input, input);
4 }

Figure 3. Using NEON intrinsics for GCC[6].

and then linked with a built-in library ( 3©). The built-in
header defines the built-in types of OpenCL C using struc-
tures and typedefs. It also declares the prototypes of the
built-in functions. The built-in library provides their imple-
mentation. The compiler finally creates an executable file in
the form of a shared library. Our OpenCL runtime uses dy-
namic loading to call the work-group functions in the shared
library.

The source-to-source translator and built-in library in-
cluded in an open-source OpenCL framework SnuCL[17] is
used as the baseline of our OpenCL C compiler. We modify
the source-to-source translator to support the caching mech-
anism and to eliminate the unnecessary overhead of work-
group functions. We also implement the NEON optimiza-
tions described in Section 3 in the translator and built-in li-
brary.

3. Optimizations for NEON

NEON[6] is a SIMD processing unit in the ARMv7 and
ARMv8 architectures. It contains 32 64-bit registers. They
can also be viewed as 16 128-bit registers. These registers
are considered as vectors of elements of the same data type.
The data type can be either 8-, 16-, 32-, or 64-bit signed or
unsigned integer, or single-precision floating point. NEON
provides an extension of ARM instruction set for vector op-
erations, such as arithmetic, logical, and bitwise operations.

The basic way to use the NEON instructions is to write
assembly code. However, this process is hard and tedious. It
is also bug-prone. Another way is to use intrinsic functions
provided by compilers, such as GCC and ARM RealView
Compilation Tools. An intrinsic function call is replaced to
a NEON instruction (or a sequence of instructions) by the
compiler. Figure 3 shows an example of using NEON intrin-
sics. vaddq u32 adds two 128-bit wide vectors each contain-
ing four 32-bit unsigned integers. Using NEON intrinsics is
much simpler than writing assembly code but still compli-
cated. Programmers need to convert an expression into pre-
fix notation and choose appropriate intrinsic functions for
different vector widths and element types.

Our OpenCL C compiler optimizes vector operations and
built-in functions in OpenCL C using the NEON intrinsics
of GCC. It provides programmers more opportunity to vec-
torize their applications with much less programming ef-
fort. Moreover, GCC performs auto-vectorization on a work-
group function and generates a binary containing NEON in-
structions, even if the kernel does not use vector operations
explicitly.

3.1 Vector Operations

While our source-to-source translator generates a work-
group function from a kernel, it also translates every vector

Operation NEON Intrinsics

-a vneg s32(a.neon)
~a vmvn s32(a.neon)

a + b vadd s32(a.neon, b.neon)
a - b vsub s32(a.neon, b.neon)
a * b vmul s32(a.neon, b.neon)
x / y float32x2 t t = vrecpe f32(y.neon);

t = vmul f32(vrecps f32(y.neon, t), t);
t = vmul f32(vrecps f32(y.neon, t), t);
result = vmul f32(x.neon, t);

a & b vand s32(a.neon, b.neon)
a | b vorr s32(a.neon, b.neon)
a ^ b veor s32(a.neon, b.neon)
a == b vreinterpret s32 u32(vceq s32(a.neon, b.neon))
a > b vreinterpret s32 u32(vcgt s32(a.neon, b.neon))
a < b vreinterpret s32 u32(vclt s32(a.neon, b.neon))
a << n vshl n s32(a.neon, n)
a >> n vshr n s32(a.neon, n)

Table 1. Conversion rules of vector operations. a and b is
int2 vectors, x and y is float2 vectors, and n is an integer.

