

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PPoPP’14, February 15–19, 2014, Orlando, Florida, USA.
Copyright © 2014 ACM 978-1-4503-2656-8/14/02…$15.00.
http://dx.doi.org/10.1145/2555243.2555254

CUDA-NP: Realizing Nested Thread-Level Parallelism

in GPGPU Applications

Yi Yang

Department of Computing Systems Architecture
NEC Laboratories America, Inc.

yyang@nec-labs.com

Huiyang Zhou

Department of Electrical and Computer Engineering
North Carolina State University

hzhou@ncsu.edu

Abstract
Parallel programs consist of series of code sections with
different thread-level parallelism (TLP). As a result, it is
rather common that a thread in a parallel program, such as a
GPU kernel in CUDA programs, still contains both sequen-
tial code and parallel loops. In order to leverage such paral-
lel loops, the latest Nvidia Kepler architecture introduces
dynamic parallelism, which allows a GPU thread to start
another GPU kernel, thereby reducing the overhead of
launching kernels from a CPU. However, with dynamic
parallelism, a parent thread can only communicate with its
child threads through global memory and the overhead of
launching GPU kernels is non-trivial even within GPUs.

In this paper, we first study a set of GPGPU benchmarks
that contain parallel loops, and highlight that these bench-
marks do not have a very high loop count or high degrees
of TLP. Consequently, the benefits of leveraging such
parallel loops using dynamic parallelism are too limited to
offset its overhead. We then present our proposed solution
to exploit nested parallelism in CUDA, referred to as
CUDA-NP. With CUDA-NP, we initially enable a high
number of threads when a GPU program starts, and use
control flow to activate different numbers of threads for
different code sections. We implemented our proposed
CUDA-NP framework using a directive-based compiler
approach. For a GPU kernel, an application developer only
needs to add OpenMP-like pragmas for parallelizable code
sections. Then, our CUDA-NP compiler automatically
generates the optimized GPU kernels. It supports both the
reduction and the scan primitives, explores different ways
to distribute parallel loop iterations into threads, and effi-

ciently manages on-chip resource. Our experiments show
that for a set of GPGPU benchmarks, which have already
been optimized and contain nested parallelism, our pro-
posed CUDA-NP framework further improves the perfor-
mance by up to 6.69 times and 2.18 times on average.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Processors – Compilers, Optimization.

General Terms Performance, Design, Experimentation,
Languages.

Keywords GPGPU; nested parallelism; compiler; local
memory;

1. Introduction
Parallel programs consist of series of code sections with
different thread-level parallelism (TLP). Depending on
application characteristics and the parallelization strategy, a
parallel thread itself may contain both serial code and par-
allel loops. Such parallel loops inside a thread are referred
to as nested thread-level parallelism. To exploit such nested
parallelism in GPGPU (general purpose computation on
graphics processing units) applications, the latest Nvidia
Kepler architecture introduces the support for dynamic
parallelism, which enables a GPU thread to invoke another
kernel during execution. Although dynamic parallelism
reduces the overhead of invoking a GPU kernel from a
CPU, two key limitations remain. First, the communication
between a parent thread and its child threads has to be
through global memory variables. Second, launching a
kernel from a GPU thread involves the device runtime [27]
and has a non-trivial performance overhead.

In this paper, we first study a set of benchmarks to show
that they contain parallel loops with relatively small loop
counts. As a result, the benefits from parallelizing such
loops using dynamic parallelism fail to overweigh its over-
head. Then, we propose our solution, referred to as CUDA-
NP, to exploit nested parallelism within GPGPU applica-
tions. Similar to dynamic parallelism, two fundamental

93

challenges face CUDA-NP: (1) how to have different num-
bers of threads running in different code sections, and (2)
how to enable low-latency data communication between a
parent/master thread and its child/slave threads. To address
these challenges, CUDA-NP first re-maps threads in a
thread block (TB) into a one-dimension organization. Then,
for each thread, referred to as a master thread, CUDA-NP
adds a set of slave threads along a different dimension. The
purpose of the slave threads is to help their master thread
on its parallel loops. To do so, CUDA-NP introduces con-
trol flow to disable slave threads during sequential code
sections. In CUDA-NP, low cost data communication be-
tween a master thread and its slave threads is achieved
through registers or shared memory. In a way, CUDA-NP
can be viewed as lightweight dynamic parallelism.

Our proposed CUDA-NP is implemented as a source-to-
source compiler framework, which takes CUDA kernels
with OpenMP-like directives as the input and outputs opti-
mized CUDA kernels to exploit nested parallelism. This
way, a GPGPU application developer only needs to add
pragmas to identify parallel loops within a kernel to take
advantage of CUDA-NP.

Our experimental results on Nvidia GTX 680 GPUs
show our proposed CUDA-NP achieves remarkable per-
formance gains, up to 6.69 times and 2.18 times on
Our optimized code also consistently outperforms the high-
ly optimized library CUBLAS V5.0 on the benchmarks
matrix-vector multiplication and transpose-matrix-vector
multiplication for different input sizes.

In summary, our work makes the following contribu-
tions. (1) We study a set of GPGPU applications and high-
light the characteristics of their nested parallelism; (2) we
propose simple pragmas and a set of optimization tech-
niques to support nested parallelism; (3) we implement our
CUDA-NP using a source-to-source compiler to relieve the
programming complexity from application developers; and
(4) we show that our proposed solution is highly effective
and significantly improves the performance.

The remainder of the paper is organized as follows. In
Section 2, we present a brief background on GPGPU archi-
tecture with a focus on Nvidia dynamic parallelism. We
also analyze a set of GPGPU application to show the char-
acteristics of their parallel loops. In Section 3, we present
our compiler framework to exploit nested parallelism. The
experimental methodology is addressed in the Section 4
and the results are presented in Section 5. Related works
are discussed in Section 6. Section 7 concludes our paper.

2. Background

2.1 GPGPU Architecture and Programming Model

In order to achieve high computational throughput and
memory bandwidth, GPGPU exploits many-core architec-

tures and organizes the cores in a two-level hierarchy. First,
a GPU contains multiple streaming multiprocessors (SMs)
in Nvidia GPU architecture. An SM is also called a next
generation SM (SMX) in Nvidia’s latest Kepler architec-
ture and is similar to a compute unit (CU) in AMD GPU
architecture. Each SMX/CU in turn consists of multiple
streaming processors (SPs) or thread processors (TPs). An
SMX/CU can support thousands of threads running concur-
rently following the single-program multiple-data (SPMD)
programming model.

In the CUDA programming model, the threads are also
managed in a two-level hierarchy: thread grids and thread
blocks (TBs). A GPGPU program, also called a kernel, is
launched as a grid of TBs. A TB in turn contains multiple
threads, which can have up-to-three-dimension thread iden-
tifiers (ids). In our compiler, we always map a multi-
dimension thread id into a one-dimension one using the
approach presented in Section 3.7. Therefore, in our subse-
quent discussions, we assume the input kernel has only
one-dimensional threads in a TB.

