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ABSTRACT
In this work, we analyze efficient communication methods
for a grid of many-core processors in the absence of cache
coherence. For this study, we build a multi-chip processor
with 240 tightly connected cores and demonstrate its scala-
bility. This processor is based on the Intel SCC, a cluster-
on-a-chip research processor with 48 non-coherent memory
coupled cores. Our new research system virtually extends
the on-chip network of multiple SCC systems and provides
new communication functionality for direct on-chip memory
access. We analyze access patterns of different communica-
tion schemes and apply techniques to hide latency, such as
offloading communication and software caching with relaxed
consistency.

Keywords
Cluster-on-a-Chip, Low-level Communication, Emulation of
on-chip Interconnect, Message Passing

1. INTRODUCTION
Effective Communication has been identified as an im-

portant part of creating future supercomputers with a per-
formance of 1018 floating-point operations per second (exa-
FLOPS). In 2008, the first petascale supercomputers were
realized with multi-core processor technology as a key driver.
For a realization of exascale supercomputers in foreseeable
future, new milestones in technology will be required regard-
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ing the sheer computing performance in the presence of even
higher core counts.

In general, a processor design which follows the network-
on-chip (NoC) paradigm targets communication in a scal-
able way. Based on this technology, tiled many-core archi-
tectures are an emerging trend in research. Especially fo-
cussing on the x86 landscape towards hundreds of cores per
die, potential issue concerning the scalability of processor
architectures is hardware cache coherence, which manifests
in architectural overhead. A loss of cache coherence is a rad-
ical change of memory abstraction and will raise challenges
to low-level software development, as data invalidation and
transfer has to be explicitly controlled.

In this paper, we focus on processor architectures that
target the integration of hundreds to thousands cores per
die. In order to explore such architectures and to enable
research into this direction, we introduce vSCC, a new re-
search vehicle to evaluate scalability of the existing software
stack for the Intel Single-chip Cloud Computer (SCC). The
result is a runtime extension, which can be used to emulate
a single cluster-on-a-chip processor with 240 cores. This
allows to analyze many-core system properties today and
thereby guide the development of future systems. Regarding
the physical setup of vSCC we connect physical distributed
SCC devices to a single virtual many-core processor. The
hardware of our unique research system consists of a server
that is equipped with multiple PCIe expansion cards, as il-
lustrated in Fig. 1.

The basic concept that we have followed is waiving trans-
parent inter-device communication and extending a cluster-
on-a-chip architecture by new instructions. For such a com-
munication scenario, this creates the possibility of efficient
data movement. This integration is based on the idea of ex-
tending the architectural support for message passing of the
Intel SCC to a host assisted communication path. Specifi-
cally, we extend the functionality of a many-core communi-
cation layer for the realization of a more efficient exchange
of data with a communication task, which is running on the
host and part of the SCC’s software stack.
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Figure 1: Physical setup of our unique research system,
which consists of five Intel SCC devices connected through
PCIe expansion cables to a single host

The main contributions of this paper are the following:

• We discuss the design of a system of cluster-on-a-chip
processors with 240 cores

• We follow a reverse acceleration approach and effec-
tively offload inter-device communication

• All together, our techniques enable effective hiding of
high latency communication path through means of
system software support and recover 24 % of on-chip
communication performance

The paper its structured as follows. The next section cov-
ers related work for the approach of offloading communica-
tion and connecting multiple SCC systems. In Section 3, we
describe the general concept and implementation of host as-
sisted communication for the communication scenario that
is studied in this paper. In Section 4, we analyze the per-
formance by using selected applications and give insights on
the communication overhead. We use RCCE1 and available
applications to demonstrate the quality of our implementa-
tion. Section 5 summarizes this paper and gives an outlook
for future work.

2. RELATED AND PREVIOUS WORK
Tiled many-core processors are an active field of research,

for instance the Tilera processor family or the SCORPIO
project [2, 5]. Relevant processor prototypes of experimen-
tal architectures are commonly assembled to a PCIe device
in order to create a flexible research vehicle, whereas the
Intel SCC represents another example. Due to its hard-
ware dimensions, the SCC processor is located on a sepa-
rate mainboard which holds an FPGA that is connected to
a PCIe expansion card.

