
An Empirical Comparison of Monitoring Algorithms for
Access Anomaly Detection

lel

Anne Dinning * Edith Schonberg t

Courant Institute of Mathematical Sciences IBM T.J. Watson Research Center
New York University P.O. Box 218

251 Mercer Street, New York, NY 10012 Yorktown Heights, NY 10598
(dinning@cs.nyu.edu) (schnbrg@ibm.com)

Abstract

One of the major disadvant,ages of paral-
programming with shared memory is the

an.omalies. An access anomaly occurs when two concur-
rent execution threads access the same memory location
in an “unsafe” manner: more specifically, when either
two concurrent threads both write or one reads and one
writes a. shared memory location without coordinating
these accesses. The program segment in Figure 1 illus-
trates a,n access anomaly. The doall construct creates
two parallel threads that both write the variable X. The

nondeterministic behavior caused by uncoordi-
nated access to shared variables, known as nc-
cess anomalies. hlonitoring program execution
to detect access anomalies is a promising and
relatively unexplored approach to this prob-
lem. We present a new algorithm, referred to
as task recycling, for detecting anomalies, and
compare it to an existing algorithm. Empirical
results indicate several significant conclusions:
(i) While space requirements are bounded by
O(T x V), where T is the maximum number of
threads that may potentially execute in paral-
lel and V is the number of variable monitored,
for typical programs space requirements are on
average O(V). (ii) Task recycling is more eff-
cient in terms of space requirements and often
in performance. (iii) The general approach of
monitoring to detect access anomalies is prac-
tical.

1 Introduction
Erroneous non-deterministic behavior in shared mem-
ory parallel programs is often the result of access

*This research was supported in part by an IBM Graduate
Fellowship.

‘This research was supported in part by the Applied Math-
ematical Science subprogram of the office of Energy Research,
U.S. Department of Energy under contract number DE-FG02-
88ER25052.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
0 1990 ACM 089791-350-7/90/0003/0001 $1.50

I Y=l

i=l

x=y+1

0

i=2 Y=l
doall i = 1 to 2

X=Y’t2
X=Y+i

endall

z=x+y

I Z=X+Y

Figure 1: Simple Program With an Access Anomaly

value of X subsequently used t,o calcula.te Z depends on
whether iterate i = 1 or i = 2 updates X la.st. There-
fore the two writes to X are anomalous. Variable Y
is also accessed in both concurrent threads i = 1 and
i = 2; however, this is not an a.nomaly because both ac-
cesses are reads. Similarly, the assignment to Y in the
first statement does not cause an anomaly because it is
always performed before either read. While certain in-
ternal non-determinism [5] does not affect the outcome
of programs and is safe (e.g. the non-deterministic or-
der in which a lock is granted), access a.nomalies often
introduce external n.on-determinism that modifies exe-
cution results. Although some programs a,re designed
to contain access anomalies, this type of external non-

determinism is usually unintentional. Traditional de-
bugging techniques a.re of limit,ed use in finding errors

1

caused by access anomalies because such bugs are sen- 2 Definitions and Framework
sitive to timing.

Detecting access anomalies by monitoring program
ezecution is proposed in [12, 10, 11, 41. Using this
approach, access anomaly are detected much in the
same manner that array subscript range checking is per-
formed. When a variable is accessed during execution,
an immediate check is make to see whether the access
conflicts with a previous access, in which case the error
is reported. This approach may be used in conjunction
with static analysis [5, 23 and is much more efficient that
trace-based post-mortem methods [l, 3, 81.

Thus paper describes a new on-the-fly access
anomaly algorithm called task recycling’ and compares
it to an existing method, English-Hebrew labeling [9, lo].
These methods were implemented in the parallel For-
tran compiler on the NYU Ultracomputer [6]. Both al-
gorithms record read and write events in access histories
that are associated with monitored variables. While in
the worst case the length of an access history depends
on the amount of parallelism in the program, experi-
mental results show that access histories in fact rarely
have more than a few entries2.

The two algorithms differ in the methods used
to determine whether different threads are concurrent,
The experiment shows that task recycling is less effi-
cient for maintaining concurrency information at paral-
lel operations than English-Hebrew labeling. However,
it is more efficient when checking for anomalies at read
and write events and requires considerably less storage.
Since read and write events are generally more frequent
than parallel operations, we conclude that task recy-
cling is an improvement over English-Hebrew labeling
both in performance and space.