GPGPU employs the single-instruction multiple-data
(SIMD) model to amortize the cost of instruction decode
and fetch. A small group of threads, referred to as a warp,
share the same instruction pointer. The latest Nvidia Kepler
architecture introduces a set of shuffle (shfl) instructions to
enable the data exchange through registers for threads in
the same warp. One shfl instruction used in this paper is
__shfl(var, laneID, laneSize). For this instruction, a warp
(32 threads) is partitioned into small groups with the group
size as laneSize. Then, the laneID is used to specify the
relative thread id in a group, and the var is the variable to
be read. For example, the instruction __shfl(var, 0, 4)
means that a warp contains 8 groups with a group size of 4
and all threads in the same group will read var from the
first thread of the group. As a result, threads with id 0, 1, 2,
and 3, belonging to the first group, read ‘var’ from thread
0; threads with id 4, 5, 6, and 7, read ‘var’ from thread 4;
and so on. Compared to shared memory, which can be
shared among all threads in the same TB, the shfl
instructions have higher performance with the following
two limitations. First, it can only be supported for the
threads in the same warp. Second, threads can read a
register from another thread in the same warp, but cannot
write to a register of another thread.

The support for dynamic parallelism is introduced to
Nvidia GPUs with compute capability 3.5. With dynamic
parallelism, a GPU thread can launch a kernel during exe-
cution. Dynamic parallelism provides an easy way to de-
velop GPU kernels for a program that contains nested par-
allelism without involving the host CPU. However, in order
to achieve the high performance, the kernel launched by a
GPU thread must have a very high number of threads to
offset the overhead of launching a kernel. To illustrate the
overhead of dynamic parallelism, we use the memory-copy

94

micro-benchmark in our experiment on an Nvidia Tesla
K20c GPU. To copy 64-million floats, the baseline micro-
benchmark without dynamic parallelism achieves the
bandwidth is 142 GB/s. Then, we observe that once we
enable the compiler flag for dynamic parallelism, the origi-
nal kernel without using dynamic parallelism can only
achieve 63 GB/s. Such overhead is referred to as dynamic-
parallelism-enabled kernel overhead [27]. Next, we modify
the benchmark to make use of dynamic parallelism. In the
dynamic parallelism version, we have a parent kernel and a
child kernel. The parent kernel is launched once, but each
thread of parent kernel will launch a child kernel.
the child kernel can be launched many times. In the child
kernel, each thread simply copies a float from the input to
the output. If the number of threads of the parent kernel is
m, and the number of threads of every child kernel launch
is n, then m*n is the overall floats to be copied from the
input to the output. We fix the value of m*n to 64 million
and show the bandwidths for different m in Figure 1. Alt-
hough the overall workload remains the same, the perfor-
mance degrades rapidly when the number of child kernel
launches increases. In other words, each kernel launch
needs to have a high number of threads to achieve good
performance. From Figure 1, we can see that when each
child kernel launch has 16k threads, the overall memory
copy bandwidth only reaches 34GB/s. This highlights the
kernel launching overhead for dynamic-parallelism. Anoth-
er limitation of dynamic parallelism is that the communica-
tion between the parent thread and its child threads has to
be through global memory [27].

Figure 1. The throughput of the memory-copy micro-
benchmark using dynamic parallelism.

2.2 Nested Parallelism in GPGPU Programs

GPGPU applications are typically highly parallelized due
to the required TLP to hide high memory access latencies.
Still, there exist parallel loops in the kernel code. As an
example, Figure 2 shows the kernel code of transposed-
matrix-vector multiplication (TMV). Each thread computes
one element in the output vector. The loop between lines 4
and 5 reads one column of input matrix a and the vector b,

and performs the dot-product operation. This example
illustrates common reasons for nested parallelism existed in
GPU kernels.

Figure 2. The kernel code of transposed-matrix-vector
multiplication (TMV).

First, developers tend to view that there is already suffi-
cient TLP. In the TMV example, the output vector c may
have a high number of elements and further parallelization
of the loop in Figure 2 may be considered not necessary.
However, based on the characteristics of the applications,
each thread may require too much resource to limit the
number of threads that can run concurrently on each SMX,
even though the overall number of threads of the applica-
tion is indeed high enough.

Second, if a loop contains loop-carried dependencies,
application developers may choose not to parallelize it. As
shown in Figure 2, to parallelize the loop, the reduction
primitive needs to be supported.

Third, if an application developer chooses to further par-
allelize some parallel loops in a kernel, he/she needs to
understand the GPGPU architecture very well, in order to
achieve good performance. For example, if a parallel loop
is distributed among threads in the same warp, we should
avoid workload imbalance due to the nature of SIMD exe-
cution. Another key factor is how to balance the resource
usage among shared memory, register file and local
memory. Therefore, in this paper, we argue for a compiler
approach to exploit nested parallelism to relieve the appli-
cation developers from the associated complexity.

Overall, the loop in Figure 2 showcases a common ex-
ample in many benchmarks that contain parallel loops. An
outstanding feature of a good candidate for leveraging
nested parallelism is limited TLP due to the nature of the
application or the heavy resource usage of each GPU

2.3 Characteristics of Nested Parallelism in GPGPU
Programs

In order to understand available nested parallelism in
GPGPU programs, we studied the benchmarks in Nvidia
SDK [26], Rodinia [6] and GPGPUSim [2]. The detailed
experimental methodology is discussed in Section 5. We
list in Table 1 some benchmarks that contain nested paral-
lelism. In the table, the first column (Name) contains the
name of the benchmarks; the second column (Input) shows
the input to each benchmark; the third column (PL) shows
how many parallel loops exist in the kernel; the forth col-

0

10

20

30

40

50

60

70

6
4
m

3
2
m

1
6
m

8
m

4
m

2
m

1
m

5
1
2
k

2
5
6
k

1
2
8
k

6
4
k

3
2
k

1
6
k

8
k

4
k

2
k

1
k

5
1
2

2
5
6

B
an

d
w
id
th
 (
G
B
/s
)

Size of n (number of threads per kernel lanuch for the
child kernel)

__global__ void tmv(float *a, float*b, float* c, int w, int h){
 float sum = 0;
 int tx = threadIdx.x+blockIdx.x*blockDim.x;
 for (int i=0; i<h; i++)
 sum += a[i*w+tx]*b[i];
 c[tx] = sum;
}

1
2
3
4
5
6
7

95

umn (LC) shows the largest loop counts among these paral-
lel loops; the fifth column (R/S) indicates if the loops con-
tain the scan(S)/reduction(R) operations or not (X). We
also show the resource usage including register file (REG),
shared memory (SM) and local memory (LM) per thread
for the baseline code (BL) and optimized versions (OPT)
generated from CUDA-NP.

From Table 1, we can see that the benchmarks LE, LIB
and CFD have intensive local memory usage to limit their
performance, even though they do have relatively high
numbers of concurrent threads running on each SMX; the
benchmarks LU, MV, SS and BK have intensive shared
memory usage, which limits the number of concurrent
threads on each SMX; the benchmark MC has intensive
usage of both shared memory and local memory; the re-
maining benchmarks, TMV and NN, do not have intensive
resource usage. From these benchmarks, we can see that
the loop counts of parallel loops are relatively small.