In general, the concept of using PCI Express (PCIe) as
a fabric interconnect for computing units is not limited to
research projects. A prominent example for High Perfor-
mance Computing (HPC) is the use of GPUs and CPUs as

1a low-level communication library for the Intel SCC, avail-
able at: github.com/Intel-SCC/RCCE

direct PCIe coupled processing devices. In the field of HPC
computing, the Xeon Phi coprocessor is another example of
a many-core processor that is assembled to a PCIe device.

Our research shares the basic idea of the reverse-acceleration
approach [11]. The approach is named reverse-acceleration,
because it targets offloading communication between through-
put optimized cores to a latency optimized computing core,
instead of offloading compute intensive tasks to through-
put optimized cores. The reverse-acceleration approach has
been successfully applied as a work-around for the Xeon Phi
coprocessor [8]. A hardware limitation of Xeon based host
systems avoids a good direct communication performance
between two PCIe devices. The solution for MPI based ap-
plications is a proxy task that is running on the host and acts
as a message broker to the communication library [12]. This
work follows a similar approach compared to our work re-
garding communication offload, where the general goal is to
accelerate communication of many-core systems. However,
the main contrast is that we target a low-level communica-
tion path on data transfer layer and extensions to systems
software, instead of a modification of the communication
library.

2.1 Intel SCC
The Single-chip Cloud Computer (SCC) experimental pro-

cessor [15] is a concept vehicle created by Intel Labs as a
platform for many-core software research.

The architecture of the experimental processor has 48 clas-
sic in-order P54C based cores without support for hyper-
threading, SIMD extensions or cache coherency. Two cores
are located on a single tile and share a router, which connects
the tile to a two-dimensional mesh interconnect. Rather
than being competitive in absolute computing performance
compared to commercial coprocessors or accelerators, the
SCC implements a new on-chip communication concept for
x86 based many-core processors. This concept consists of ex-
plicit on-chip data movement and can be seen as hardware
support for message passing. In the default configuration,
48 embedded Linux instances, one per core, are running on
the coprocessor in private memory regions, which are dis-
tributed over four memory controller.

Attributes of the tiled many-core architecture are multi-
ple coherency domains per chip and hardware support for
message passing, integrated to the processor architecture.
This results in an inherent scalability and flexibility of the
many-core architecture itself. From a manufacturability per-
spective, more transistors per chip can be used to add more
tiles to the processor without huge effort in validation and
redesign.

The idea of a virtual expansion of an on-die network across
systems to emulate a CPU with up to hundreds of cores has
been first mentioned by Gries et al. [6] as an application for
high-speed serial I/O connectors.

We have presented the realization of this approach, with-
out any modifications to the SCC hardware in [13]. In this
previous work we reached the goal of a transparent connec-
tion of two SCC devices by routing on-chip packets through
the host system. For this small virtual cluster-on-a-chip
processors, we have identified the default communication
scheme of RCCE as a major performance bottleneck. To
hide communication latency of a transparent inter-device
connection, the local put communication scheme of RCCE
was replaced.
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Figure 2: Timely behavior of basic blocking communication protocols

This exchange of the communication scheme to remote put
required fundamental changes to the communication proto-
col, which is described in detail in our previous work. We
have finally developed a new communication protocol, which
effectively uses the hardware support for message passing
also for inter-device communication. As a result, a RCCE
session with moderate communication traffic can be scaled
up to 96 cores on the virtual extended on-chip interconnect.
Only minor modifications to the hardware abstraction layer
were necessary, such as a mapping of remote on-chip mem-
ory and extending the RCCE ranks in a linear way up to
96.

Due to hardware limitations of the SCC processor, the ex-
isting prototype prevents a stable use for rising inter-device
communication, which is a result of three or more tightly
coupled SCC devices. To further explore the scalability of
the SCC processor architecture and related software solu-
tions, we present in this paper the vSCC architecture with
more than 200 cores. To this end, we develop a cooperation
between device and host, which in fact waives full trans-
parency and extend the SCC architecture by new function-
ality. This functionality is added to the communication task
and enables the application of classic software optimization
techniques, such as caching or write combining.

Our research shares similarities to a control of dedicated
cores, called copy cores, which have been used in related
work to accelerate a memory copy operation for the SCC [16].

