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Abstract
The sparse grid discretization technique enables a compressed rep-
resentation of higher-dimensional functions. In its original form, it
relies heavily on recursion and complex data structures, thus be-
ing far from well-suited for GPUs. In this paper, we describe op-
timizations that enable us to implement compression and decom-
pression, the crucial sparse grid algorithms for our application, on
Nvidia GPUs. The main idea consists of a bijective mapping be-
tween the set of points in a multi-dimensional sparse grid and a set
of consecutive natural numbers. The resulting data structure con-
sumes a minimum amount of memory. For a 10-dimensional sparse
grid with approximately 127 million points, it consumes up to 30
times less memory than trees or hash tables which are typically
used. Compared to a sequential CPU implementation, the speedups
achieved on GPU are up to 17 for compression and up to 70 for de-
compression, respectively. We show that the optimizations are also
applicable to multicore CPUs.

Categories and Subject Descriptors D.1.3 [PROGRAMMING
TECHNIQUES]: Concurrent Programming - Parallel Program-
ming; G.1.2 [Mathematics of Computing]: NUMERICAL ANAL-
YSIS - Approximation

General Terms Algorithms, Performance

Keywords Sparse grids, GPU, Performance optimization

1. Introduction
The numerical representation and treatment of functions in higher-
dimensional settings suffer the so-called curse of dimensionality,
the exponential dependency on the number of dimensions. Con-
sider a piecewise d-linear interpolation of a d-dimensional func-
tion based on a spatial discretization of the domain of interest, e.g.:
spending Ñ grid points in each dimension leads to a full grid with
Ñd grid points. Thus, the treatment of functions in more than four
variables is practically impossible for reasonable discretizations.
In applications requiring efficient numerical techniques for multi-
dimensional functions – as they occur in computational steering –,
this is clearly an obstacle.

Sparse grids enable one to mitigate the curse of dimensional-
ity to some extent, allowing to tackle dimensionalities that are of
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Figure 1: Interactive exploration of multi-dimensional data gener-
ated by a previous simulation run, and stored in compressed format.

interest in engineering settings where models depend on a moder-
ate number of variables. They significantly reduce the number of
grid points while maintaining similar approximation accuracies as
obtained for full grids. Thus, they are well-suited for the represen-
tation of higher-dimensional functions, as they provide an efficient
compression scheme. Sparse grids, as introduced by Zenger for the
solution of partial differential equations in 1990 [1], have mean-
while been employed to a whole range of different applications
from fields such as astrophysics, finance, molecular dynamics, or
data mining [2, 3].

Our application for sparse grids is the visual and interactive
exploration of multi-dimensional data. The idea is that by browsing
through the data, new insight into complex phenomena can be
gained. However, the sheer size of the data generated by the multi-
dimensional and multi-physics simulation under investigation does
not only inhibit a smooth interaction with the visualization, but also
poses data management challenges.

In order to take advantage of sparse grids in this scenario, two
core algorithms need to be implemented efficiently: hierarchiza-
tion and evaluation. These methods correspond to a compression
step (pre-processing) and a decompression step (online) respec-
tively (see Fig. 1). The more compact data format resulting from
the compression step strongly enhances a fast and fluent visualiza-
tion experience, as bandwidth requirements decrease considerably
when forwarding subsets of the data to the visualization system.
At the same time visualization algorithms rely heavily on the de-
compression scheme. The high resolution demands of a smoothly-
running visual data exploration application make it a critical com-
ponent of the whole system. Thus, an extremely efficient and most
of all highly scalable implementation becomes crucial.
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A first study revealed that the original sparse grid algorithms
for compression and decompression, using the usual data struc-
tures and parallel implementations for modern multicore CPUs,
did not meet the requirements of our application regarding physical
size and financial costs. Recent experiences [4] with the potential
of GPGPU1 (general-purpose computation on Graphics Processing
Units) suggested that this may allow us to reach our goals by de-
veloping alternative data structures and porting the corresponding
algorithms.

In this paper, we describe our implementation of compression
and decompression for Nvidia GPUs. These are the crucial algo-
rithms of the sparse grid technique for our application. In the later
sections, we will focus on hierarchization as main part of com-
pression (see Sec. 3), and use evaluation as more exact term for
decompression. To our knowledge, this is the first space and time
efficient implementation of the direct sparse grid technique on GPU
architectures.

For such an implementation, the data structure used for storing
the sparse grid is of high importance. Usually, trees or hash tables
are employed for storing the sparse grid values attributed to grid
points at specific coordinates. Typically, much space is needed both
for the coordinates in direct or indirect form, and for internal man-
agement (e.g. pointers into parts of the data structure). In contrast
to this, our approach uses a bijection (gp2idx) from the set of points
in a sparse grid to a set of consecutive natural numbers (see Sec. 4).
Consequently, we are able to store the sparse grid values in a con-
tiguous 1d array without the need for any further strucural infor-
mation as required in conventional tree- or hash-based approaches.
This minimizes the space used, allowing for large sparse grids to
be stored in the GPU device memory. But even more importantly, it
improves data locality and thus further enhances the scalability of
the parallelized implementations of compression and decompres-
sion on the GPU. To sum up, the main contributions of this paper
are as follows:

• We propose a space efficient data structure for sparse grids
(Sec. 4). We compare the memory requirements of our data
structure with other data structures typically used for sparse
grids. For a 10-dimensional sparse grid with approximately 127
million points, e.g., our data structure consumes up to 30 times
less space.

• We present highly efficient and scalable implementations for
the compression and decompression algorithms for sparse grids
on Nvidia GPUs. The implementations use static workload dis-
tribution for parallelization. The compression is up to 17 times
faster than the sequential version running on one Intel Nehalem
core, the decompression is up to 70 times faster (Sec. 6).