Table 1. Benchmarks
Name Input PL LC R/

S
Bytes per
thread (BL)

Bytes per
thread(OPT)

REG SM LM REG SM LM
MC grid=8 4 12 X 252 288 40 144 36 0
LU 2048.dat 4 32 R 44 96 0 72 24 0
LE testfile.avi 3 150 R 156 0 600 252 4 24
MV 2K*2K 1 32 R 100 132 0 100 34 0
SS DIM=8K 2 8K R 60 80 0 72 20 0
LIB NPATH=256K 4 80 S 216 0 960 200 40 640
CFD fvcorr.domn.193K 1 4 R 252 0 56 252 0 8
BK 2M 2 32 X 60 128 0 56 4 0
TMV 2K*2K 1 2K R 88 0 0 64 4 0
NN 1K 1 1K R 88 0 0 56 0 0

3. CUDA-NP: A Directive-Based
Compiler Framework for Nested
Parallelism
In this section, we present our CUDA-NP compiler frame-
work to leverage nested parallelism. The input to our com-
piler is a CUDA kernel with OpenMP-like directives to
denote parallel loops. The output of our compiler frame-
work is the optimized kernel code. Figure 3 shows an ex-
ample. The kernel with directives denoting the parallel loop
is shown in Figure 3a and the optimized kernel using our
proposed compiler is shown in Figure 3b. The first trans-
formation on the input kernel is to increase the TB size.
Given the hardware limit of GTX 680 GPUs, the maximal
number of threads in a TB is 1024. So, the TB size is in-
creased up to 1024 if the input kernel has a smaller TB size.
As our compiler already re-maps the threads in a TB into a
one-dimension organization, increasing the TB size is
achieved by adding a new dimension. The newly intro-
duced threads will be used to carry out the parallel loops in
the input kernel. To differentiate the original threads from

the newly added ones, we refer to the original threads as
‘master’ threads and the newly added ones as ‘slave’
threads and we use ‘master_id’ and ‘slave_id’ as their
thread ids along different dimensions. If the master threads
are aligned in the X/Y dimension, slave threads will be
added along the Y/X dimension, as discussed in Section
3.4. For the kernel shown in Figure 3, master_id is actually
threadIdx.x and slave_id is threadIdx.y.

Figure 3. The kernel ‘lud_perimeter’ before and after
CUDA-NP optimizations.

The ‘lud_perimeter’ kernel in Figure 3a has only 32
threads in a TB and each TB needs 3kB shared memory. As
a result, 16 thread blocks can run concurrently on each
SMX on an Nvidia GTX 680 GPU, for which the shared
memory is configured to 48kB per SMX. The line 13 in
Figure 3a is the pragma indicating the subsequent loop can
be parallelized. Then in the code optimized using CUDA-
NP, as shown in Figure 3b, each TB has 32x8 threads,
where the size of the X dimension is 32 and the size of the
Y dimension is 8. However, we only allow 32 threads in a
TB to be active for the sequential code such as line 10 in

#define BLOCK_SIZE 16
__global__ void lud_perimeter(float *m, int matrix_dim, int
offset) {
 __shared__ float
 peri_row[BLOCK_SIZE][BLOCK_SIZE],
 peri_col[BLOCK_SIZE][BLOCK_SIZE],
 dia[BLOCK_SIZE][BLOCK_SIZE];

…….
int array_offset;
array_offset = offset*matrix_dim+offset;

// parallel loop
#pragma np parallel for

 for (i=0; i < BLOCK_SIZE; i++)
 peri_row[i][idx]= m[array_offset+
 (blockIdx.x+1)*BLOCK_SIZE+matrix_dim*i];

……
}

#define BLOCK_SIZE 16
__global__ void lud_perimeter_np(float *m, int matrix_dim,
int offset) {
 __shared__ float
 peri_row[BLOCK_SIZE][BLOCK_SIZE],
 peri_col[BLOCK_SIZE][BLOCK_SIZE],
 dia[BLOCK_SIZE][BLOCK_SIZE];

…….
int array_offset;
if (slave_id==0) { //slave_id == 0 means a master thread
 array_offset = offset*matrix_dim+offset;
}
array_offset = read_from_master(array_offset);

 for (i=slave_id; i < BLOCK_SIZE; i+=slave_size)
 peri_row[i][idx]= m[array_offset+
 (blockIdx.x+1)*BLOCK_SIZE+matrix_dim*i];

……
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

(a) The input kernel

(b) The output kernel from CUDA-NP

96

Figure 3a in the kernel. For the parallel loops, such as those
between line 14 and 16 in Figure 3a, all 256 threads per TB
are active, and each thread processes one or more iterations
of the loop. In other words, for each master thread, 7 slave
threads are added to share its parallel workload. Note that
the parameter ‘slave_size’ is 8 as 8 threads (1 master + 7
slaves) will all work equally on the parallel loops.

Next, we use one example to illustrate why our opti-
mized kernel improves performance, as shown in Figure 4.
In Figure 4a, we assume each TB of the input kernel has 8
threads running through its whole lifetime. Then in the
optimized kernel, each TB has 8*4 threads as shown in
Figure 4b. However we have only 8 threads running for
sequential codes, such as line 10 in Figure 3a, and 8*4
threads for loop sections, such as line 14 to line 16 in Fig-
ure 3a. These active threads that execute the sequential
sections are the master threads, as they are very similar to
original threads in the input kernel. But in the parallel loop
sections, the workload of each thread in the input kernel
will be distributed to the corresponding master thread and
its slave as shown in the Figure 4b. The overall perfor-
mance is improved due to higher TLP for parallel loops.

Figure 4. Execution paradigms to show why CUDA-NP
works.

In the example in Figure 3, the master threads are
aligned along the X dimension, i.e., the master id is
threadIdx.x in the corresponding TB of the input kernel.
When we generate the slave threads for a master thread,
they share the same master id (i.e., threadIdx.x) but have
different slave ids (i.e., threadIdx.y). Therefore, we actually
use threads in different warps to work collaboratively for
the workload of a master thread in the input kernel, since
the warps are formed using consecutive thread ids. For
example, the threads with two-dimension ids (1,0) to (1,7)
in a TB of our optimized kernel perform the workload of
the thread with id 1 in the TB of the original kernel. The
thread with id (1,0) in the optimized kernel will be the

master thread corresponding to thread 1 in the original
kernel and threads with ids (1,1) to (1,7) are its slave
threads. These threads will be in different warps as the TB
dimension is 32x8. Therefore, we refer to this way of dis-
tributing parallel loop iterations as inter-warp NP. Besides
inter-warp NP, we can map the ‘master_id’ to threadIdx.y
and map ‘slave_id’ to threadIdx.x. For example, we use
threads with thread ids (0,1) to (7,1) in our optimized ker-
nel to perform the workload of thread 1 in the original
kernel. This way, we use threads within a warp to distribute
the parallel loops. We refer to this way of thread id map-
ping or workload distribution as intra-warp NP.

As illustrated in Figure 3b, several key code transfor-
mations are performed by our proposed CUDA-NP compil-
er framework. In the sequential code sections, it introduces
the control flow in line 10 to only allow the master threads
to compute the variable ‘array_offset’. Since this variable
is to be used in the parallel loop by slave threads, it needs
to be broadcasted to the slave threads. A function called
read_from_master is introduced for this purpose. In the
parallel loop, it updates the loop iterator using slave ids and
the number of slave threads (i.e., ‘slave_size’) so that mul-
tiple slave threads can process multiple loop iterations in
parallel. As the loop bound checking remains in the trans-
formed code, this transformation is valid if the loop bound
is determined at the runtime. Also, from this example, we
can see that a key challenge of our code transformations is
to handle the variables which are live cross a parallel sec-
tion and a sequential section.

In Section 3.1, we discuss how our compiler handles
scalar live-in variables. Section 3.2 addresses the scalar
live-out variables. For live array-variables, if they reside in
global memory or shared memory, they are already acces-
sible by the master threads and their salve threads. So, in
Section 3.3, we discuss our compiler transformation to deal
with live array-variables, which are located in local
memory. In Section 3.4, we summarize the tradeoffs be-
tween the two workload distribution schemes, intra-warp
NP and inter-warp NP. In Section 3.5, we present the over-
all compiler algorithm for code transformations. Section
3.6 lists our proposed pragmas for NP. Section 3.7 discuss-
es the preprocessing step of our compiler.