2.2 RCCE family
RCCE has been developed by Intel Labs as a light-weight

communication environment for the SCC research proces-
sor [9]. It provides a low-level interface to abstract hardware
details of on-chip communication. Because of an intended
bare-metal use without operating system support, it purely
relies on busy waiting and flag based synchronization.

Rather than explicitly flush shared data and selectively in-
validate caches, a programmer can follow the message pass-
ing programming paradigm to develop applications by using
a two-sided communication interface, called non-gory. Nev-
ertheless, it is a low-level API with a limited functionality,
compared to a fully featured communication environment,
such as MPI.

The reference implementation of RCCE has been imple-
mented as a layered approach. This includes a basic one-
sided interface, called gory, which can be seen as a hard-
ware abstraction layer. Applications can also use this low-
level API instead of the non-gory interface for direct on-chip
memory access or a combination of both. Such programming
is complex, because it is specific for each many-core architec-
ture and hard to debug. A direct use of the gory interface
mainly targets applications where a high predictability is
essential, for instance real-time applications in a bare-metal
framework.

In its nature of a layered approach, the communication
protocol invokes gory functions for the realization of send
and receive functionality, similar to the described applica-
tions. Blocking communication through RCCE_send() and
RCCE_recv() works as illustrated in Fig. 2a.

First, the sender puts the message into its local commu-
nication buffer. Second, for the indication of this event,
the sender toggles a flag at the receiver’s side. Finally, the
sender waits for the indication that the receiver has copied
the message to its private memory. If a message does not
fit into the MPB, the message is internally split into smaller
messages and transferred consecutively. In general, blocking
communication means that the send function returns, if the
receive function has been completed.

The default communication protocol implements a local-
put and remote-get communication scheme. A strength of
this communication scheme is that each core exclusively
writes to its local communication buffer, which simplifies
the synchronization model.

iRCCE has been developed at RWTH Aachen University
as a non-blocking extension for RCCE [4]. Moreover, our
communication extension supports sophisticated communi-
cation protocols and introduces optimizations [3]. Figure 2
compares the timely behavior of a blocking communication,
with and without pipelining. The diagram illustrates the
communication progress and indicates a previous completion
of the pipelined protocol. The pipelined protocol of iRCCE
introduces additional overhead by using a finer synchroniza-
tion granularity, but provides the advantage of interleaving
put and get operations. Consequently, this protocol can ac-
celerate point-to-point communication, if the internal packet
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Figure 3: Topology of vSCC consisting of five devices with 240 physical core ids

size is chosen appropriately. Resulting communication per-
formance in terms of throughput is detailed in Section 4.

We have summarized the communication protocol of the
RCCE family here in detail, because we present in the next
section a new communication concept for a grid of cluster-
on-a-chip processors, that relies on this basic kind of com-
munication. Furthermore, we compare the achieved results
for inter-device communication to on-chip communication.

2.3 Limitations of existing Prototype
An extension of the SCC host system driver, which tun-

nels a proprietary network-on-chip protocol through a PCIe
connection, has been presented in a previous paper by some
of the authors [13]. This previous prototype implements a
simple routing, which leads to a transparent extension of
the on-chip interconnect. In this scenario the communica-
tion task which is running on the host can be seen as a proxy
for the proprietary on-chip protocol of the SCC. Beside this
essential functionality to forward fixed size messages, no fur-
ther optimizations have been added to the communication
task.

Nevertheless, remote traffic had to be analyzed by a so
called communication task, which is running on the host.
The feature to distinguish between different types of commu-
nication was already supported by the original SCC driver
provided by Intel Labs, but the communication task was re-
stricted to handle inter process communication on the host.

For the realization of a transparent inter-device commu-
nication path, RCCE had to be modified. In [13], we have
developed a new communication protocol and integrated
to iRCCE, which implements a remote put communication
scheme. Experiments with the previous prototype were lim-
ited to this scheme, because the good performance of the
remote put scheme relies on the option of generating auto-
matic write acknowledges for requests that target off-chip
memory. This option has known stability issues, which pre-
vents a tight coupling of more than two SCC devices and
works only for applications with a moderate inter-device
communication.

In the following, we will show that additional functionality
in system software, such as a virtual DMA controller, can
waive the described restrictions and enable a further analysis
of the SCC hardware and software.