In addition, we measured the performance gain we can get with
our compact data structure on standard CPUs with OpenMP paral-
lelization. On a 32-core Opteron machine, a comparison between 1
and 32 cores gives us speedups of 24 for compression and 31 for
decompression.

2. The Sparse Grid Technique
Sparse grids help to overcome the curse of dimensionality by reduc-
ing the number of grid points from O(Ñd) to O(Ñ(log Ñ)d−1)
with only a slightly deteriorated accuracy if the underlying func-
tion f is sufficiently smooth. In this section, we briefly describe
the technique of sparse grids and introduce the two main princi-
ples they are based on, a hierarchical representation of the one-
dimensional basis and the extension to the d-dimensional setting
via a tensor product approach.

1 See http://www.gpgpu.org
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Figure 2: Left: 1d basis functions up to level 4. V4 =
W1

L · · ·LW4. Right: 2d basis functions, constructed from two
1d basis functions: φ(2,1),(1,1)(x, y) = φ2,1(x) · φ1,1(y).

2.1 Basis Functions

We consider the representation of a piecewise d-linear function
fs : Ω → R for a certain mesh-width hn := 2−n with some
discretization level n. For reasons of simplicity, we restrict our-
selves to the domain Ω := [0, 1]d. To obtain the approximation fs

of some function f , we discretize Ω and employ basis functions φi

which are centered at the grid points stemming from the discretiza-
tion. fs is thus provided as a weighted sum of N basis functions,
fs :=

PN
j=1 αjφj , with coefficients αj .

We use the standard one-dimensional hat function, φ(x) =
max(1 − |x|, 0), from which we derive one-dimensional hat basis
functions by dilatation and translation,

φl,i(x) := φ(2lx − i) ,

which depend on a level l and an index i, 0 < i < 2l. The basis
functions are centered at grid points xl,i = 2−li at which we
interpolate f and have local support. Introducing the hierarchical
index sets

Il := {i ∈ N : 1 ≤ i ≤ 2l − 1, i odd}
we obtain a set of hierarchical subspaces Wl spanned by the cor-
responding basis Φl := {φl,i(x), i ∈ Il}. See Fig. 2 (left) for the
basis functions up to level 4. Note that we restrict ourselves to func-
tions that are zero on the boundary of Ω to keep the descriptions as
simple as possible; adding the two basis function φ0,0 and φ0,1 on
level 0 would allow to treat non-zero boundary values.

The hierarchical basis functions are then extended to d dimen-
sions via a tensor product approach and are defined as

φl,i :=
dY

t=1

φlt,it(xt),

where l and i are multi-indices, uniquely indicating level and index
of the underlying one-dimensional hat functions for each dimen-
sion; see Fig. 2 (right). The basis

ΦWl :=
n

φl,i(x) : ij = 1, . . . , 2lj − 1, ij odd, j = 1, . . . , d
o

span subspaces Wl. As in the one-dimensional setting, all basis
functions for a certain l belong to a regular grid, have pairwise
disjoint, equally sized supports, and cover the whole domain.

2.2 Full and Sparse Grids

We can now formulate the space of piecewise linear functions Vn

on a full grid with mesh-width hn for a given level n as a direct
sum of Wl,

Vn =
M

|l|∞=n

Wl, |l|∞ := max
1≤t≤d

lt .
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Figure 3: The two-dimensional subspaces Wl up to l = 3 (h3 =
1/8) in each dimension. The optimal a priori selection of subspaces
is shown in black (left), leading to a sparse grid of level n = 3

for the sparse grid space V
(1)
3 (middle). In comparison to the

corresponding full grid V3 (right) using the grey subspaces as well,
the benefit of using sparse grids can be clearly seen.

The hierarchical subspace splitting allows to select those subspaces
(or subgrids, respectively) that contribute most to the approxima-
tion. This can be done by an a priori selection [2], resulting in the
sparse grid space V

(1)
n ,

V (1)
n =

M
|l|1≤n+d−1

Wl , |l|1 :=

dX
t=1

lt .

Figure 3 shows the selection of subspaces and the resulting regular
(i.e. non-adaptive) sparse grid for n = 3, i.e. the sparse grid space
V

(1)
3 , as well as the corresponding full grid for V3.

2.3 Data Structures

Typical data structures for sparse grids are either hash-based or
tree-based. The former ones map a grid point to an index which
is then used to access a vector of coefficients, as this reduces the
memory requirements and especially simplifies implementations
considerably; for references, see the section on related work.

The latter ones aim to replicate the hierarchical structure of
sparse grids, storing a pointer-based tree-like structure. If the full
parent-child relationship is realized, this requires O(dN) storage,
as each grid point has 2d child nodes in general. A more memory
efficient data structure is considering each dimension d in a fixed
order and storing binary trees of d − 1-dimensional trees, which
reduces the memory requirements. Figure 4 shows this concept for
a regular sparse grid of level n = 3 in three dimensions, replacing
the one-dimensional binary trees by arrays. Thus, the data structure
is essentially a prefix tree or trie, storing the common prefix for
multiple grid point coordinates only once. Of course, pointer-based
data structures are not well-suited for GPUs.

3. The Sparse Grid Operations
To compress a general function represented on a full grid, we select
only the function values at grid points also contained in a sparse
grid. We can then express the problem of representing a function
on a sparse grid as the problem of computing the hierarchical co-
efficients αl,i, which is called hierarchization. Decompression (in-
terpolation) refers to evaluating fs anywhere inside the domain.
In this section, we present algorithms for both hierarchization and
interpolation as they are usually used. They reflect the recursive na-

Figure 4: The prefix tree data structure for a regular sparse grid
of level n = 3 representing grid points by coordinates. The ar-
rays contain the one-dimensional substructures (essentially binary
trees), each level corresponding to one dimension. The access to
grid point with l = (1, 2, 2) and i = (1, 1, 3) or equivalent coordi-
nates (0.5, 0.25, 0.75) is indicated in gray.

ture of the sparse grid’s structure, clearly illustrating the difficulties
of porting them to GPUs.