3.1 Scalar Inputs/Live-Ins to Parallel Sections

For a scalar variable defined in a sequential section and
used in a subsequent parallel section, i.e., a live-in variable
to the parallel section, we need to broadcast it from a mas-
ter thread to its slave threads. The exception is that the
variable is in the global memory which is already visible to
all the threads. For example, as shown with line 15 in Fig-
ure 3a, the global memory array m can be directly accessed
by slave threads. Shared memory has similar behavior and

Master
threads

Slave
threads

Sequential
section

Sequential
section

Parallel
section

Loop section

Sequential
section

Sequential
section

a) Execution time of baseline

b) Execution time of the optimized kernel

97

can be used directly by slave threads without additional
code transformations.

The variables in the register file or local memory have to
be broadcasted to slave threads as they are private to a
master thread. We implement it using the function
read_from_master. If we use intra-warp NP for Kepler
GPUs, since the master and its slave threads are in the same
warp, we can use the shfl instruction, __shfl(var, 0,
slave_size), to implement the read_from_master function.
As explained in Section 2.1, for such a __shfl instruction, a
warp threads first are partitioned into small groups with the
group size of slave_size. Therefore, a group actually con-
tains all the slave threads of a master thread for intra-warp
NP. Then all threads within a group will read the value of
var from the master thread, whose id (i.e., threadIdx.x %
slave_size) is 0, in the small group. For inter-warp NP or
intra-warp NP on GPUs that do not support __shfl instruc-
tions, read_from_master is implemented using shared
memory. In this case, master threads first write values to
shared memory, and then slave threads read from shared
memory.

Instead of communicating through registers or shared
memory, another way is to let all slave threads compute the
live-in variables redundantly. Such redundant computation
is also called uniform vector operations as they have the
same input and output values for different threads [7]. If the
overhead is only simple ALU computations like line 10 in
Figure 3a, in general redundant computation can deliver
better performance due to eliminating the shared memory
usage and control flow. In our compiler, if an instruction’s
inputs are constant values or the output of a uniform vector
instruction, this instruction will be executed by all slave
threads redundantly. Otherwise, we let the master thread
execute it and broadcast the result to slave threads.

3.2 Scalar Outputs/Live-Outs of Parallel Sections

Similarly to the live-ins of a parallel section, if a scalar
output of a parallel section is in global memory or shared
memory, we can just leave as it is, as it is already visible to
the master threads. If a variable is in the register file or
local memory, we have different scenarios to handle. One
common scenario is a reduction or scan variable, for which
we can generate the parallel implementations to retrieve the
results from slave threads. We implement the reduction
using shared memory for inter-warp NP or using the shfl
instruction for intra-warp NP. For the scan implementation,
we also use a similar approach to Nvidia CUDA SDK [26].

There are scenarios that an output of a parallel section is
neither a reduction variable nor a scan variable. One such
example is the code ‘if (i==3) x = a[i];’ inside a parallel
loop, where i is the loop iterator and the variable x is the
used in later sequential sections. The problem with this
code is that in our CUDA-NP scheme, each slave thread

has a local variable x and will execute the code. But it is
supposed that only one slave thread will write the value to
x, and the x of this slave thread needs to be transferred to
the master thread. In such a case, we can make the initial
value of x to be 0 so that a reduction operation on x can be
used to retrieve the value from the slave threads.

3.3 Live Array-Variables Residing in Local Memory

Since the register file has a limited size and cannot be ac-
cessed as an indexed array, array variables residing in the
local memory are used in some CUDA programs. As
shown in Figure 5, the array Grad has to be spilled into
local memory due to the register file size limitation. Such
local memory accesses incur high pressure on the L1 cache
and lead to poor performance.

Figure 5. The kernel with live array-variables in local
memory.

We apply our CUDA-NP on the parallel loops marked
with our CUDA-NP pragmas in Figure 5, and Figure 6
shows the code after our optimization. From Figure 6, we
can see all parallel loops are distributed to multiple slave
threads. For the loop starting from line 6 in Figure 5, each
slave thread only needs to compute NPOINTS/slave_size
iterations as shown from line 6 in Figure 6. As shown from
line 7 in Figure 6, each iteration of the loop in a slave
thread is mapped to an iteration of the loop of the baseline
kernel before our optimization. This way, all iterations of
the loop in the baseline are distributed to slave threads. The
reduction or scan operations are also appended after the
loops if the pragmas specify the reduction or scan clauses.

As we discussed in section 3.1, a local array is private to
a thread, and not visible to other threads. However, in order
for slave threads to process a parallel loop, this array has to
be shared among those threads. Therefore, we need to re-

#define NPOINTS 150
__global__void ellipsematching_kernel(…) {

float Grad[NPOINTS]; //live array-variable in local memory
……
#pragma np parallel for

 for(n = 0; n < NPOINTS; n++) {
 …...
 Grad[n] = tex1Dfetch(t_grad_x,addr) * ……;

}
#pragma np parallel for reduction(+:sum)
for(n = 0; n < NPOINTS; n++) sum += Grad[n];
ave = sum / ((float) NPOINTS);

#pragma np parallel for reduction(+:var,ep)
for(n = 0; n < NPOINTS; n++) {
 sum = Grad[n] - ave;
 var += sum * sum;
 ep += sum;
}
……

 if(((ave * ave) / var) > sGicov)
 gicov[(i * grad_m) + j] = ave / sqrt(var);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

98

place a local array with a shared memory array or a global
memory so as to make it visible to all threads. One excep-
tion is that a local array is accessed based on the loop itera-
tor. For example, the parallel loops in Figure 5 always
access the array Grad using the loop iterators. In this case,
since each slave thread only needs to accesses part of the
local array without interleaving, we can partition the local
array into small ones and distribute each small array to one
slave thread. Therefore, for a live local array, we can re-
place it with a global memory array, a shared memory
array, or partition it into small local arrays as shown in
Figure 6. Since these approaches only affect the accesses to
local arrays, we differentiate them using two MACROs:
DEF_Grad and Grad(i), in Figure 6a, 6b, and 6c so that the
code in Figure 6d remains the same.

1. Replace a local array with a global memory array: We
first define a new global array and partition it such that
each partition corresponds to the local array of a master
thread. As shown in Figure 6a, the MACRO DEF_Grad
partitions a new global memory array Grad_g based on
the id of a master thread so that all slave threads of the
master thread access the same partition.

2. Replace a local memory with a shared memory array:
In this case, we first declare a shared memory array. The
size of its first dimension is the master_size, i.e., the
number of master threads in a TB, and the size of its
second dimension is the size of the local array. Then
slave threads can access the shared memory based on its
master thread id and the index of original local array.
Since many benchmarks already use shared memory in-
tensively, the potential issue of this approach is the in-
creased usage of shared memory.

3. Partition a local array into smaller local arrays: In
Figure 6c, each slave thread only requires a smaller lo-
cal array whose size is NPOINTS/slave_size. This ap-
proach requires a slave thread must only read and write
its own local array after the partition.

Our framework employs the following policy to decide
which option is to be used to replace a local array. First, if
the local array meets all conditions to be partitioned into
smaller ones, we choose option 3. Otherwise, the size of the
local array is checked, and the shared memory is used to
replace the local array, if the size of the local array is less
than 384 byte. The reason for this choice is that assuming
the local array size is 384 bytes and we can launch 8 slave
threads for each master thread, 48Kbytes shared memory
can support 128 master threads and 896 slave threads after
our optimizations, which provides enough TLP on each
SMX. If the shared memory is already used in the baseline,
we also need to subtract such shared memory usage from
384 bytes to ensure that shared memory will not be the
resource bottleneck for TLP. The last choice is to replace

the local array with one in global memory due to the high
access latency.