3. COMMUNICATION CONCEPT
The physical communication topology of the Intel SCC ar-

chitecture represents a two dimensional mesh. From a pro-
grammers perspective, a message passing application uses
ranks to identify specific processes. Running a RCCE appli-
cation on the SCC, the processes are numbered in a linear
way and mapped to physical cores that are sorted in a de-
scending order according to their id. As a result, a neighbor-
ing communication rank does not guarantee a small commu-
nication distance. This mapping of physical core ids to ranks
is a common abstraction for the programmer, but it does not
necessarily represent an ideal communication scheme.

For the vSCC architecture this mapping represents a chal-
lenge, because a third dimension is added to the communica-
tion topology, whereas only a single physical link at (x, y) co-
ordinate (3, 0) exist. To describe the coordinates of a vSCC
core the triple (x, y, z) is used, as illustrated in Fig. 3. As we
use the device number as z coordinate, the inter-device com-
munication with a higher latency (∼ 104 core cycles) is in z
direction. A communication path in x or y direction has a
relatively low latency (∼ 100 core cycles), due to the on-chip
interconnect [14]. Nevertheless, the communication path for
vSCC in z direction corresponds to a routing functionality
on the data transfer layer.

The challenge is, that the virtual extension does not neces-
sarily change the mapping of RCCE ranks to physical cores.
First all cores of the first device are assigned to RCCE ranks
in a linear way, which is continued to a second device start-
ing with id 48. In Fig. 3 the topology of vSCC is illustrated,
whereas each rectangle represents a tile and circles repre-
sent devices, that are connected through PCIe to a tightly
coupled system.

The basic communication layer of RCCE, also called gory,
abstracts the hardware details of communication, such as ex-
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plicit access to on-chip memory and flushing of caches, by
providing a simple one-sided interface through put and get

functions. This RDMA functionality is further provided by
the vSCC architecture. In the next paragraph, we summa-
rize the hardware support for message passing of the SCC
architecture.

3.1 Hardware support for message passing
RCCE developers introduced the term MPB, which is

commonly used in synonym for the software controlled on-
chip memory for the Intel SCC. Within the scope of this
work, we will use different terms to describe different re-
gions of the software controlled on-chip memory. We use
the term local memory buffer (LMB) to describe the soft-
ware controlled on-chip memory per tile, MPB for the mes-
sage passing buffer, and SF for synchronization flag region.
The resulting relation is that SF and MPB share the LMB.

The Intel SCC architecture handles private and shared
data differently, thereby that for shared data a new mem-
ory type has been introduced (MPBT). Memory that uses
this new memory type can be combined with write through
or uncached memory configuration. For this shared data in
write through configuration, only the first level cache is acti-
vated and all other caches are bypassed. Hereby, the tagged
cache-lines in first level cache can be invalidated by a single
instruction (clinvd). Additionally in both cache memory
configurations a transparent write combining buffer is acti-
vated to accelerate write bursts to shared memory.

Our approach is to extend this concept to the implemen-
tation of a cache that is maintained by the communication
task. For the observed communication scenario of RCCE,
data movement that targets on-chip memory can be divided
into two categories: synchronization and communication.
Specifically, access to flags, which are for example used to
coordinate data transfer, and buffer access for point-to-point
communication are handled differently.

Similar to the differentiation between shared and private
data of the SCC memory model, our approach to acceler-
ate inter-device communication is to handle remote data ac-
cess differently. In order to realize this differentiation of
inter-device data transfer, the memory regions have to be
known to the communication task. Specifically, each rank
has to register start address and length of the communica-
tion buffer to the communication task. As a result, the task
can classify incoming requests and handle them in a differ-
ent way. Flag access2 bypasses all transparent buffers of
the communication task and is forwarded to another device.
Even if remote read operations to synchronization flags are
forwarded without caching, write requests can be directly
acknowledged immediately, whereas the acknowledgement
of read requests has to be delayed until the requested data
is available.

Another important attribute for remote memory access is
the fact that continuous read operations are used by RCCE
family to transfer data with a predictable access pattern.
For our communication scenario this attribute generates the
possibility of prefetching data with a high accuracy. As a re-
sult, the communication task holds a complete or partly copy
of the remote MPB to handle following remote read requests
with a lower latency. In order to implement relaxed memory
coherence in an efficient manner, we use information on the
communication protocol to avoid data inconsistency. Such

2RCCE uses read operations exclusively to local flags

that the sender that writes to a local MPB explicitly inval-
idates the outdated part of the host copy explicitly.