1 union __cl_uint4 {
2 unsigned int v[4];
3 uint32x4_t neon;
4 ...
5 };
6 typedef union __cl_uint4 uint4;

Figure 4. The definition of uint4 type in the built-in
header.

operation into the form that can be vectorized by GCC. First,
vector operations can be converted into one or more NEON
intrinsic functions, as shown in Table 1. Since the built-in
header defines the vector types as shown in Figure 4, the
neon field is the vector itself having a data type for NEON
intrinsic functions (e.g., uint32x4 t in Figure 3). A com-
parison operator (e.g., ==, <, and >) is converted to two con-
secutive intrinsic function calls. The first function returns the
result as a vector of unsigned integers, and the second func-
tion converts it into a vector of signed integers to satisfy the
semantics of OpenCL C. A division operator (/) is imple-
mented by the Newton-Raphson method. It first computes
the reciprocal of y and then multiplies it by x to obtain x/y.
All other kinds of operations are just replaced by a single
intrinsic function call. The name of the intrinsic function is
determined depending on the type of arguments. For exam-
ple, a + b is converted to the vadd s32() function if a and
b are int4 vectors, but it is converted to the vaddq s16()
function if a and b are short8 vectors.

Consider the kernel in Figure 5 (a). Figure 5 (b) shows
the work-group function generated by our source-to-source
translator. It contains a NEON intrinsic function call.

Alternatively, the source-to-source translator can convert
a vector operation into an expression that performs the op-
eration element-wisely. Figure 5 (c) shows an example for
the kernel in Figure 5 (a). Some vector types (e.g.,char4
and double2) and operations (e.g., remainder operations
(%)) should be converted in this manner because NEON does
not support them. On the contrary, if the vector operation is
supported by NEON, the auto-vectorizer in GCC may con-
vert the element-wise expression into NEON instructions. In
this case, the binary generated from two conversion methods
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1 __kernel void foo(__global int4* dst, __global int4* src) {
2 int id = get_global_id(0);
3 dst[id] = src[id] * src[id];
4 }

(a)

1 void foo(int4* dst, int4* src) {
2 int id;
3 for (__k = 0; __k < __local_size[2]; __k++) {
4 for (__j = 0; __j < __local_size[1]; __j++) {
5 for (__i = 0; __i < __local_size[0]; __i++) {
6 dst[id].neon = vmulq_s32(src[id].neon, src[id].neon);
7 }
8 }
9 }

10 }

(b)

1 void foo(int4* dst, int4* src) {
2 int id;
3 for (__k = 0; __k < __local_size[2]; __k++) {
4 for (__j = 0; __j < __local_size[1]; __j++) {
5 for (__i = 0; __i < __local_size[0]; __i++) {
6 dst[id] = (int4){src.v[0]*src.v[0], src.v[1]*src.v[1],
7 src.v[2]*src.v[2], src.v[3]*src.v[3]};
8 }
9 }

10 }
11 }

(c)

Figure 5. Sample code for vectorization; (a) a kernel; (b)
the work-group function containing vector intrinsics for the
kernel; (c) the work-group function containing vector oper-
ations for the kernel.

(i.e., using intrinsics and using element-wise operations) are
not quite different. We address this issue in Section 5.3.

OpenCL enables a host program to get the preferred vec-
tor width of an OpenCL device using the clGetDeviceInfo()
API function and to choose the best kernel implementation.
Our OpenCL framework declares the preferred vector width
to be 128 bits.

3.2 Built-in Functions

We use NEON intrinsics to optimize the following OpenCL
C built-in functions.

Type conversion functions. NEON supports instructions
to set all elements in a vector to the same value (e.g., vdup),
and to convert between a vector of 32-bit signed/unsigned
integers and a vector of single-precision floating point values
(e.g., vcvt). These instructions are used to optimize type
conversion built-ins in OpenCL C.

Math functions. Math functions can be vectorized in two
different ways. Take the sine function as an example. First,
we can vectorize the computational process of sin(x) to
shorten the execution time of the function. Second, we can
compute sin(x1), sin(x2), · · · , sin(xn) for different x1, x2,
· · · , xn at the same time using a vector operation. This does
not affect the execution time of the sine function, but im-
proves the throughput. It is beneficial for the vector versions
of built-in math functions because they need to compute the
result for every vector element. We adopt two open-source
NEON-optimized math libraries as part of the OpenCL C