Figure 6. Approaches to handle live array-variables in
local memory.

3.4 Inter-Warp NP vs. Intra-Warp NP

The choice between inter-warp NP and intra-warp NP may
have significant performance impact. Here, we summarize
their tradeoffs. First, since threads in the same warp can use
registers to exchange data, __shfl instructions can be used
for communication and also the scan and reduction opera-
tions for intra-warp NP. As a result, the intra-warp NP may
have less shared memory usage. Second, if the slave
threads of a master thread have different workloads, the
intra-warp NP will be worse than inter-warp NP due to
control divergence. Third, intra-warp NP may have nega-
tive impact on memory coalescing as it changes the
memory access pattern of the original kernel. In general,
the master threads in the original kernel have adjacent

#define NPOINTS 150
template<int slave_size>
__global__ void ellipsematching_kernel(…, float*Grad_g) {

DEF_Grad
……
for(ni = 0; ni < NPOINTS/slave_size; ni++) {
 n = ni*slave_size+slave_id;//map thread id to iteration

 …...
 Grad(n) = tex1Dfetch(t_grad_x,addr) * ……;

}
for(ni = 0; ni < NPOINTS/slave_size; ni++) {
 n = ni*slave_size+ slave_id;
 sum += Grad(n);

 }
 sum =reduction(sum);// reduction on slave threads

ave = sum / ((float) NPOINTS);

for(ni = 0; ni < NPOINTS/slave_size; ni++) {
 n = ni*slave_size+ slave_id;
 sum = Grad(n) - ave;
 var += sum * sum;
 ep += sum;
}
var =reduction(var);//
ep = reduction(ep);//
……
if (slave_id==0) // only master threads

 if(((ave * ave) / var) > sGicov)
 gicov[(i * grad_m) + j] = ave / sqrt(var);
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

#define DEF_Grad float* Grad=Grad_g+ \
(master_size*blockIdx.x)* NPOINTS+master_id

#define Grad(i) Grad[i*master_size]
(a) Replace a local memory array with a global memory one

#define DEF_Grad __shared__ float Grad[master_size][NPOINTS]
#define Grad(i) Grad_sm[master_id][i]
(b) Replace a local memory array with a shared memory one

#define DEF_Grad float Grad_reg[NPOINTS/slave_size]
#define Grad(i) Grad_reg[i%(slave_size)]

(c) Partition a local array to small ones

(d) Optimized code

99

thread ids and tend to access the global memory in a coa-
lesced way. If we map these master thread ids into
threadIdx.y as the intra-warp NP approach, these coalesced
global memory accesses are broken. Forth, a similar issue
may also happen for constant memory accesses when we
use intra-warp NP. Considering line 11 in Figure 5, if the
Grad is a constant array, threads in a warp will access the
same address of Grad in the baseline. However, after intra-
warp NP, slave threads of a master thread will access dif-
ferent addresses of the constant array. Such accesses cannot
leverage the hardware broadcast logic and may hurt per-
formance. Finally, to use the __shfl instructions, the num-
ber of slave threads for a master thread has to be (a 2’s
power -1), i.e., 1, 3, 7, 15. Otherwise, these slave threads
might be in different warps.

Figure 7. The overall compiler algorithm of CUDA-NP.

3.5 Compiler Algorithm

Here, we summarize our CUDA-NP compiler algorithm, as
shown in Figure 7. CUDA-NP takes a kernel as the input. It
parses the kernel into a series of code sections. Each code
section is either sequential or parallel. A parallel section is
identified by the ‘np’ pragma. First, we map the thread id
of the input kernel to master and slave thread ids in the
transformed kernel for either the inter-warp NP or intra-
warp NP approach. Then, if a code section is sequential
one, we generate the control flow to only allow the master
threads to execute it. Redundant computations can be used
in sequential sections depending on the characteristics of an
instruction as discussed in Section 3.1. For parallel
sections, all slave threads along with their master threads
are active. For each parallel section, we also generate the
code for its scalar input (Section 3.1) and the code for its
scalar output (Section 3.2). The live local arrays have to be
replaced with global/shared memory arrays, or partitioned
into smaller local arrays, as discussed in Section 3.3.

3.6 Pragma

In order to reduce the programming complexity to leverage
nested parallelism, we adapt the OpenMP pragmas for our

CUDA-NP framework. Most of CUDA-NP grammars are
designed to be very similar to OpenMP pragmas on pur-
pose. A developer can add ‘#pragma np for’ to denote a
parallel loop, and can also specify different clauses of the
pragma. A copy-in clause defines the data which should be
broadcasted from a master thread to its slave threads. If a
copy-in clause is not available from users’ pragmas, our
compiler can automatically find the live-in variables de-
fined before a parallel loop and make them to be broadcast-
ed from a master thread to its slave threads. A reduc-
tion/scan clause defines the reduction or scan operations.
Developers have the flexibility to specify the preferred
number of slave threads (number_threads), whether the
inter-warp NP or intra-warp NP is preferred (NP_type), and
the targeted version of Nvidia CUDA compute capability
(sm_version). Our current support for compute capability
versions is mainly for the purpose of using shfl instructions.
If the target version is less than 3, the shfl instruction can-
not be used to guarantee correctness. If a developer does
not provide such information, our compiler generates mul-
tiple versions to explore different numbers of slave threads,
and different thread distribution approaches.

Figure 8. Mapping thread ids.

Figure 9. Converting sequential code into a loop.

3.7 Preprocessors

The purpose of the preprocessors to our compiler is to
generate the input source code suitable for our code optimi-
zations.

1. Convert a TB with multi-dimensional threads into a
TB with one-dimensional threads: We use the mapping
relationship shown in Figure 8 to map multi-dimension
thread ids to one-dimension ones and vice versa. This
transformation has limited performance impact since it
does not change thread organizations within warps. In
other words, the threads in a warp remain in a warp after

NP_transformation(Kernel kernel)
css = generateCodeSections(kernel)
inter-warp or intra-warp thread map for kernel (Section 3.4)
for cs in css:
 if cs is sequential:
 cs is master thread model
 if cs is a parallel loop:
 map each slave thread id to iterations of cs
 for each input in of cs:
 insert broadcast function for in before cs (Section 3.1)
 for each output out of cs:
 insert reduction or scan for out after cs (Section 3.2)
 for each live local memory array lm : (Section 3.3)
 map lm to global memory, shared memory or the
 register file

threadIdx_x threadIdx.z * blockDim.x * blockDim.y +
threadIdx.y * blockDim.x + threadIdx.x
(a) map three-dimension thread ids into one-dimension ones
threadIdx_x threadIdx.x % blockDim_x
threadIdx_y (threadIdx.x/blockDim_x) % blockDim_y
threadIdx_zthreadIdx.x /(blockDim_x * blockDim_z)
(b) map one-dimension thread ids into three-dimension ones

vertexInterp2(isoValue, v[0], v[1], ...);
vertexInterp2(isoValue, v[1], v[2], ...);
vertexInterp2(isoValue, v[2], v[3], ...),
……
vertexInterp2(isoValue, v[3], v[7], ...),

(a) Sequential code
__constant__ int CS_0= {0,1,2,…,3}
__constant__ int CS_1= {1,2,3,…,7}
for (int i=0; i<12; i++)
vertexInterp2(isoValue, v[CS_0[i]], v[CS_1[i]], ...);

(b) A loop converted from the code in (a)

100

the transformation. Therefore, it does not affect memory
coalescing or divergence.