Finally, the experiment measures the actual cost of
monitoring. For the benchmark programs, monitoring
entails a 3-fold to 6-fold slowdown. Although this cost
is high, it is not unreasonable during a debugging phase
of program development. Moreover, this is the cost of
monitoring every shared variable reference. In general,
static analysis or user directives may be used to limit
the number of variables monitored, and thus greatly re-
duce the cost. Section 2 states the anomaly detection
problem in terms of the partial order execution graph
and describes access histories. The two algorithms for
determining concurrency relationships are presented in
Sections 3 and 4. The experiment is presented in Sec-
tion 5, and the results summarized in Section 6.

‘This algorithm relies of version numbers and parent vectors,
which are similarly used in [3] for post-mortem analysis.

2A~cess history baaed methods are therefore superior to the
method described in [II] in which the size of the access data
depends on the parallelism

The Ultracomputer parallel Fortran compiler provides
the nestable doall-endalf construct as its primary con-
currency primitive. Concurrent threads are created by
a doall operation and terminated by a corresponding
endall operation. Coordination primitives provided as
library routines may be classified as synchronous or
asynchronous3. If two threads coordinate synchronously

(e.g. via a barrier operation) neither thread may ex-
ecute beyond the coordination point until both have
reached it. If two threads coordinate asynchronously
(e.g. via a signal operation) the receiver may not exe-
cute beyond the coordination point until the sender has
reached it; however, the sender may proceed immedi-
ately. A block is an instruction sequence, executed by a
single thread, that does not include doall, endall or co-
ordination operations. Hence a thread is made up of a
sequence of blocks that reflect its interaction with other
threads.

The concurrency relationship among blocks is rep-
resented by a directed partial order execution graph,
(POEG). A POEG captures Lamport’s “happens be-
fore” relation and imposes a partial order on the set
of blocks that make up an execution instance [7]. An
edge is either a block or coordination edge; a coordina-
tion edge connects vertices of two coordinating blocks.
A vertex corresponds to a doall, endall or coordination
operation. Concurrency determination is independent
of the number and relative execution speeds of proces-
sors executing the program. A block bj is an ancestor
of a block b; if there is a path from bj to bi in the graph
(equivalently, bi is a descendant of bj). Two blocks are
concurrent iff neither is an ancestor of the other. We
define the maximum concurrency of a POEG to be the
maximum number of mutually concurrent blocks. To il-
lustrate these definitions, consider the POEG in Figure
2. Block b3 is concurrent with blocks be, b5 and b,; it
is not concurrent with block bo and bl (which are an-
cestors) or with blocks be - his (which are descendants).
The maximum concurrency of the graph is four.

In access history based algorithms, each block has
an associated label. The access history for a variable X
is a set of labels of the blocks which have read and writ-
ten X. Every time variable X is read or written, the
access history is examined to determine whether the cur-
rent event conflicts with a previous one. When block b
reads X, it must be determined whether b is concurrent
with the writers in the access history for X. When block
b writes X, tests are performed to determine whether b
is concurrent with any of the blocks in the access history
of X. Therefore, the efficiency of an access a.nomaly al-

3We assume that all interthread coordination is explicit; we
do not attempt to solve the problem of automatically detecting
coordination

bo I bo

b3

b7 h2

Figure 2: Partial Order Execution Graph

gorithm depends primarily on how quickly the test of
concurrency can be made and how many entries are in
the access history. We next show how access histories
can be compressed.

Consider the accesses to variable X in the POEG
in Figure 3. The write of X in bg conflicts with the
reads of X in b2 and bs. Suppose X is read in b2, bs,
and b3 in that order, and then written in bg. After the
first read, the access history of X contains b2. When X
is next read in bg, bs is added to the access history and
bz is deleted. The b2 read event is no longer needed:
any subsequent write event that conflicts with bs also
conflicts with b2. On the other hand, when b3 is added
to the access history, b6 cannot be deleted. Otherwise,
no anomaly can be detected when X is written in bg,
since this write does not conflict with the read in b3.

More generally, a block b in the reader set of a vari-
able X can be deleted when a descendant of b a.ccesses
X. Thus, the reader set of an access history contains
two blocks only if they are concurrent. (On the other
hand, since two concurrent writes always conflict, there
is at most one writer in an access history.) By deleting
obsolete entries, the size of an access history is therefore
bounded by the maximum concurrency of the POEG.
We show in Section 5 that this bound is, in fact, much
too pessimistic. Although compaction reduces the size
of the reader and writer sets, certain information may
be lost. In particular, if there are multiple anomalies
involving the same variable some of them may not be
reported. However, at least one anomaly is guaranteed
to be reported for every variable which is accessed in an

b3 b=i hi bs I
ba

Figure 3: A Partial Order Execution Graph with Access
Anomalies

“unsafe” manner.