Device Device A Device B

Name Nexus 7 Snowball board v11
SoC NVIDIA ST-Ericsson

Tegra 3 T30L Nova A9500
CPU ARM Cortex-A9 ARM Cortex-A9

# of cores 4 2
Clock freq. 1.2 GHz 1.0 GHz
L1I cache 32 kB 32 kB
L1D cache 32 kB 32 kB
L2 cache 1 MB 512 kB
Memory 1 GB 1 GB

(DDR3L-1333) (LPDDR2-800)
OS Ubuntu 13.04 Ubuntu 12.04 Android 2.3

Compiler gcc 4.7.2 gcc 4.5.3 PGCL 12.8

Table 2. Target devices.

built-in library. math-neon[1] provides various math func-
tions vectorized in the first way. neon mathfun[21] vector-
izes sin(x), cos(x), exp(x), and log(x) functions in the
second way.

Image read/write functions. In GPUs, image objects can
be accessed faster than buffer objects because they are typi-
cally stored in the texture memory and read/written through
dedicated hardware. In CPUs, however, both buffer and im-
age objects are stored in the main memory, and accessing
image objects incurs additional overhead due to the built-in
operations in the image read/write functions. Thus, image
objects are rarely used in multicore CPUs. Nevertheless, we
optimize the image read/write functions taking OpenCL ap-
plications written for GPUs into account. To do so, NEON
instructions are used to normalize an image coordinate and
to interpolate the result from multiple pixels in the image.

4. Experimental Setup

4.1 Target Devices

We use two target devices to evaluate our OpenCL frame-
work. Device A (Nexus 7) comes with an NVIDIA Tegra
3 system-on-chip containing a Cortex-A9 quad-core proces-
sor and 1GB of main memory. Device B (Snowball board)
comes with an ST-Ericsson Nova A9500 system-on-chip
containing a Cortex-A9 dual-core processor and 1GB of
main memory. Device B is used for the performance com-
parison between our OpenCL framework and the PGCL[26].
Our OpenCL framework runs on Ubuntu 12.04, while the
PGCL runs on Android 2.3 Gingerbread. Device A is used
for all other experiments. It runs Ubuntu 13.04. Table 2 de-
scribes the target devices in detail.

4.2 Benchmark Applications

We chose 37 benchmark applications from OpenCL samples
in AMD APP SDK[4], Parboil benchmarks[25], and SNU
NPB suite[22]. Some applications in the benchmark suites
are excluded because they run too fast or require too large
memory space.

Applications in AMD OpenCL samples only contain
OpenCL versions (OCL), while applications in Parboil and
SNU NPB provide sequential versions written in C (SEQ),
OpenMP versions (OMP), and OpenCL versions. 10 appli-
cations in AMD OpenCL samples use one or more vector
operations supported by NEON in the kernels. 9 applica-
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Figure 7. The execution time of applications executed with
PGCL 12.8[26] normalized to that of our OpenCL frame-
work. The higher the value is, the better our framework.

tions in AMD OpenCL samples use built-in functions that
are optimized by NEON instructions (Section 3.2). Note that
the vector operations or the built-in functions do not always
dominate the performance of an application.

5. Evaluation

5.1 Comparison with OpenMP

We measure the speedups of OMP and OCL versions over
SEQ versions to compare the effectiveness of two program-
ming models, OpenMP and OpenCL. Figure 6 shows the
result on Device A. Both OMP and OCL versions utilize
all four cores in the ARM processor of Device A to exe-
cute computational kernels. OMP and OCL versions of BFS
and HISTO invoke atomic operations frequently to share a
queue (BFS) or histogram bins (HISTO) between threads.
This is the reason whey they are slower than the SEQ ver-
sions. OCL versions of SGEMM and STENCIL have super-
linear speedups because the array access patterns of the OCL
versions differs from that of the SEQ versions. In most appli-
cations, OpenCL delivers performance comparable or higher
than OpenMP. The average speedup of OCL versions is 1.71,
while that of OMP versions is 1.41.