3.1 Hierarchization – Computing Hierarchical Coefficients

Algorithm 1 shows the one-dimensional implementation of the
hierarchization operation. This is the basic building block. To
perform the full multi-dimensional hierarchization two levels of
complexity are added. First, for a fixed dimension d the one-
dimensional hierarchization is performed starting from all grid
points with ld = 1 and id = 1 in dimension d. Second, the previous
procedure is applied unchanged to all the remaining dimensions,
one after another, working on updated values from the previous
steps.

Algorithm 1 1d recursive hierarchization
1: func hierarchize1d(gp, leftVal, rightVal, level) :

2: if level < maxLevel then
3: hierarchize1d(gp.leftChild , leftVal , gp.value, level + 1)
4: hierarchize1d(gp.rightChild , gp.value, rightVal , level + 1)
5: end if
6: gp.value ← gp.value − (leftVal + rightVal)/2

This procedure can be illustrated with the help of Fig. 5 (left):
if the horizontal dimension (x1) is first picked for hierarchization,
hierarchize1d starts from all points on the main vertical sparse grid
axis. From each of those, Alg. 1 is executed in the horizontal direc-
tion. Next, we hierarchize in the vertical dimension (x2), starting
from all grid points on the horizontal main axis. One important ob-
servation is the lack of locality of the hierarchize1d function (Fig. 5
(right)) with negative impact on cache efficiency.

3.2 Evaluation – Interpolating Between Grid Points

Interpolation directly applies to the evaluation of the sparse grid
function. For visualization, we will have to be able to evaluate our
sparse grid function at arbitrary locations in our domain: we have
to perform d-linear interpolations.

As introduced in Sec. 2, each point of the sparse grid has a
corresponding hierarchical coefficient with an associated multi-
dimensional basis function. Evaluating the sparse grid function at
an arbitrary point x ∈ [0, 1]d implies retrieving a subset of the
grid’s hierarchical coefficients, multiplying them with the corre-
sponding basis function values and adding up the products. This is
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Figure 5: Left: Sparse grid traversal during hierarchization in the
x1-direction. Right: Shows the hierarchical parents (dependencies)
for a grid point.

Algorithm 2 1d recursive evaluation
1: func evaluate1d(gp, x, level) :

2: res ← basis(gp, x) · gp.value
3: if level < maxLevel then
4: if x left of gp then
5: res ← res + evaluate1d(gp.leftChild , x, level + 1)
6: else
7: res ← res + evaluate1d(gp.rightChild , x, level + 1)
8: end if
9: end if

10: return res

shown for the one-dimensional case in Alg. 2. After the contribu-
tion of the current point is calculated in line 2, the algorithm de-
scends recursively and collects the contributions of all other points
in the same dimension. In line 4 an optimization is made based
on the fact that not all points contribute to the interpolation (too far
away from the desired interpolation point). For a multi-dimensional
representation the algorithm becomes more complicated due to the
basis function evaluation. A recursion also in dimensions is nec-
essary to first evaluate the multi-dimensional basis functions. Only
afterwards, the resulting value can be multiplied with the hierarchi-
cal coefficient and summed up.

4. A Compact Data Structure
In this section we present a space efficient data structure for reg-
ular sparse grids. In contrast to the inherent hierarchical nature of
sparse grids, our data structure is flat which makes it more suit-
able for iterative algorithms and thus the GPU architecture. Its key
component is a bijection called gp2idx that perfectly maps level-
index-vector pairs (i.e. (l, i)) to consecutive integer indices. Using
gp2idx, all hierarchical coefficients of a regular sparse grid can be
efficiently stored and accessed in a 1d array. We explain how to
modify the classic hierarchization and evaluation algorithms in or-
der to fully benefit from our data structure, also in terms of paral-
lel usage. We can overcome the simplifying assumptions we make
in our data structure, mainly the representation of zero boundary
multi-dimensional functions, by extending our approach in a very
natural way. This aspect is discussed at the end of the section.

Note that for the remainder of this work we are not following
the common notation and start counting levels and level vector
components from 0.

4.1 Storage Scheme

When interpolating functions on a regular grid it is obvious not to
store the grid points’ coordinates explicitly but only the function
values and mesh widths. Retrieving data from a multi-dimensional
array as well as recalculating coordinates via a multi-index are sim-
ple and cheap tasks. Due to their structure, this is not as straightfor-

Figure 6: All subspaces of a 2d sparse grid are stored consecutively
in memory from top to bottom, left to right. The value at grid point
l = (1, 2), i = (3, 1) (coordinates (0.75, 0.125)) can be found at
position 34 (= index1 + index2 + index3 ) in a plain 1d array.

ward for sparse grids. Many applications thus need to store those
multi-indices together with the data, the hierarchical coefficients,
as key-value pairs (e.g. in a hash map). With our composite map
gp2idx that bijectively maps a sparse grid’s points to consecutive
integer indices we are able to eliminate the need for storing any
keys.

Figure 6 illustrates how we can decompose a sparse grid into a
set of regular grids, the so-called subspaces, and group them with
respect to their levels. The reason behind is that all subspaces l on
level n = |l|1 contain the same number of hierarchical coefficients.
With our modified level vector notation this number can directly be
computed as 2|l|1 .