3 English-Hebrew Labeling
In the English-Hebrew labeling algorithm, the structure
of the POEG - and hence, the concurrency relationship
among blocks - is encoded in lags [lo, 91 associated with
blocks. A tag consists of a pair of labels: an English la-
bel E and a Hebrew label H. Conceptually, the English
label is produced by performing a left-to-right preorder
numbering of the POEG; each block is assigned a num-
ber less than all of the numbers assigned to its children
and its siblings to the right. However, since this label
must be generated on-line, a complete traversal of the
execution graph cannot be performed. Therefore, a la-
bel is a string of numbers and labels are lezicogruphically
ordered. The children blocks cc . . . cm of a doall vertex
with parent block p are assigned English labels:

doall: E(tag,,) c E(tag,)] i

where] is the append operation. Similarly, a block c
created in a coordination operation which has parent p
is assigned an English label:

coordination: E(tag,) t E(tag,) 1 1

The child block c of an endall vertex with parents pc
. . . p,,, is assigned English label:

endall: E(tag,) + ~~4wvp;))

The Hebrew labels are created symmetricly for a right-
to-left ordering; the only difference is that the ith child
of a doall operation has f + 1 - i as the last entry in its
Hebrew tag. As specified above, the length of the labels

increase with the number of doall and coordination op-
erations. However, an additional heuristic described in
[lo] bounds the label length to the level of nesting.

Two tags tagi and tagj are unordered iff either of
the following conditions is met :

E(tagi) < E(tagj) and H(tag;) > H(tagj) or
E(tagi) > E(tagj) and H(tagi) < H(tagj)

English-Hebrew tags only encode the ordering due to
doall and endall operations; if two blocks are ordered in
the POEG because of explicit coordination, their tags
are unordered. Therefore, an additional mechanism is
needed to record execution orderings imposed by coor-
dination. To this end, a coordination list is associated
with each executing block b and consists of the tags of
the ancestors of b such that all tags are unordered. The
test for concurrency between two blocks b and c requires
determining if i!agb or any of the tags in /‘is& are ordered
with tag,. Thus, the total amount of work is bounded
by the size of the coordination lists times the length of
the tags.

The length of a coordination list is bounded by the
maximum concurrency of the POEG. When a block ter-
minated, its coordination list is deleted so that the to-
tal number of coordination lists is also bounded by the
maximum concurrency of the POEG. If tags are stored
directly in the access history, storage can potentially be
large and there is a larger constant overhead because
tags are variable length. On the other hand, if tags
are stored indirectly (i.e. if access histories consist of
pointers to tags), tags must be saved throughout the
execution requiring storage proportional to the number
of blocks.

Figure 4 illustrates the use of English-Hebrew
labels for a POEG. The coordination list of block
1131,123l contains the tag 121,113 because of the coor-
dination edge in the POEG. Likewise, blocks 1211,1131
and 123,113 have coordination lists containing the tag
113,123. However, block 123,123 does not have a co-
ordination list because all of the tags in the coordina-
tion lists of its parent blocks are ordered with 123,123.
We can determine that blocks 111,123 and 12,11 are
concurrent because their tags are unordered; namely,
the first condition is satisfied: 111 < 12 and 123 > 11.
However, blocks 1131,1231 and 12,ll are not concurrent
because an entry in the concurrency list of 1131,1231 -
121,113 - is ordered with 12,11.

4 Task Recycling Algorithm

Task Recycling reduces the cost of testing whether two
blocks are concurrent to an array reference while in-
creasing the expense of concurrency information main-
tenance. Instead of a tag, each block has a. unique tusk
identifier, which consists of a task and a version num-
her. Tasks can be recycled; that is, more than one block

1.1 I

11,12

111, 23

ii-

112,122

113

123, 23

I

Figure 4: English-Hebrew Labeling

can be assigned to the same task at different times in
the program execution. The version number of a task
identifier is used to distinguish among different blocks
assigned to the same task; every time a block is as-
signed to a task t, the associated version number v is
incremented. The label storage problem is therefore ad-
dressed because the number of labels is bounded and
they are easy to store directly.

Concurrency information is maintained in a parent
vector which is associated with each currently executing
block4. The number of entries in a parent vector is equal
to the number of tasks. The t’* entry in the parent
vector for block b contains the largest version number
associated with those ancestors of b which were assigned
to task 1. New ‘parent vectors are formed from those
vectors associated with parent blocks. In particular,
when blocks p1 . . ,pm with task identifiers t,,, . . . t,,,
create a new block c the parent vector of c is initialized
as follows:

fori= ItoTdo

if 3tj~{tl...tmj : i = ti then

pared,[i] + Vj

else parent,[ij 4- max(parent,, [i], . . . ,pwentP,[i])
endfor

A block b is concurrent with a block with task identifier
t, iff pa?Yntb[t] < V. Thus, there is a constant cost (an
array access) for checking whether two blocks are con-

4Parent vectors correspond to Qefore vectors in [3, 81. However,
because we monitor on-line, we do not need the corresponding
after vectors used for post-mortem trace analysis.

current. (Coordination lists, on the other hand, must be
searched linearly). As with English-Hebrew labels, only
currently executing blocks need parent vectors; storing
a task identifier in an access history is sufficient to deter-
mine whether two blocks are concurrent. Once a block
terminates, its parent vector is discarded.