5.2 Comparison with PGCL

We compare the performance of our OpenCL framework
with PGCL 12.8[26], an OpenCL framework that targets
ST-Ericsson U8500 and later SoCs and Android platforms.
Since PGCL only supports a subset of the OpenCL specifi-
cation (i.e., the embedded profile of OpenCL) and has some
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Figure 8. The speedups of applications obtained by the
NEON optimizations for vector operations.

bugs, we cannot measure the performance of all applica-
tions on PGCL. Instead, we measure and compare the per-
formance of the selected applications from AMD OpenCL
samples. PGCL is executed with the -fast flag to enable
the NEON optimizations of PGCL. Figure 7 shows the result
on Device B. All applications run faster with our OpenCL
framework. PGCL is 4.9 times slower than our OpenCL
framework on average.

PGCL is known to use LLVM for generating machine
code for the target device, so the quality of the ARM
code generated by GCC in our OpenCL and LLVM in
PGCL seems to make difference in performance. Because
of PGCL’s proprietary design, we cannot analyze technical
details.

5.3 Effect of Optimizations for NEON

Vector Operations. Figure 8 shows the speedups of three
applications from AMD OpenCL samples, when vector op-
erations in kernels are optimized with NEON instructions.
We choose the applications that contain vector operations in
the kernels and their performance is largely depends on the
vector operations. Optimized by the auto-vectorizer shows
the case that our source-to-source translator generates an ex-
pression that performs the operation element-wisely, and the
auto-vectorizer in GCC actually converts it to NEON in-
structions. Optimized by the source-to-source translator
shows the case that our source-to-source translator directly
converts vector operations to NEON intrinsic function calls.

The result shows that the performance of BoxFilter is
improved by the vectorization performed by our source-to-
source translator, while that of RecursiveGaussian and Sim-
pleImage is improved by the auto-vectorizer in GCC. There
is a trade-off between the two vectorization methods. Our
translator may exploit additional vectorization opportunities
that the auto-vectorizer cannot find. On the contrary, the
quality of the binary generated by the auto-vectorizer is bet-
ter than that from the NEON intrinsic call, because GCC
does not translate the intrinsic calls to the binary efficiently
enough.

We test different versions of GCC from 4.5.3 to 4.7.2 in
order to evaluate the effect of NEON optimizations in our
OpenCL and notice that there is a significant improvement
in the later version of GCC in terms of NEON code gener-
ation, which results in comparable performance level as our
OpenCL. Particularly, the change in default vector size from
64 to 128 bit (in 4.7), the addition of support for wider in-
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Figure 9. The speedups of applications obtained by the
NEON optimization for built-in functions.

Applications # of auto-vectorized loops # of loops in total

BFS 0 4
CUTCP 2 10
HISTO 2 10

SGEMM 0 2
SPMV 0 1

STENCIL 0 2

Table 3. Loop-level auto-vectorizations performed by
GCC.

Before hand-vectorization After hand-vectorization

0.012682 seconds 0.006404 seconds

Table 4. The execution time of the OCL version of SGEMM
before and after hand-vectorization.

structions and the revision of load/store multiples (in 4.6)
are believed to contribute most to the performance gain in
GCC’s auto-vectorization.

Built-in Functions. To show the impact of the NEON
optimizations on built-in functions (Section 3.2), we choose
the OCL versions of applications that use the optimized
built-in functions, and measure the performance before and
after the opimization. Figure 9 shows the result on Device
A. Since the performance of BlackScholes largely depends
on built-in math functions, we obtatin the speedup of 2.2.
The performance of other applications also increases by up
to 23.5%.

Loop-level Auto-vectorization. The semantics of OpenCL
allows to execute statements in different work-items in any
execution ordering. Thus work-item coalescing loops (i.e.,
triply nested loops in Section 2.4) can be vectorized without
problem. However, the auto-vectorizer in GCC cannot find
this kinds of parallelism. Table 3 shows how many work-
item coalescing loops in work-group functions are auto-
vectorized by GCC. In four applications, GCC cannot find
vectorizable loops at all. For CUTCP and HISTO, GCC finds
two vectorizable loops for each application. However, these
loops only contain a single statement and do not affect the
overall performance.