The image also demonstrates that finding the hierarchical coef-
ficient associated with level-index-vector pair (l, i) can be divided
into computing three separate indices:

• index3 : number of coefficients associated with levels l′ < |l|1
• index2 : number of coefficients in the subspaces that precede

subspace l in its corresponding level group

• index1 : index of the coefficient in subspace l identified by i.

Computing index1 is simple as it comes down to identifying the
position of one element in a regular grid. But before we can deter-
mine the offsets index2 and index3 we need to discuss the number
of subspaces on level n. This is done in the next subsection.

4.2 An Optimal Index Map, gp2idx

The challenging part about defining a map from level-index-vector
pairs to integer indices without gaps is counting the subspaces of a
level. Consider the set

Ld
n = {l ∈ N

d
0

˛̨̨
|l|1 = n} (1)

of level vectors of level n in d dimensions. Determining its cardi-
nality Sd

n is known as the problem of integer partitioning, where a
positive integer is divided into d positive integer summands. Using

28



Algorithm 3 Recursive level vector enumeration, enumerate(d, n)

1: if d = 1 then
2: output n
3: else
4: for k = 0 to n do
5: output concatenate(enumerate(d− 1, n− k), k)
6: end for
7: end if

combinatorial mathematics the number can be written as

Sd
n = Cd−1

d−1+n =

 
d − 1 + n

d − 1

!
=

 
d − 1 + n

n

!
. (2)

Concerning index3 , we can now compute it via the formula

index3 =

n−1X
j=0

Sd
j · 2j

which counts the total number of hierarchical coefficients stored
for all levels l′ < n.

To be able to determine index2 we introduce a recursive enu-
meration scheme (see Alg. 3) that induces an order on the elements
of Ld

n. For simplicity we now generally assume d ≥ 2. Our algo-
rithm starts with the last component ld of a level vector l and sets it
one after another to values k ∈ {0, . . . , n}. For each of these val-
ues it recursively descends into enumerate(d−1, n−k) in order to
enumerate the elements of Ld−1

n−k in the first d− 1 components of l.
The recursion stops once only the first component is left. It is clear
that enumerate only returns valid level vectors and that no combi-
nation is omitted. Next, we observe that the enumeration starts with
first(d, n) and ends with last(d, n) defined as

first(d, n) := (n, 0, . . . , 0)T , last(d, n) := (0, . . . , 0, n)T . (3)

Recursion is not supported on the GPU so we change the enumer-
ation to an iterator scheme, in which we compute a unique suc-
cessor next(l) = r for each l ∈ Ld

n \ {last(d, n)}. Take the
smallest index t with component m = lt �= 0. It holds that we
currently see last(t + 1, m) in the first t + 1 components of l.
From the recursive definition it is then clear that the next change
must happen on the recursion level above. Here we increase the
loop variable k in line 4 of Alg. 3 by one and return the value
concatenate(enumerate(t + 1, m − 1), k) in line 5. This has two
effects:

1. By increasing k we set rt+1 := lt+1 + 1.

2. We recursively initialize the first t + 1 components of r with
first(t+1, m−1). Compared to l this only requires two changes
in r: Setting rt := 0 and r0 := m − 1 as for all components
rj , 0 < j < t we have rt = lt = 0.

Algorithm 4 implements these steps in an iterative function next.
Note finally that all trailing components rj , j > t + 1 remain un-
changed, and that the special case of t = 0 is treated automatically
if lines 6 and 7 of the algorithm are executed in this order.

Based on this order induced on the level vectors we now define
the function subspaceidx as follows

subspaceidx(l) =

d−1X
t=1

 
t +
Pt

j=0 lj
t

!
−
 

t +
Pt−1

j=0 lj
t

!
. (4)

It is constructed such that it maps all elements l ∈ Ld
n to a

consecutive integer index starting from 0. We prove this by showing
that b − a = 1 holds for images a = subspaceidx(l) and b =
subspaceidx(next(l)) with l �= last(d, n). Still we assume d ≥ 2.

Algorithm 4 Iterator increment function, next(l)

1: r ← l
2: t← 0
3: while l[t] = 0 do
4: t← t + 1
5: end while
6: r[t]← 0
7: r[0]← l[t]− 1
8: r[t + 1]← l[t + 1] + 1
9: return r

Proof. In order to understand the effect of next on the index a we
focus on the differing components of l and r = next(l). As we can
see clearly in lines 6–8 of Alg. 4 these are at indices {0, t, t + 1}
with t = minj∈{0,...,d−1}{lj �= 0}.

We note that the index of the sum in subspaceidx starts at 1.
Therefore only the changes in the vector components t and t + 1
are important for subspaceidx. About these we know rt = 0 and
rt+1 = lt+1 + 1 while their contributions to b = subspaceidx(r)
have the form

br,{t,t+1} =
»“(t + 1) + (lt + lt+1)

t + 1

”
−

“(t + 1) + (lt − 1)

(t + 1)

”–
| {z }

summand for t + 1

.

For a the corresponding summands look like this

al,{t,t+1} =
»“(t + 1) + (lt + lt+1)

(t + 1)

”
−

“(t + 1) + lt

(t + 1)

”–
| {z }

summand for t + 1

+
»“t + lt

t

”
−

“t + 0

t

”–
| {z }

summand for t

.

Computing the difference and using
`

t+lt
t

´
+
`

t+lt
(t+1)

´
=
`
(t+1)+lt

(t+1)

´
gives us

b − a = br,{t,t+1} − al,{t,t+1} =

 
t

t

!
= 1.

In the special case t = 0 the “summand for t” does not exist. b− a
then degenerates to

`
lt
1

´− `lt−1
1

´
= lt − (lt − 1) = 1.