Figure 5 shows a task assignment and parent vec-
tors for a POEG. In this example, block 1s is concurrent

Task Ids Task Ids Parent Vector Parent Vector

11 11 co,o,o~o,o,ol co,o,o~o,o,ol
12,21 12,21 [l,0,0,0,0,01 [~,0,0,0,0,01

13,319 41 13,319 41 [2,0,0,0,0,01 [2,0,0,0,0,01
22,519 61 22,519 61 [LL0,0,0,01 [LL0,0,0,01

14 14 [3,0,~,LwI [3,0,~,LwI
15,-&s 15,-&s [4,2,I,I,O~O] [4,2,I,I,O~Ol

24 24 [4,3,1J,l,ll [4,3,1J,l,ll
J J 16 16 [5,4,I,I,I,I] c [5,4,I,I,I,I] c

Figure 5: Task Recycling Assignment

with block 21 since the second entry in the parent vector
of 1s - [Z,O,O,O,O,O] - is less than 1. However, block 15 is
not concurrent with 21 because the second entry in its
parent vector - [4,2,1,1,0,0] - is greater than 1.

A block b is validly assigned to a task t iff it is
not concurrent with any other block previously assigned
to t. The goal of task assignment is to minimize the
number of tasks used while maintaining a valid task
assignment since this determines the length of parent
vector. Our task assigument algorithm - from which
this method derives its name - is based on a “most re-
cently used” (MRU) heuristic and yields a good task a.s-
signment; there is no on-line task assigmnent algorithm
which guarantees an optimal assignment [4].

To implement the MRU algorithm, a free tusk dag

is maintained. There is a vertex in the dag associated
with every doall, endall and coordination operation, and
every currently executing block. (These latter vertices
are always leaf vertices). The direction of edges in the
dag is the reverse of the execution flow. A set of free
tasks, i.e. those tasks that are available for recycling, is
associated with each vertex. When a block b terminates
at a doall or endall operation 0, it adds its task to the
free task list of the vertex wg associated with 0. When a
block terminates in a coordination operation, its task is
added to vo and the children its associated block vb are
added to the child list of ~10. When a block b is created
after operation 0, an edge is added from the vertex vb
associated with b to vertex vo. To assign a task to a
block b, a topological traversal of the dag is performed
starting at ‘ub until a vertex with a non-empty free task
set is found.

Two optimizations minimize the cost of this topo-
logical traversal. Whenever a free task set of a vertex v
becomes empty, the da.g is collapsed by deleting v from
the dag and adding edges from the parent vertices of v
to children vertices of v. Therefore, every vertex in the
free task dag has at least one free task associated with
it. Whenever a vertex v has a single parent vertex p, v
is subsumed by p by adding the free task set of ‘v to the
free task set of p, deleting u and adjusting the edges as
appropriate.

Although the cost of performing task assignment is
potentially quite high, for a large class of programs it is
very limited. In particular, for programs with no nested
parallelism and programs with nested parallelism but no
coordination a constant amount of work is performed in
assigning a task to a block.

5 Empirical Results

The preceding section presents two algorithms for de-
tecting access anomalies in parallel programs. In gen-
eral, English-Hebrew labeling will perform better than
task recycling for programs with little coordination and
frequent fine-grained doall operations because of the rel-
atively high cost of maintaining parent vectors and ta.sk
assignment. However, task recycling is clearly more effi-
cient than English-Hebrew labeling in one way: the cost
per variable a.cce.ss is less. Because this is frequently
the most common operation, this is an important at-
tribute of ta.sk recycling. Additionally, there is almost
always a large storage penalty for saving tags in the
English-Hebrew labeling algorithm. Moreover, if there
is frequent coordination, the cost of maintaining coor-
dination lists approaches the cost of maintaining parent
vectors, so that any advantage of English-Hebrew label-
ing is diminished.