2. Combine unrolled statements into a loop: We found
that sometimes the developers may manually unroll
some loops. Since our compiler targets at parallel loops,
for statements after unrolling, they can be combined into
a parallel loop to take advantage of CUDA-NP. Figure
9a shows such an example, as the input of each state-
ment cannot be mapped to an iterator of a loop directly.
In our pre-processor, we put the non-linear indexes in
constant buffers, and then access these indexes using
loop iterator. This way, we can convert such sequential
code into a parallel loop.

3. Pad arrays: as shown in Figure 5, the size of the local
memory array ‘Grad’ is 150, which is not multiple of
4,8,16, or 32. However, if we apply the inter-warp NP
scheme, the number of slave threads of a master thread
has to be (a 2’s power number – 1) and the loop count
needs to be a multiple of slave_size. In this case, we can
pad the size of Grad to 160 and also increase the upper
bound of the loop to 160 so that the loop counter is the
multiple of 32. Then an additional control flow “if
(i<150)’ is added in the loop body to skip the padding
data, where i is the loop iterator. Such padding may in-
troduce workload imbalance among slave threads due to
some idle iterations.

4. Experimental Methodology
To evaluate our proposed compiler, we perform our exper-
iments on Nvidia GTX 680 GPUs with CUDA SDK 5.0.
We let the CUDA runtime determine the shared memory
usage automatically based on the resource requirement of
each benchmark. Most benchmarks used in the experiments
are from Nvidia SDK, GPGPUSim, and Rodinia bench-
mark suite. Among these benchmarks, MarchingCubes
(MC) is from Nvidia SDK, and Libor (LIB) is from
GPGPUSim. Lud (LU), Leukocyte (LE), Streamcluster
(SS), Computational Fluid Dynamics (CFD), BucketSort
(BK), and Nearest Neighbor (NN) are from Rodinia. The
LE is the array order version [4], and BK is in the Hybrid
Sort package. Since NN only uses one thread in each TB
and has very poor performance, we first modify the TB
configuration so that each TB has 32 threads, which is 2.89
times faster than the original version. Then we use this
modified version as the baseline in our experiments. We
use the optimized matrix-vector multiplication (MV) based
on [42]. The TMV code is shown in Figure 1. In Table 1, as
a comparison, we show the resource usage of our optimized
benchmarks. For these benchmarks, we manually add the
NP pragma to identify parallel loops.

We implement our proposed CUDA-NP in a source-to-
source compiler using Cetus [20]. Our compiler has an
auto-tuning mechanism to select from multiple choices,
such as intra-warp NP or inter-warp NP, and different
numbers of slave threads to be used to distribute parallel
loop iterations.

5. Experimental Results
In Figure 10, we report the speedups of the optimized ker-
nel generated by our compiler over the baseline. As shown
in the figure, our proposed CUDA-NP can achieve from
1.36 to 6.69 times speedups. On average using the geomet-
ric mean (GM), our proposed CUDA-NP can achieve 2.18
times speedup among the ten benchmarks.

Figure 10. Speedups of our proposed CUDA-NP over
baseline.

In order to better understand the impact of our CUDA-
NP on these benchmarks, we show results for different
slave_sizes coupled with either inter-warp NP or intra-warp
NP in Figure 11. Among these benchmarks, LU and NN are
the only cases that intra-warp NP achieves better perfor-
mance than inter-warp NP. The main reason for LU is that
the loops of LU are in the control flow ‘master_id<16’. The
intra-warp NP approach allocates slave threads in the same
warp for a master thread. Assuming each master thread has
3 slave threads, each warp will contain only 8 master
threads (8 master threads+24 slaves). These 8 master
threads and their slaves will execute the same path. There-
fore, control divergence disappears after intra-warp NP.
Furthermore, when three slave threads are allocated to each
master thread (i.e, slave_size=4), it achieves the best per-
formance for both intra-warp NP and inter-warp NP, as it
enables 2k threads per SMX based on the resource usage.
For NN, the intra-warp NP version can access the global
memory in a more coalesced manner while the impact of
inter-warp NP is minor.

For other benchmarks, inter-warp NP always outper-
forms intra-warp NP. MC, LIB and LE have imbalanced
workload among slave threads for intra-warp NP. For ex-
ample, since the loop count of MC is 12, and if we allocate
7 slave threads for each master thread, then some slave
threads have to take 2 iterations and others take 1 iteration.
LIB and LE have similar behaviour to MC.

0.5
1

1.5
2

2.5
3

3.5

MC LU LE MV SS LIB CFD BK TMV NN GM
Sp
e
e
d
u
p

6.69

101

The difference between inter-warp NP and intra-warp
NP for CFD is minor, because the memory accesses of the
baseline are not all coalesced and the loop iterations can be
evenly distributed to slave threads.

From Figure 11, we can also see that in some cases, the
performance degrades when the number of slave threads
increases. This observation is consistent with the previous
work [18] in that higher TLP is not always helpful.

Figure 12. The impact of padding on LE.

Figure 13. TMV results on GTX 680 for matrices with
variable widths and a constant height (2k).

As we discussed previously, if the loop count of a paral-
lel loop counter is not power of 2, we need to pad it to the
multiple of power of 2 for intra-warp NP. However, for
inter-warp NP, such limitation can be removed. Therefore
in Figure 12, for the benchmark LE, we compare the results
without padding to those with padding. The loop count of
the baseline is 150. We choose to compare these results that
have similar numbers of slave threads. If we compare 3
threads (no padding) to 2 threads (padding), 5 threads (no
padding) to 4 threads (padding), 8 threads (padding) to 10
threads (no padding), 16 threads (padding) to 15 threads
(no padding), we can see that the no-padding version (NP)

always outperforms the padding version (P). The best op-
timized version can achieve 2.25 times speedup over the
baseline.

Since the benchmarks TMV and MV are available in
Nvidia CUBLAS library, we also compare our optimized
version to CUBLAS V5.0 [25] in Figure 13 and Figure 14
on GTX 680 GPUs. We also include the SMM version for
MV [42] in Figure 14 as a reference. In Figure 13, the
height of input matrix is always 2k, and we vary the width
of the input matrix. From this figure we can see that our
baseline has similar performance to CUBLAS, and our
CUDA-NP solution achieves significantly better perfor-
mance. For matrices with smaller sizes, since the number of
overall threads is determined by the width of input matrix,
our approach enables more threads to occupy the SMXs
and achieve even higher speedups. For example, if the
input width is 1k, our CUDA-NP version delivers 4.9 times
speedup over CUBLAS.

Figure 14. MV results on GTX 680 for matrices with
variable heights and a constant width (2k).

We compare our result of MV to CUBLAS and SMM in
Figure 14. The shared memory configuration is set to 48KB
per SMX. We fix the width of input matrix to 2k and vary
the height from 1k to 64k. The height determines the over-
all number of threads for the baseline. From Figure 14, we
can see that our solution always outperforms both SMM
and CUBLAS.

0.9

1.4

1.9

2.4

2_P 3_NP 4_P 5_NP 8_P 10_NP 16_P 15_NP

Sp
e
e
d
u
p

The number of threads

0
10
20
30
40
50
60
70
80

1K 2k 4k 8k 16k 32k 64k

P
e
rf
o
rm

an
ce

(G
fl
o
p
s/
S)

The width of input matrix

CUBLAS BL CUDA‐NP

0

10

20

30

40

50

60

70

80

1K 2k 4k 8k 16k 32k 64k

P
e
rf
o
rm

an
ce
 (
G
fl
o
p
s/
S)

The height of input matrix

CUBLAS BL SMM CUDA‐NP

Figure 11. Performance comparison between inter-warp and intra-warp NP with different slave_sizes. Some
slave_sizes are not applicable as the resulting TB size would exceed the maximal TB size.