With the fact that subspaceidx(first(d, n)) = 0 and the know-
ledge that the next function returns a unique successor for any
l ∈ Ld

n\{last(d, n)} the proof is complete.

Now we have the means to also compute index2 and integrate
this part into the composite index map gp2idx that maps each grid
point to an integer index. The final algorithm for gp2idx is shown
in Alg. 5. It runs in O(d) time if we apply two optimizations. First,
the repeated expensive calculation of the binomial coefficient via
binomial can be avoided. We use a small n×d lookup matrix called
binmat to do so, n being the maximum level in the grid. binmat
can be initialized in O(n · d) time and because of the binomial
coefficient’s symmetry property we can even reduce it to half its
size. Second, the computation of index3 in lines 13 to 16 of the
algorithm would also rather be implemented as an O(1) lookup
operation than as an O(|l|1) loop.

Using basic rules of combinatorial mathematics we can further-
more reduce the number of lookups in binmat in lines 8–10 to one
per iteration.

4.3 Impact on Initial Algorithms

The gp2idx bijection eliminates the need to store coordinates, or
equivalent (l, i), for matching hierarchical coefficients to their
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Algorithm 5 The optimal index map, gp2idx(l, i)
1: index1 ← 0
2: for t = 0 to d− 1 do
3: index1 ← index1 · 2l[t] + (i[t]− 1)/2
4: end for

5: sum← l[0]
6: index2 ← 0
7: for t = 1 to d− 1 do
8: index2 ← index2 − binomial(t + sum, t)
9: sum ← sum + l[t]

10: index2 ← index2 + binomial(t + sum, t)
11: end for
12: index2 ← index2 · 2sum

13: index3 ← 0
14: for s = 0 to sum − 1 do
15: index3 ← index3 + binomial(d− 1 + s, d− 1) · 2s

16: end for

17: return index1 + index2 + index3

corresponding basis functions. Besides the minimal memory con-
sumption, there are also other benefits from using the bijective
function gp2idx, its inverse idx2gp and the next iterator. We modi-
fied the algorithms for hierarchization and evaluation presented in
Sec. 3 in order to fully benefit from our data structure.

In Alg. 6 the hierarchical coefficients are stored in a 1d array,
rawStorage. The coefficients in this array can be traversed in the
order of their dependencies. The groups of subspaces or regular
grids are updated in descending order of the refinement level, start-
ing with the largest |l|1 and finishing with the smallest. This ensures
that updating a coefficient does not break the dependencies of other
coefficients. It is worth mentioning that, compared to Alg. 1, the
new hierarchization algorithm is no longer recursive, thus becom-
ing better suited for GPUs.

Algorithm 6 Multi-dimensional hierarchization based on gp2idx
1: Initialize rawStorage with corresponding values from the full grid
2: for t = 0 to d− 1 do
3: for j = numOfGridPoints − 1 downto 0 do
4: (l, i)← idx2gp(j)
5: val1 ← rawStorage[gp2idx(leftParent(l, i, t))]
6: val2 ← rawStorage[gp2idx(rightParent(l, i, t))]
7: rawStorage[j]← rawStorage[j]− (val1 + val2 )/2
8: end for
9: end for

Another advantage lies in a reduced number of cache misses
caused when accessing hierarchical coefficients. Since gp2idx and
idx2gp operate on a small matrix of size d · n, binmat, the num-
ber of cache misses triggered by their execution can be considered
0. Accordingly, cache misses only occur when referencing coef-
ficients in the rawStorage array, and we therefore expect to have
at most one miss per coefficient access. This even applies for the
worst case scenario of random access.

The j loop can be parallelized using static decomposition which
represents another positive aspect for GPUs. However, minor mod-
ifications must be applied to Alg. 6 so that the groups of subspaces
are updated correctly, without destroying the semantics of sequen-
tial execution. Specifically, a global barrier must be executed after
each group of subspaces is updated in descending order, from the
largest |l|1 to the smallest.

In its new form, evaluation (Alg. 7) is also iterative, thus GPU
compatible. We can see that neither gp2idx nor idx2gp are used.
Traversing all valid combinations for l is done using the next func-
tion and the definitions for the first and last subspaces in a group.

The number of cache misses is minimal, generated by line 15.
Cache exploitation can be improved by observing that it is advanta-
geous to execute the loops from lines 3 and 5 on multiple evaluation
points, i.e. blocking is performed on the set of evaluation points and
each block is processed after the j and l loops. The optimization is
based on the fact that a subspace containing the coefficients with
the same l is needed by all the evaluations and is already present in
cache.

Algorithm 7 Multi-dimensional evaluation based on next iterator
1: res ← 0
2: index2 ← 0
3: for j = 0 to n− 1 do
4: l← first(d, j)

5: for k = 1 to Cj
d−1+j do

6: prod ← 1
7: index1 ← 0
8: for t = 0 to d− 1 do
9: div ← 2−l[t]

10: index1 ← index1 · 2l[t] + �coords[t]/div�
11: left ← �coords[t]/div� · div
12: right ← left + div
13: prod ← prod · basis(left , right , coords[t])
14: end for
15: prod ← prod · rawStorage[index1 + index2 ]
16: res ← res + prod
17: l← next(l)
18: index2 ← index2 + 2j

19: end for
20: end for
21: return res

The evaluation operation is embarrassingly parallel provided
that each thread performs evaluation for its private set of multi-
dimensional points in the domain.

4.4 An Extendable Context

One of our assumptions was that the functions to be represented
using the sparse grid technique are zero-boundary functions. The
application can be easily modified in order to cope with non-
zero boundaries whereas our data structure requires a more com-
plex extension. This extension is based on the observation that the
boundary of a d-dimensional sparse grid is composed of lower-
dimensional, zero-boundary sparse grids for which we already have
an efficient data structure.