General discussions of algorithm design, however,
give incomplete insight into the costs encountered when

5

detecting anomalies in actual parallel programs. In or-
der to better evaluate the two algorithms - as well as to
gain insight into actual concurrency structure and mem-
ory access patterns - we monitored several benchmark
scientific parallel programs:

Triso - Solves a sparse triangular linear system
of equations using wavefront parallelism

Finite - Solves a linear system using finite
element methods

Simple - Solves partial differential equations for
hydrodynamics and heat conduction

Polymer - Performs molecular dynamic calculations
of polymer systems

Our first goal in performing these benchmarks is to
obtain representative values for parameters that mea-
sure concurrency structure and shared variable access
patterns for parallel program. This gives us a general
idea about the applicability of various monitoring tech-
niques. Our second goal is to measure the actual perfor-
mance impact of monitoring parallel programs. English-
Hebrew and task recycling are compared on both their
execution time and space requirements. The implemen-
tation and benchmark results are discussed in the fol-
lowing sections.

5.1 Implementation
The two monitoring algorithms are implemented for the
Ultracomputer parallel Fortran compiler. The access
anomaly detection algorithms are implemented by two
library packages mostly written in C. The routines for
maintaining access histories are written in assembler for
reasons of efficiency. A front-end pre-processor allocates
the storage for access histories and inserts calls to the
run-time libraries in the program being monitored. This
implementation is relatively portable to other parallel
Fortran system. The pre-processor approach also sim-
plifies the implementation; however, the resulting moni-
toring efficiency is worse than if the compiler were mod-
ified.

Several optimizations were made to task recycling
and English-Hebrew algorithms during implementation:

l For every monitored variable there is a “mirror”
variable which contains its access history. Thus,
when a block reads A[i], the access history in
Aoh[i] is checked for anomalies and then updated.
The access history lengths are fixed because of 16
megabyte memory constraints. While this limita-
tion may result in undetected anomalies, we believe
that anomalies will be missed only rarely, since the
measurements discussed in Section 5.3 indicate that
the size of the reader set is generally very small.
Each entry in an access history contains a task iden-
tifier or a pointer to the English-Hebrew label and
the line number and a pointer to the function name
of the last access; this enables us to identify the lo-

cations in the program code where access anomalies
occur.

l English-Hebrew labels consist of a string of two
byte integers and a length field. They are stored
indirectly in access histories and coordination lists.
This decreases the size and complexity of access his-
tories. There is no attempt made to reclaim space
for labels no longer referenced. We feel the addi-
tional expense of maintaining reference counts out-
weighed the benefits of possibly decreasing storage
requirements.

l Blocks can share parent vectors (in task recycling)
or coordination lists (in English-Hebrew labeling) if
they have identical sets of ancestors. For example,
all blocks created by a doall operation share the
same ancestors; one of these blocks must obtain a
private parent vector or coordination list only if it
terminates before the endall (e.g. by performing
a nested doall or coordination operation). For a
nested doall operation with outer parallelism of m
and inner parallelism of n, this reduces the number
of parent vectors and coordination lists by a factor
of 72772. 5

l Both algorithms benefit from a “run-until-
completed” scheduling paradigm, which is the com-
mon scheduling method used in the Ultracomputer
and many other parallel Fortran environments.
Parallel scientific codes typically exhibit a high
degree of nominal parallelism. In the run-until-
completed model, each block created in a doall will
not block until it terminates at its associated en-
da11 operation. This limits the number of blocks
which can ever run concurrently to 7~, the underly-
ing parallelism of the machine. This is not a strong
optimization for English-Hebrew labeling, since the
majority of its space requirement is for block labels;
it is more effective for task recycling since parent
vector storage is more significant.

l In the Ultracomputer parallel Fortran environment,
each of n actual processes perform the work of sev-
eral parallel blocks. The differences among the par-
ent vectors of these blocks are very small. There-
fore, in order to reduce the work performed in main-
taining parent vectors, a private “template” parent
vector is cached for each level of nesting. When a
block b updates its parent vector, the process which
is performing the work of b also records the modi-
fications. When block b terminates it must update
the parent vectors of its children blocks. Instead
of compa.ring all of the entries in its parent vec-
tor, it simply compares the recorded modifications.

51f local memory is available and the cost of accessing shared
memory is much higher than local memory, sharing of data struc-
tures may not be cost-effective.

6

Likewise, when a new block is created the template
parent vector must be reinitialized. The modifica-
tion records are used to back out the changes made
rather than reinitializing all of the entries.

For programs with only doall and endall operation,
the per block cost is reduced from the maximum
concurrency of the graph to the maximum level of
nesting (the number of times that a change must
be either added or backed out of a parent vector)
and the amount of space and work per process is
the product of the maximum concurrency and the
level of nesting. Because coordination lists would
have to be traversed to perform the updates, there
is no corresponding optimizations for the English-
Hebrew labeling scheme.