Instead, programmers can vectorize kernels using OpenCL
vector types explicitly. For an instance, we vectorize the

OCL version of SGEMM in Parboil benchmarks by hand and
measure the performance improvement on Device A. Table 4
shows the result. The performance of the hand-vectorized
version is improved about twice.

6. Related Work

There are prior studies that propose methods to execute
OpenCL or other SPMD threaded applications on multi-
core CPUs. Gummaraju et al.[10] introduce Twin Peaks, an
OpenCL framework that targets heterogeneous processors
containing both CPU and GPU cores. Lee et al.[18] propose
an OpenCL framework for Cell BE processors. Their pro-
posal can also be used for multicore CPUs. As introduced
in Section 2.4, Twin Peaks use the setjmp() function to it-
erate over work-items in an NDRange, while Lee et al. use
the work-item coalescing technique. Stratton et al.[23, 24]
and Guo et al.[11] propose methods to translate a CUDA
program into a parallel C program using a technique simi-
lar to the work-item coalescing. The state-of-the-art OpenCL
frameworks[4, 12, 17] support multicore CPUs as their tar-
get devices.

Those studies mainly focus on desktop and server pro-
cessors, such as x86 CPUs. However, we aim at an OpenCL
framework for multicore ARM processors with the NEON
vector unit. We show the effectiveness of OpenCL and our
framework through the experiments on mobile devices. The
PGCL[26] is the only OpenCL framework that has NEON
support and is available in the market, which mainly tar-
gets ARM processors. The experimental result in Section 5.2
shows that our OpenCL framework outperforms the PGCL.

The SNU-SAMSUNG OpenCL framework[8], pocl[2],
and COPRTHR[7] also supports ARM processors, but they
do not have NEON support and optimizations. They just de-
pends on auto-vectorization in a native compiler. Section 5.3
evaluates the effectiveness of auto-vectorization in GCC by
focusing on work-group functions. As a result, we claim that
auto-vectorization in GCC is not beneficial for the work-
group functions and programmers need to vectorize kernels
by hand to achieve high performance. Maleki et al.[19] eval-
uated auto-vectorization capabilities of three compilers (i.e.,
GCC, the Intel C compiler, and the IBM XLC compiler) us-
ing a variety of benchmarks to see the effectiveness of vec-
torizing compilers.

RenderScript[9] also provides an SPMD programming
model and built-in vector operations for multicore ARM pro-
cessors. However, it is a component of the Android operating
system and does not support other kinds of platforms.

Karrenberg et al.[13, 14] propose an auto-vectorization
technique for OpenCL kernels. Their technique finds paral-
lelism at the level of work-item coalescing loops. Kerr et

al.[15] propose a similar technique for CUDA kernels. We
leave as our future work implementing auto-vectorization
techniques in our framework and evaluating their perfor-
mance on ARM processors.

7. Conclusions

In this paper, we introduce an OpenCL framework for mul-
ticore ARM processors. The ARM processor acts as both a
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host processor and an OpenCL device. Every core becomes
a compute unit and executes all work-items in the same
work-group sequentially one by one. Work-groups in the
NDRange are evenly distributed to the cores. Our OpenCL C
compiler adopts the work-item coalescing technique to exe-
cute multiple work-items in a single work-group efficiently.

Programmers may utilizes the NEON vector unit in
two ways to boost the performance of kernels. First, us-
ing OpenCL vector types and operations gives more vec-
torization opportunity to the kernel. The auto-vectorizer
in GCC cannot find parallelism at the level of work-item
coalescing loops. However, once a kernel is vectorized by
hand, our source-to-source translator or the auto-vectorizer
in GCC can easily convert the vector operations to NEON
instructions. Second, our built-in functions of OpenCL C use
NEON instructions in their implementation.

We evaluate the performance of our OpenCL framework
using 37 benchmark applications from three benchmark
suites and two multicore ARM SoCs. The result shows that
our framework is 21% faster than OpenMP and 4.9 times
faster than PGCL on average. We also present the effective-
ness of the optimization techniques for NEON. As a result,
we show that OpenCL is a promising programming model
for multicore ARM processors.
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