Let Ck
n be the number of k-combinations from a set of n ele-

ments. The number of d−j-dimensional sparse grids in the bound-
ary is 2j · Cd−j

d . One can verify this formula by simply counting
the projections of a sparse grid in lower-dimensional planes as de-
picted in Fig. 7. Storing the boundary as a 1d contiguous array im-
plies determining for any point on the boundary the first index of
its corresponding sparse grid in the 1d array. This can be achieved
by grouping the sparse grids according to their dimensionality. The
number of sparse grids in the group corresponding to dimensional-
ity j is 2d−j · Cj

d . An ordering function has to be defined in order
to find the correct sparse grid within a group. Next, gp2idx can be
used.

5. Sparse Grids on GPUs
In this section we describe the architecture of Nvidia GPUs and the
CUDA programming model. We continue with our implementation
of sparse grid compression and decompression on GPUs. Since it
has a minimal memory footprint, our data structure is a good fit
for GPUs which have a relatively small amount of RAM. More-
over, our implementation is optimized for the best exploitation of
computational resources on GPUs.
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Figure 7: 3d sparse grid with non-zero boundary. The boundary of
a 3d sparse grid is composed of lower-dimensional sparse grids.

5.1 GPU Architecture

In contrast to CPUs which use the die space for complex control
logic and large caches, GPUs devote a higher percentage of transis-
tors to floating point units. GPUs provide massive parallelism and
deliver better performance than CPUs especially for applications
with regular access patterns, e.g. dense matrix operations [5].

In the following we focus on the C1060 model of Nvidia Tesla
[6]. This is a high-end GPU which contains 30 8-way SIMD units
called by Nvidia Streaming Multiprocessors (SM). In Nvidia termi-
nology, each way is called a Scalar Processor (SP). C1060 supports
up to 1024 thread contexts in hardware per SM [7]. Each thread is
generally executed on one of the 8 ways of the SIMD unit. One of
the main characteristics of Nvidia GPUs is multithreading which
offers the possibility to hide the latency originating from various
instructions, especially the latency caused by loads from and stores
to RAM, by executing a large number of threads (up to 30720 on a
Tesla) concurrently with a low cost per context switch.

Nvidia GPUs are SIMD based architectures. Each SM control
unit creates, manages and executes synchronously the threads in
groups of 32 called warps. Every instruction is broadcasted syn-
chronously to all the active threads in a warp. Branching may cause
threads in the same warp to follow different execution paths. This
type of behavior of the threads inside a warp is called diverge. It
has the potential to severely reduce the performance of a GPU ap-
plication, up to a factor of 32.

GPUs have their own dedicated RAM, global memory, which is
in the order of several Gigabytes, e.g. C1060 has 4 GB of DDR3
memory. For performance, GPUs are also equipped with multiple
fast memories on the chip: constant cache, texture cache and shared
memory [8]. The properties of these fast memories vary in terms
of latency, bandwidth and usage. The constant cache is a read-
only cache and, according to [9], its level-1 has the lowest latency
among the memories on the GPU. The texture cache is a read-only
memory used for optimizing the bandwidth rather than latency,
i.e. its latency is comparable with the one of the global memory.
Finally, the shared memory is a low latency, read-write memory, is
private per SM and controlled explicitly by the programmer.

5.2 GPU Programming

The Compute Unified Device Architecture (CUDA) is one of the
available frameworks for programming Nvidia GPUs. From a pro-
gramming point of view, a CUDA application has a CPU and a
GPU part. The main responsibilities of the CPU part are: allocat-
ing memory on the GPU, transferring data to and from the GPU
over PCI Express and launching the GPU program called kernel. A
kernel cannot contain recursive functions. Each instance of a ker-
nel in execution is a thread. Besides being packed in warps, the
threads are also grouped in blocks of threads. This grouping is im-
portant as only the threads inside a block can synchronize via bar-
riers ( syncthreads) and share data from the shared memory. Each
thread has a 2d block identifier (blockIdx) and a 3d thread identifier
(threadIdx). Combining the block and the thread identifiers offers

the means to uniquely identify a thread on the GPU and to assign
its part from the workload to be computed on the GPU.

A first optimization for GPU programs consists of the proper
exploitation of multithreading. This is equivalent to maximizing
the number of active threads and can be achieved by reducing the
register file and shared memory consumption per thread. Second,
efficient use of the memory hierarchy can provide a substantial
speedup to GPU applications. This optimization includes at least:
enabling coalesced accesses to global memory in order to reduce
the number of memory transactions, using the fast memories on-
chip and reducing the number of bank conflicts caused by access-
ing the shared memory. Third, divergent branches can serialize the
execution of the threads composing a warp. To improve the perfor-
mance, the number of divergent branches needs to be minimized.
Note that these are the optimizations which proved to be relevant
to our application and they represent only a subset of the optimiza-
tions applicable to CUDA applications. For a detailed list of opti-
mizations we refer the reader to [7].

5.3 GPU Implementation of Sparse Grid Operations

The implementation of the hierarchization algorithm (Alg. 6) has
minimal memory consumption. Moreover, the parallelization is
based on statically decomposing the set of grid points for which the
hierarchical coefficients are computed. Both minimal memory con-
sumption and static workload distribution are factors that enable an
efficient implementation of hierarchization on Nvidia GPUs. The
decomposition is done such that each thread block is responsible
for updating one subspace or regular grid of coefficients. In order
to avoid breaking dependencies between coefficients, the subspace
groups depicted in Fig. 6 are updated in descending order of |l|1. In
other words, the update of group j must finish before group j − 1
can be updated. The necessary barriers are enforced by the CPU
program by launching the hierarchization kernel multiple times,
each time for updating another group of subspaces. With respect to
efficient use of fast memory, l and i are placed in shared memory.
Accessing global memory for the subspaces to be updated are op-
timized for coalescing. However, accesses to dependencies or par-
ents as shown in Fig. 5 (right) cannot be packed, thus representing
the main source of uncoalesced accesses and branch divergence.