5.2 Concurrency Structure
For all four benchmark parallel programs, the concur-
rency structure is quite simple: there is very limited
nesting of doall constructs and minimal synchroniza-
tion. However the degree and granularity of parallelism
vary considerably.

l Triso has coarse granularity parallelism with lim-
ited synchronization. It consists of a single doall
operation which creates 8 parallel threads; these
subsequently perform two barrier synchronization
operations.

l Simple has medium granularity parallelism with
some locking. It performs 10 doall operations that
each create 124 parallel threads, and 130 operations
that create from 10 to 30 threads. In addition, dur-
ing 10 phases of execution approximately half of the
30 concurrent threads obtain a lock (represented by
an asynchronous coordination edge in the POEG).

l Finite exhibits a large degree of fine granularity
parallelism and does not use coordination opera-
tion. It performs 60 doall operations that each cre-
ate 1000 parallel threads; 50 operations that create
250 threads and 200 operations that create between
2 and 32 threads. Each block performs a very lim-
ited amount of computation; in many case a block
consists of a single operation on an array element.

l Polymer also exhibits a large degree of fine granu-
larity parallelism and does not use coordination op-
eration; however, it has one level of nested doall op-
erations (the first three benchmark programs have
no nested doall operations). It performs 40 nested
doall operations; the outer operations create 1000
parallel threads each of which creates 3 parallel sub-
threads. In addition, it performs 20 doall opera-
tions which create 350 parallel threads and 10 doall
operations which create 100 parallel threads.

The last two programs have such fine granularity paral-
lelism that monitoring them primarily measures the cost

of maintaining concurrency information rather than the
cost of checking accesses to shared variables. Table 1
summaries the concurrency parameters for the bench-
mark programs. The experimental results presented in

Table 1: Concurrency Structure

Sections 5.4 and 5.5 show that the concurrency struc-
ture of the program has a significant impact on the cost
of maintaining concurrency information. However, the
concurrency structure does not significantly impact the
cost per variable access, as discussed in the next section.

5.3 Shared Variable Access Patterns
The work and space required for maintaining access his-
tories is proportional to the average size of the reader
set of an access history. While theoretically the size
of the reader set may grow to the maximum concur-
rency of the graph, in practice the size is much smaller.
Many parallel scientific codes distribute workloads by
partitioning data among concurrent threads. Hence a
thread often shares data with a neighboring thread, but
seldom shares data with all other threads. Therefore,
one would expect the number of concurrent readers to
be limited.

The shared memory access patterns measured for
the benchmark programs support this conclusion and
are shown in Table 2. Each column gives the percentage
of accessed6 shared variables with at most the specified
number of concurrent readers. In the Triso program, for
example, 15% of the shared variables have two concur-
rent readers at some point during execution, but never
have more than two.

The last column of Table 2 shows the average max-
imum reader set size for all variables with less than 10
concurrent readers7. For the first three benchmark pro-
grams. this includes virtually all shared variables and is
an upper bound on the size of the reader set. Since for
the Polymer program 10% of the variables have more
than 9 concurrent readers, the figure in the last column
only reflects statistics for 90% of its shared variables. If
we are conservative and assume that all of these vari-
ables a.re accessed by all 3,000 concurrent block, the
average reader set size is 279 concurrent readers (which

‘Because fixed maximum sized arrays are used, many shared
variables are never accessed.

‘It is not possible to measure reader sets larger than 10 due to
memory constraints on the Ultracomputer

Percentage of Variables with Reader Set Sizes Awe
Program 1 2 3 4 5 6 7 8 9 >9 Size

Triso 80.2% 15.0% 4.8% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.25
Simple 49.3% 41.0% 9.6% t 0.0% 0.0% 0.0% 0.0% 0.0% t 1.69
Finite 48.4% 32.5% 4.6% t t 0.9% t t 13.4% t 2.71

Polymer 72.9% 9.4% 2.6% 1.1% 2.8% 0.8% 2.6% 6.2% 2.0% 9.3% 1.31
t Less than 0.1% of the variables have reader sets of this size

Table 2: Reader Set Sizes

is still much less than 3,000). If we are slightly less
conservative and assume that all of these variables are
accessed by the average number of concurrent blocks,
the average reader set size is 168.

Table 2 reveals two somewhat surprising results:

1. The size of reader sets tends to be very small. In
all four programs, more than 80% of the variables
are never read by more than two concurrent readers
and almost 50% are never read concurrently. More-
over, a variable with maximum measured reader set
size of n may actually have a much smaller reader
set size throughout most of the execution of the
program. Hence our estimate of the average reader
set size is pessimistic with respect to the actual av-
erage reader set size.

2. There appears to be little correlation between the
average reader set size and the degree of parallelism
of the program. For example, the Triso and Poly-
mer programs have fairly similar access patterns for
the majority of their variables (excepting the 9.3%
in the Polymer program with more than 9 concur-
rent readers). Triso, however, has a very low degree
of parallelism while Polymer has nested parallelism
of a very high degree.