0

0.5

1

1.5

2

2.5

3

3.5

INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA INTER INTRA

MC LU LE MV SS LIB CFD BK TMV NN

Sp
e
e
d
u
p

2 threads 4 threads 8 threads 16 threads 32 threads

5.19 6.69 6.17

102

As discussed in Section 3.3, for a local memory array,
we may replace it with an array in global memory/shared
memory or partition it so that the small partitions can be
allocated as registers. Among all benchmarks, we are able
to apply such optimizations to LE and LIB. We show the
performance results when using global memory, shared
memory or register file to replace the local memory arrays
for these two benchmarks in Figure 15. As show in the
figure, using global memory does not help the performance,
as the global memory is off-chip memory and the local
memory can be cached through L1 cache. The performance
of using shared memory depends on the usage of shared
memory. Since the size of the local memory array of LE is
about twice of the size of local memory array of LIB, we
can see heavy shared memory usage for LE actually hurts
the performance while we can observe the performance
gains for LIB. Since the register file is much larger than
shared memory, it works the best for both benchmarks.

Figure 15. Comparing different ways to replace a local
memory array.

Figure 16. Speedup of using the shfl instruction over
using shared memory for reduction or scan operations
when applying intra-warp NP. The baseline is the best
performing inter-warp NP version.

The benefit of using the __shfl instruction is shown in
Figure 16. In the figure, we use the best inter-warp NP
version as the baseline to be normalized to. Then we show
the speedup of the version of using __shfl instruction for
reduction or scan operations over the version of using
shared memory. From this figure, we can see that the __shfl
instruction is very useful for MC and LU. These two
benchmarks have intensive shared memory usage, and
using shared memory for reduction or scan operations can
make it even more intensive. For other benchmarks, the
impact of using __shfl instruction is minor as the scan or
reduction primitive only takes a small amount of execution

time. We also see some small slowdowns, and consider the
reason may be due to memory behaviour changes.

6. Related Work And Discussion
Many compiler frameworks [3][21][23][38][41] have been
developed to utilize high-throughput GPGPU architecture.
For example, OpenMPC [21] is proposed to transfer legacy
OpenMP programs to GPGPU programs, and [41] trans-
lates the naïve GPU programs into optimized ones. Most of
these works focuses on optimizing global memory accesses
and enabling massive thread-level parallelism. To the best
of our knowledge, nested parallelism has been overlooked
and our solution is the first compiler approach to exploit it.

It is shown in [10] that using dynamic parallelism can
improve the performance of the divide-and-conquer algo-
rithms as the child kernels can be launched by the GPU
instead of the CPU. However, they also observed slow-
downs due to dynamic parallelism for regular applications
such as K-mean.

Dynamic parallelism is more suitable for massive nested
loops instead of benchmarks listed in the paper. Further-
more, dynamic parallelism may require additional devel-
opment effort due to the communication between a child
kernel and a parent kernel. For example, shared memory is
used in the nested loops for benchmarks, MC, LU, MV, SS,
and BK. In order to utilize dynamic parallelism, developers
have to write the code to copy the data from shared
memory to global memory so that the child kernel can
access the data, and then copy the data from global memory
back to shared memory. Such expensive memory copy
introduces both performance overhead and code
In comparison, our CUDA-NP solution eliminates such
redundant communications. For the benchmarks, NN,
LE, LIB, and CFD, we implemented dynamic parallelism
versions, which show 28.92, 7.61, 13.45, 125.67 and 52.29
times slower than their original versions, respectively, due
to the communication cost and the dynamic-parallelism-
enabled kernel overhead. Using NN as an example, which
has a parallel loop with a large loop count, if we choose to
let each thread of parent kernel launch a child kernel to
perform the parallel loop, the dynamic parallelism version
is about 28.92 times slower, compared to the version with-
out dynamic parallelism. Then, we manually optimize it by
only using the first thread in a TB to start a child kernel to
reduce the number of kernel launches. This version is still
3.25 times slower. Overall, for benchmarks used in this
paper, dynamic parallelism cannot help the performance for
benchmarks even with manual optimizations, as the availa-
ble NP is too limited to offset the high overhead of dynam-
ic parallelism.

Some recent works focus on identifying the best per-
forming version in a large search space, either using analyt-
ical models [14] or auto-tuning [28]. Since CUDA-NP only

0.8

1

1.2

1.4

1.6

LE LIB

Sp
e
e
d
u
p

shared memory global memory register file

0.8

0.9

1

1.1

1.2

1.3

1.4

MC LU LE MV SS LIB CFD TMV NN

sp
e
e
d
u
p

103

generates a small number of versions, the optimal version
can be found by testing these versions exhaustively. In
other words, a simple auto-tuning can be used to find the
optimal configuration. Furthermore, our experiments also
reveal some key factors to find the optimal version for
CUDA-NP. First, memory coalescing and intra-warp diver-
gence can be used to determine the priority between intra-
warp NP and inter-warp NP. Second, using 3 or 7 slave
threads achieves close-to-optimal performance for all
benchmarks in our study.

While many architectural improvements [24][28][35]
and application optimizations [12][14][16][18] [29][31][32]
[33][34][39][40][42][43][44] have been proposed for
GPGPU programs, only few observe the potential of nested
TLP in GPU programs. In [35] a hardware approach is
proposed to create threads dynamically in the runtime to
reduce the overhead of complex control flow, similar to
Nvidia dynamic parallelism. In [14], a warp is used handle
one job instead of one thread so as to reduce control diver-
gence. However, in this paper, we show that inter-warp NP,
i.e., distributing one master thread’s workload into different
warps, may be suitable for many benchmarks. Furthermore,
compared to [14], our approach only requires an applica-
tion developer to write pragmas instead of developing new
programs. In addition, our compiler can also handle the
reduction and scan variables and leverage the __shfl in-
structions.

Nested parallelism is specified as an option in the
OpenMP and is supported in some implementations such as
[22]. Compared to previous OpenMP studies [1][5][8][9]
[10][11][13][36][37] on nested parallelism for CPUs, our
solution is the first language extension to support nested
parallelism for GPGPU platforms, and we show different
ways to handle the scan and reduction operations, the inter-
warp and intra-warp NP schemes, as well as careful re-
source managements on GPGPUs.

7. Conclusion
In this paper, we propose a novel compiler solution to lev-
erage nested parallelism for GPGPU application. We ob-
serve that many benchmarks have relatively light nested
parallelism, i.e., parallel loops with small loop counts,
which cannot be effectively exploited using the recently
introduced dynamic parallelism. Therefore, we propose to
partition the code sections into sequential sections and
parallel sections, and then enable different numbers of
threads for sequential sections and parallel sections. In
order to simplify application development, we implement
our approach as a compiler framework to support directive-
based nested parallelism. In our proposed CUDA-NP com-
piler framework, an application developer only needs to
add OpenMP-like pragmas for parallel loops, and our com-
piler will generate the optimized code. Our compiler can

handle the reduction and scan variables, chooses either the
intra-warp NP or inter-warp NP approach to distribute the
parallel loop iterations, and automatically handle different
types of live variables across code sections. Our perfor-
mance results show significant performance gains and
demonstrate the effectiveness of our proposed solution.

Acknowledgments
We thank the anonymous reviewers for their insightful
comments to improve our paper. This work is supported by
an NSF grant CCF-1216569 and a NSF CAREER award
CCF-0968667. We also want to thank the ARC Cluster [16]
for providing Nvidia K20c GPUs.