Finding the best implementation of hierarchization on GPU im-
plies determining the fastest way to compute the bijection gp2idx
which in turn relies heavily on the binmat matrix. Since binmat is a
read-only matrix containing the binomial coefficients, it is compat-
ible with all the fast memories available on the GPU. However, the
texture cache is not a true candidate as our goal is to obtain low la-
tency access to binmat rather than high bandwidth. In this context,
three options were considered: computing the binomial coefficients
on the fly in O(n), accessing binmat from shared memory and plac-
ing binmat in constant cache. Experiments revealed that computing
on the fly makes hierarchization approximately 4 times slower than
when shared memory or constant cache are used. If binmat is stored
in constant cache, hierarchization is slightly faster than the version
based on placing binmat in shared memory, confirming the GPU
memory benchmarking results presented in [9].

For the evaluation algorithm (Alg. 7), the parallelization scheme
relies on statically decomposing the set of multi-dimensional points
for which function values are to be computed. This approach is
embarrassingly parallel and makes sense since the number of inter-
polation points is typically around 105 or more, thus fully utiliz-
ing the GPU computational resources. More precisely, each thread
performs interpolation for one multi-dimensional point in the do-
main. Shared memory is used for storing l and coords. Furthermore,
copying coords from global memory to shared memory satisfies the
coalescing requirements. Note also that divergent branching inside
a warp is minimized in this approach.
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Data Structure Time Non-seq. Refs.
Standard STL map O(d · log(N)) O(log(N))
Enhanced STL map O(d + log(N)) O(log(N))
Enhanced STL hash table O(d) O(1)
Prefix tree O(d) O(d)
Our data structure O(d) O(1)

Table 1: Time complexities and number of non-sequential memory
references for accessing a value from a grid point. N is the total
number of sparse grid points.

All the arrays from hierarchization and evaluation are private to
each thread, have length d and are stored in shared memory. Con-
sequently, the pressure on shared memory is linearly dependent on
d and can decrease the number of active threads, i.e. it reduces the
benefits of multithreading. In order to decrease the shared mem-
ory consumption per thread, we set l as an array shared between all
threads inside the same thread block. Only the master thread (thread
0) from the thread block modifies l, and all the threads in the block
read l. Although this adds synchronization via the syncthreads
device function, the improvements over the versions without block
shared l cannot be ignored, i.e. this results in 1.62 times faster hi-
erarchization and 1.59 times faster evaluation.

6. Results
For all evaluations in this section, we use sparse grids with refine-
ment level 11.

6.1 Comparison of Data Structures

First, we compare the memory consumption of various data struc-
tures for sparse grids. Table 1 shows the structures taken into
consideration and their access properties. The number for non-
sequential references gives a hint regarding locality of accesses,
i.e. the number of cache misses to be expected on standard CPUs.

The first three data structures use the C++ Standard Template
Library (STL) [10]. “Standard STL map” consumes space for keys
linearly to the number of dimensions. “Enhanced STL map” and
“enhanced STL hash table” use our gp2idx function. Memory con-
sumption is reduced by storing the result of gp2idx as key, i.e. it
is constant with regard to dimensionality. The “prefix tree” data
structure is the classical tree-based data structure using pointers, as
described in Sec. 2.3. As it can be seen in Fig. 8, our data structure
uses the smallest amount of main memory. Moreover, “prefix tree”
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Figure 8: Memory consumption of a sparse grid.
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Figure 9: Sequential runtimes on i7-920.

follows, showing that its compression scheme is superior to using
gp2idx in conjunction with an STL hash table or map.

6.2 Performance Measurements

As experimental setup, the following hardware was used:

• a 4-core, single-socket Nehalem i7-920 with 24 GB of DDR3
1066 MHz memory,

• a Tesla C1060 with 4 GB of DDR3 800 MHz 512 bit memory,

• a 32-core, 8-socket AMD Opteron 8356 machine with 256 GB
of DDR2 667 MHz main memory,

• an 8-core, dual-socket Nehalem E5540 supporting 16 simulta-
neous threads with 24 GB of DDR3 1066 MHz memory.

There are three implementations of our application that we con-
sidered in our tests: the sequential C++ version which provides
the base for speedup numbers, the CUDA version implemented us-
ing the CUDA SDK [11], and a version for x86 multicore systems
based on OpenMP 3.0. The CPU versions are optimized with re-
spect to cache and SSE. The tasking concept was applied for paral-
lelizing the recursive algorithms for both hierarchization and evalu-
ation shown in Sec. 3. The number of points in the sparse grids used
in our tests was in the range of [2047, 127574017], corresponding
to level 11 sparse grids with dimensionalities between 1 and 10.

First, we did runtime measurements with sequential C++ ver-
sions of the sparse grid operations using the different data struc-
tures on the i7-920 system. Our data structure gives the best execu-
tion times for both sequential hierarchization and evaluation as de-
picted in Fig. 9a and Fig. 9b. The prefix tree has similar execution
time for hierarchization as the enhanced STL hash table. This is
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Figure 10: Performance on GPU and CPU.

due to good cache locality for accessing the children of grid points.
For evaluation, its performance is very close to the performance ob-
tained with our data structure. This also happens because the cache
is exploited properly. Once a hierarchical coefficient is found, the
next needed one – corresponding to a higher refinement level – re-
sides in the same coefficient array at the bottom of the structure.
Hence, the next hierarchical coefficient is already loaded in cache.