Since the average reader set size is so much smaller than
their worst case bounds, we conclude that the access
history based algorithms are preferable to that of [ll]
in which the storage depends on the maximum concur-
rency of the POEG.

5.4 Space Requirements
For the results described in the following two sections
four versions of each program were executed:

Unmonitor - unmonitored program
Monitor(l) - monitors every sha.red variable

using a reader set size of one
Monitor(Z) - monitors every shared variable

using a reader set size of two
Concurrency - maintains concurrency information

only; no variables are monitored

Table 3 compares the memory requirements for each
of the four versions of the benchmark programs listed
above. The static size is the size of the object mod-

II II Static Sizes 1 Dynamic
Prooram Unm I Mon/lI I Monf2) I TR I E-H

Static Sizes Dynamic
Program Unm Man(1) Man(2) TR E-H

Triso 163 660 1,000 2 8
Simple 314 921 1,270 6 80
Finite 230 745 1,020 29 954

Polymer 639 2,898 4,461 279 7,000 t
tEstimated Value

Triso
I.

163 666 1,606 2 8
Simple 314 921 1,270 6 80
Finite 230 745 1,020 29 954

Polymer 11 639 1 2,898 1 4,461 1 279 1 7,000 t
tEstimated Value

u

Table 3: Space Requirements (in Kbytes)

ule which includes additional monitoring code as well
as storage needed for access histories. (This is virtu-
ally the same for both algorithms). The dynamic size
is the amount of storage needed for concurrency infor-
mation, which is allocated at run-time. As is seen in
Table 3, English-Hebrew labeling requires substantially
more space than task recycling for maintaining concur-
rency information. In fact, it is not possible to obtain
the actual dynamic memory requirements of Polymer
for the English-Hebrew labeling scheme; the amount of
storage needed for concurrency information exceeds the
capacity of the Ultracomputer and hence an estimate
was calculated based on the concurrency structure of
the POEG.

5.5 Execution Times

Table 4 displays user mode execution times for the four
benchmark programs using both of the anomaly detec-
tion algorithms. Concurrency isolates the cost of main-

Task Recycling
Program Unii2 Con c Man(1) Mon(2)