References
[1] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.

Massaioli, X. Teruel, P. Unnikrishnan, and G. Zhang. The
design of openmp tasks. In TPDS, 2009.

[2] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M.
Aamodt. Analyzing CUDA workloads using a detailed GPU
simulator. In ISPASS April 2009.

[3] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ra-
manujam, A. Rountev, and P. Sadayappan. A Compiler
Framework for Optimization of Affine Loop Nests for
GPGPUs. In ICS, 2008.

[4] M. Boyer, D. Tarjan, S. T. Acton, and K. Skadron. Accelerat-
ing leukocyte tracking using CUDA: A case study in leverag-
ing manycore coprocessors. In IPDPS 2009.

[5] HM. Bücker, A.Rasch, and A. Wolf. A class of OpenMP
applications involving nested parallelism. In Proceedings of
the 2004 ACM symposium on Applied computing, 2004.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H.
Lee, and K. Skadron. Rodinia: A benchmark suite for hetero-
geneous computing. In IISWC 2009.

[7] S. Collange, D. Defour, and Y. Zhang. Dynamic detection of
uniform and affine vectors in GPGPU computations. In
ICPP, 2009.

[8] L. Dagum, and R. Menon. OpenMP: an industry standard
API for shared-memory programming. Computational Sci-
ence & Engineering, 1998.

[9] VV. Dimakopoulos, EH. Panagiotis, and GC. Philos.A mi-
crobenchmark study of OpenMP overheads under nested par-
allelism. In OpenMP in a New Era of Parallelism, 2008.

[10] J. DiMarco, and M. Taufer. Performance impact of dynamic
parallelism on different clustering algorithms. In SPIE De-
fense, Security, and Sensing. International Society for Optics
and Photonics, 2013.

[11] A. Duran, M. Gonzàlez, and J. Corbalán.Automatic thread
distribution for nested parallelism in OpenMP. In ICS, 2005.

[12] N. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith, and J.
Manferdelli. High performance discrete Fourier transforms
on graphics processors. In Proc. Supercomputing, 2008.

104

[13] PE. Hadjidoukas, and VV. Dimakopoulos . Nested parallel-
ism in the OMPI OpenMP/C compiler. In Euro-Par Parallel
Processing, 2007.

[14] S. Hong and H. Kim. An analytical model for GPU architec-
ture with memory-level and thread-level parallelism aware-
ness. In Proc. International Symposium on Computer Archi-
tecture, 2009.

[15] S. Hong, S.K. Kim, T. Oguntebi, and K. Olukotun. Acceler-
ating CUDA graph algorithms at maximum warp. In PPoPP
2011.

[16] http://moss.csc.ncsu.edu/~mueller/cluster/arc/

[17] B. Jang, D. Schaa, P. Mistry and D. Kaeli. Exploiting
memory access patterns to improve memory performance in
data-parallel architectures. In IEEE TPDS, 2010.

[18] O. Kayiran, A. Jog, M. T. Kandemir, C. R. Das. Neither
More Nor Less: Optimizing Thread-level Parallelism for
GPGPUs. In PACT, 2013.

[19] J. Kim, H. Kim, J. Lee, and J. Lee. Achieving a Single Com-
pute Device Image in OpenCL for Multiple GPUs. In PPoPP,
2011.

[20] S. I. Lee, T. Johnson, and R. Eigenmann. Cetus – an extensi-
ble compiler infrastructure for source-to-source transfor-
mation. In LCPC, 2003

[21] S. Lee, S.-J. Min, and R. Eigenmann. OpenMP to GPGPU: A
compiler framework for automatic translation and optimiza-
tion. In Proc. In PPoPP, 2009

[22] C. Liao, O. Hernandez, B. Chapman, W. Chen and W.
Zheng. OpenUH: An Optimizing, Portable OpenMP
Compiler. In the 12th Workshop on Compilers for Parallel
Computers, Spain, 2006.

[23] Y. Liu, E. Z. Zhang, amd X. Shen. A Cross-Input Adaptive
Frame-work for GPU Programs Optimization. In IPDPS,
2009.

[24] V. Narasiman, C. Lee, M. Shebanow, R. Miftakhutdinov, O.
Mutlu, and Y. Patt. Improving GPU Performance via Large
Warps and Two-Level Warp Scheduling. In MICRO, 2011.

[25] Nvidia CUDA Toolkit 5.0 CUBLAS Library, 2013

[26] Nvidia GPU Computing SDK 5.0, 2013.

[27] Nvidia Programming Guide, CUDA Toolkit V5.5, 2013.

[28] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and S.
Amarasinghe. Portable performance on heterogeneous archi-
tectures. In ASPLOS, 2013.

[29] B. Ren, G. Agrawal, J. R. Larus, T. Mytkowicz, T. Poutanen
and W. Schulte. SIMD Parallelization of Applications that
Traverse Irregular Data Structures. In CGO, 2013.

[30] T. G. Rogers, M.Connor, T. Aamodt, Cache-Conscious
Wavefront Scheduling. In MICRO , 2012.

[31] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.
Ueng, J. A. Stratton, and W. W. Hwu. Optimization space
pruning for a multi-threaded GPU. In CGO, 2008.

[32] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B.
Kirk, and W.W. Hwu. Optimization principles and applica-
tion performance evaluation of a multithreaded GPU using
CUDA. In PPoPP, 2008.

[33] G. Ruetsch and P. Micikevicius, Optimize matrix transpose
in CUDA. Nvidia, 2009.

[34] J. Sim, A. Dasgupta, H. Kim, and R. Vuduc, A Performance
Analysis Framework for Identifying Performance Benefits in
GPGPU Applications. In PPoPP, 2012.

[35] M. Steffen and J. Zambreno. Dynamic Thread Creation for
Improving Processor Utilization on SIMT Streaming Proces-
sor Architectures. In MICRO, 2010.

[36] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa. Perfor-
mance evaluation of OpenMP applications with nested paral-
lelism. In Languages, Compilers, and Run-Time Systems for
Scalable Computers, 2000.

[37] X. Tian, JP. Hoeflinger, G. Haab, Y.K. Chen, M. Girkar, and
S. Shah. A compiler for exploiting nested parallelism in
OpenMP programs. Parallel Computing, 2005.

[38] S. Ueng, M. Lathara, S. S. Baghsorkhi, and W. W. Hwu.
CUDA-lite: Reducing GPU programming Complexity, In
LCPC, 2008

[39] V. Volkov and J. W. Benchmarking GPUs to tune dense
linear algebra. In Proc. Supercomputing, 2008.

[40] B. Wu, Z. Zhao, E. Zhang, Y. Jiang, and X. Shen. Complexi-
ty Analysis and Algorithm Design for Reorganizing Data to
Minimize Non-Coalesced GPU Memory Accesses. In PPoPP,
2013.

[41] Y. Yang, P. Xiang, J. Kong and H. Zhou. A GPGPU Compil-
er for Memory Optimization and Parallelism Management.
In PLDI, 2010.

[42] Y. Yang, P. Xiang, M. Mantor, N. Rubin, and H. Zhou.
Shared Memory Multiplexing: A Novel Way to Improve
GPGPU Throughput. In PACT, 2012.

[43] Y. Zhang, J. Cohen, and J. D. Owens. Fast Tridiagonal Solv-
ers on the GPU. In PPoPP, 2010.

[44] E. Z. Zhang, Y. Jiang, Z. Guo, K. Tian, and X. Shen. On-the-
fly elimination of dynamic irregularities for GPU computing.
In ASPLOS, 2011.

105