With regard to the sequential runtimes on the i7-920 system, we
provide speedup numbers of implementations using our data struc-
ture in Fig. 10a and Fig. 10b. Most important for our application
are the Tesla C1060 results corresponding to the GPU implemen-
tations. We see that these versions of the sparse grid operations are
superior to the ones on x86 multicore architectures. The execution
time of hierarchization is reduced by approximately a factor of 2
compared to the fastest multicore architectures considered in our
tests whereas evaluation is roughly 3 times faster than the best per-
formance on multicore CPUs. Evaluating a function represented as
a sparse grid at 105 points leads to an efficient usage of the parallel
resources as all the multicore architectures are able to offer constant
speedup independent of the number of dimensions. The speedup on
the GPU is expected to decrease when the number of dimensions
is greater than 10. This is due to the increasing pressure on the
shared memory inside an streaming multiprocessor. More exactly,
each GPU thread requires shared memory space that depends lin-
early on the number of dimensions. If the number of dimensions
grows over a certain value, this limits the number of threads that
can be executed concurrently on one streaming processor, thus re-
ducing any potential for latency hiding.

Finally, we measured the scalability achievable with our data
structure on the Opteron system. Regarding parallel hierarchiza-
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Figure 11: Scalability on CPU.

tion, the tree and hash table data structures saturate the connection
to main memory, thus limiting the scalability as shown in Fig. 11a
when the number of processors is greater than 15. Another cause
for the reduced scalability for these data structures can be linked
to the use of tasks necessary for the dynamic decomposition of the
workload. Evaluation is not memory bound and this can be seen
in Fig. 11b. The memory connection is not saturated and does not
block the scalability. The prefix tree provides the best speedup from
all the tree and hash table data structures. This happens because of
better cache locality when accessing the hierarchical coefficients
required by the evaluation operation.

7. Related Work
The power of sparse grids has already been exploited for a whole
range of different types of problems, see [2, 3]. Depending on the
requirements of the respective application, different types of data
structures have been considered. Typically, hash-based realizations
of the data structure are employed (see [12, 13] for discussions).
They provide a reasonable trade-of by reducing the memory re-
quirements in contrast to pointer-based approaches. Yet, they keep
the access structures as flexible as possible and suitable for adap-
tive refinement. To meet harsh requirements such as minimal stor-
age space, flexibility can be traded for efficiency. Note that data
structures for sparse grids are ongoing research [14, 15].

Parallelizations of sparse grid methods have typically been
achieved by employing the so-called combination technique [16],
which obtains an approximation of the sparse grid solution by a
superposition of partial solutions obtained on several smaller, but
anisotropic full grids. Obtaining the independent partial solutions
can be parallelized trivially. Furthermore, due to the regular struc-
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ture of the full partial grids, each partial solution can be vectorized
in a straightforward manner [17]. The benefit of employing vec-
torization on GPUs is evident [18, 19]. However, grid points and
corresponding function values have to be replicated across multiple
full grids. Thus, higher memory requirements have to be met.

Our approach requires minimal storage at the cost of computing
a cache-efficient mapping from a grid point to the position of its
corresponding coefficient or function value in a linear ordering of
the sparse grid points. To the best of our knowledge, this is the first
time that a direct sparse grid implementation on a GPU has been
achieved.

In general, there are multiple data structures, hash tables and
trees, developed to cope with the problem of storing and retrieving
efficiently multi-dimensional data [20]. Such data structures can
also be used for storing the points required by the sparse grid
technique. However, they rely on storing information about multi-
dimensional coordinates. Therefore, our performance expectations
for these data structures are similar to the results provided in Sec. 6.
In our approach based on gp2idx, we do not store any coordinates.
Nevertheless, we emphasize that our solution does not address
the sparsity problem in all types of grids. In contrast to the work
mentioned above and to the best of our knowledge, there is no
other data structure in the context of the sparse grid technique with
smaller memory footprint than our data structure.

An approach for enabling complex data structures on GPUs is
presented in [21]. Although the proposed solution was published
before the release of CUDA, some of its concepts are still valid. For
instance, the authors describe the procedure for handling iterators
in parallel on GPUs. Moreover, copying a pointer based data struc-
ture between different memory spaces is another issue addressed
by the authors. The paper shows that it is feasible to operate with
complex data structures on GPUs but the inefficiencies related to
memory consumption and access time are still present.

8. Conclusion
In this paper we focus on identifying problems and offering solu-
tions for successfully porting the sparse grid technique to Nvidia
GPUs. Our motivation is a computational steering application in
which compressing and decompressing multi-dimensional data
plays a crucial role. In their original form, sparse grid compres-
sion and decompression are based on recursion and complex data
structures like trees and hash tables. As GPUs do not support re-
cursion and do not favor trees or hash tables, we propose a data
structure that eliminates these limitations as the main optimization.

Our data structure is based on a bijection that maps a multi-
dimensional sparse grid to a 1d continuous array. Therefore, it
minimizes memory consumption. Furthermore, it enables us to
replace the recursive compression and decompression operations
by iterative algorithms, fully compatible with GPUs. We obtain
impressive speedup numbers on the GPU. Consequently, our sparse
grid implementation is both space and time efficient.

As a next step, we plan to tune our application for Nvidia GPUs
based on the Fermi architecture [22]. We expect that the two-level
cache, 64 KB level-1 per SM and 768 KB shared level-2 could
be beneficial for both sparse grid operations. Another point of
interest for us will be the integration of our data structure into other
applications that rely on the sparse grid technique for representing
higher-dimensional functions.
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