Triso 3.5 4.1 19.6 22.7
Simple 202 263 550 598
Finite 98 734 959 1108

Polymer 789 3330 4367 4607

~~~ 

tPolymer was not monitored due to memory constraints 

Table 4: Total Execution Time (in seconds) 

8 



taining the concurrency information from the overall 
cost of detecting access anomalies. This cost is sub- 
stantial for the programs with very high degrees of fine- 
grained parallelism. In the current implementation of 
the task assignment algorithm, assigning and freeing a 
task requires locking vertices in the free task dag, which 
creates a serial bottleneck. If free tasks are stored in par- 
allel access data structures (e.g. parallel access queues), 
it may be possible to decrease this serialization effect. 

For the Triso and Simple programs, the English- 
Hebrew labeling algorithm requires more time than task 
recycling for monitoring variables (as is shown in the 
run times for Monitor(l) and Monitor(2)), even when 
the cost of maintaining concurrency information is less 
(as in shown in the run times for Concurren.cy). The 
primary cost in the Polymer and Finite programs is 
the maintenance of concurrency information; this is not 
surprising given the fine granularity of the parallelism 
in the two programs. For both algorithms, the overall 
increase in computation time is too high for transpar- 
ent monitoring of all shared references. Nevertheless, 
we not believe the cost it too prohibitive for on-the-fly 
anomaly detection to be a useful debugging tool. More- 
over, static analysis and/or a compiler-based implemen- 
tation should make it more efficient. 

Note that the time measurements presented are the 
total execution times of all concurrent threads rather 
than elapsed running time. The maintenance of con- 
currency information results in a 57% - lGO% increase 
in elapsed running time, while monitoring all accesses 
to all shared variables with reader sets of size one incurs 
a 160% to 460% increase in execution times. The differ- 
ence between the elapsed and execution time increases 
stems from Amdahl’s 1a.w: almost all of the additional 
work is performed in parallel. 

From Section 5.3 we know that using two entry 
reader sets instead of one entry reader sets significantly 
increases the percentage of variables guaranteed to have 
at least one anomaly detected (from 50% to 80%). A 
comparison of the execution times for Monitor(l) and 
Monitor(2) in Table 4 shows that we may do so with 
little additional cost. Table 5 isolates the cost of main- 
taining access histories and shows the percenta.ge in- 
crease when using reader sets of size two instea.d of one. 
The isolated times are computed as the total monitored 

MO@) hlon(2) Increase 
r 

Program TR E-H TR E-H TR E-H 
Triso 16.4 16.3 21.0 22.1 20% 22% 

Simple 287 242 335 339 17% 40% 
Finite 225 297 354 685 57% 130% 

Table 5: Access History Update Time (in seconds) 

execution time (Monitor(l) and h1onitor(2)) less the ex- 

ecution time when simply maintaining concurrency in- 
formation (Concurrency). These relative time increases 
indicate that as reader sets grow in size, the cost of 
detecting anomalies increases more rapidly for English- 
Hebrew labeling than for task recycling. Therefore, as 
larger reader sets are used the cost of the more complex 
task concurrency verification in the English-Hebrew al- 
gorithm becomes increasingly more significant. 

6 Concluding Remarks 

This paper presents the problem of detecting access 
anomalies in parallel programs under a models of con- 
currency which incorporates nested parallel loops and 
synchronous and asynchronous coordina.tion. An exist- 
ing on-the-fly algorithm - English-Hebrew labeling - is 
described and compared with a new algorithm based 
on task assignment to a partial order execution graph. 
Experimental data from monitoring four benchmark sci- 
entific programs using the two algorithms indicate four 
importa.nt results: 

1. 

2 

3. 

4. 

The benchmark programs use data partitioning so 
extensively that over 80% of all variables never have 
more than two concurrent readers. Therefore, the 
size of access histories appears to be independent 
of the degree of parallelism within the program. 

The task recycling algorithm requires much less 
storage for concurrency information than English- 
Hebrew labeling. 

Because of its efficient concurrency information 
management, English-Hebrew labeling performs 
better on programs with frequent doall operations 
and relatively few accesses to shared variable. 

However, as reader sets or concurrency lists in- 
crease in size the high cost of performing concur- 
rency verification in English-Hebrew labeling out- 
weighs the cost of parent vector management in the 
task recycling algorithm. 

If the benchmark programs are indicative of a wide class 
of para.llel programs, the task recycling algorithm is an 
important improvement over existing technology. 

Acknowledgements 

We would like to thank Marc Snir and Larry 
Rudolph for their introduction to this problem and Ron 
Cytron, Al1a.n Gottlieb, Bud Mishra and Ed Schonberg 
for their ma.ny helpful suggestions. 

References 

[l] Todd R. All en and David A. Pa.dua. Debugging 
Fortran on a Shared Memory Machine. In Pro- 
ceedings of the International Conference on Paral- 
lel Processing, pages 721-717, Aug 1987. 

9 



[2] David C a a 11 h an and Jaspai Subhlok. Static Anal- 
ysis of Low Level Synchronization. In Proceedings 
on the SIGPLAN Workshop on Parallel and Dis- 
tributed Debugging, pages 100-111, May 1988. 

[3] Jong-Deok Choi, Barton P. Miller, and Robert Net- 
ser. Techniques for Debugging Parallel Programs 
with Flowback Analysis. Technical Report, Univer- 
sity of Wisconson, Aug 1988. 

[4] Anne Dinning and Edith Schonberg. An Evalua- 
tion of Monitoring Algorithms for Access Anomaly 
Detection. Technical Report Ultracomputer Note 
#163, New York University, July 1989. 

[5] Perry A. Emrath and David A. Padua. Automatic 
Detection of Nondeterminancy in Parallel Pro- 
grams. In Proceedings on the SIGPLAN Workshop 
on Parallel and Distributed Debugging, pages 89- 
99, May 1988. 

[6] Allan Gottlieb. An Overview of the NYU Ultra- 
computer Project. In J.J. Dongarra, editor, Exper- 
imental Parallel Computing Architectures, pages 25 
- 95, Elsevier, 1988. 

[7] Leslie Lamport. Time, clocks, and the ordering of 
events in a distributed system. Communications of 
the ACM, 21(7), Jul 1978. 

[8] Barton P. Miller and Jong-Deok Choi. A Mecha- 
nism for Efficient Debugging of Parallel Programs. 
In Proceedings on the SIGPLAN Workshop on Par- 
allel and Distributed Debugging, May 1988. 

[9] Itzhak Nudlet and Larry Rudolph. Indeterminancy 
Considered Harmful, 1988. 

[lo] Itzhak Nudler and Larry Rudolph. Tools for the Ef- 
ficient Development of Efficient Parallel Programs. 
In Iat Israeli Conference on Computer System En- 
gineering, 1988. 

[ll] Edith Schonberg. On-The-Fly Detection of Access 
Anomalies. In Proceedings on the SIGPLAN Con- 
ference on Programming Language Design and Im- 
plementation, Jun 1989. 

[12] Marc Snir. Private correspondence. 1988. 

10 