3.2 Communication Task
Our approach to overcome the described limitations is

adding new functionality to the inter-device communication
path of vSCC. This includes new instructions to control the
consistency of an intermediate buffer with the goal to hide
communication latency.

For our prototype, the communication task has been im-
plemented as an extension of a background process, also
called daemon, of the device driver that is part of the SCC’s
software stack. Because the host is connected to multiple de-
vices, our communication task consists of multiple threads
on kernel level. This multithreaded daemon directly invokes
read and write operations to the system interface of an SCC
device. Similar to the original version of the SCC driver, a
physical DMA controller on the host is invoked for commu-
nication through PCIe to the device.

The main difference to our previous work is that the com-
munication task is no more restricted to transparent routing
of memory requests. Moreover, we added memory mapped
register3 to emulate instructions, that can be used to control
the support of communication. As a result, the communica-
tion task can cache and prefetch data from another device,
whereas the process which is running on the SCC can control
the data consistency.

This kind of control has the advantage, that information
of the communication protocol can be used for optimiza-
tions. For example, a message of 1 kB is transferred from one
device to another device by invoking cooperative send and
recv functions. The offloaded communication task needs in-
formation on data location, size, and communication scheme
of the message passing protocol to perform a copy operation.
To accelerate different communication schemes, classic soft-
ware techniques, such as prefetching and caching of remote
data can be used.

If we assume a local put/remote get scheme, the sender
copies the message from private to shared buffer. Next, a
synchronization flag is set at the receiver, that the copy op-
eration has been finished. We loop through this flag to in-
form the communication task, that the data on sender side
is available. Additionally, the sender has to inform the com-
munication task on the location of the message, which is
handled through a write operation to a memory mapped
register. As a result, the communication task can begin to
copy the message to an intermediate buffer and after a warm-
up phase answer remote memory requests of the receiver in
parallel. This method represents a prefetching technique,
which has been successfully applied to the described com-
munication scenario.

3.3 Host accelerated Communication
Figure 4 compares the data flow of different communi-

cation schemes with host invocation. Additionally, Fig. 4d
holds a code snippet, which depicts the synchronization points
for the alternative communication schemes. For the default
local put scheme of RCCE, synchronization points a and for
the remote put scheme synchronization points b1 and b2 are
active.

3A memory mapped register executes a specified operation,
e. g. a frequency change, and is controlled through read and
write access to a specific address
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/* ... */
RCCE_send (){

gory_synch_b1 ();
gory_put ();
gory_synch_b2 ();
gory_synch_a ();

}

/* ... */
RCCE_recv (){

gory_synch_a ();
gory_synch_b1 ();
gory_synch_b2 ();
gory_get ();

}

sender: receiver:

(d) source code

Figure 4: Comparison of inter-device communication schemes for message passing (left sender, right receiver)

The basic approach of accelerating inter-device commu-
nication is offloading data movement to the host. This in-
troduces overhead, which is another copy operation that ex-
tends the two way copy scheme from RCCE to a three way
copy scheme, as illustrated in the graphic. Instead of copy-
ing data from private to shared buffer on sender side and
back to private buffer on receiver side, a communication task
is embedded performing an intermediate copy operation.

The communication task holds a buffer, that can be ei-
ther used as a cache (Fig. 4b), as a write combining buffer
(Fig. 4c), or as an internal buffer (Fig. 4a). For all 3 config-
urations, we will further detail the communication scheme.

Next, the inter-device communication progress is described
for a protocol that supports a remote put scheme. First the
sender, which is located on the left in the graphic, writes
the message directly to the host located intermediate buffer.
Next, the communication task copies the data in a certain
granularity from its intermediate buffer to the MPB of the
remote device. This behavior is equivalent to a write com-
bining buffer.

For the local put/remote get scheme, the offloaded com-
munication task handles the data transfer between device
and host. First, the sender writes the message to its lo-
cal MPB and triggers the communication task to copy the
data to the intermediate buffer. Next, the receiver reads
the message from the intermediate buffer on the host, which
corresponds to a software cache, as illustrated in Fig. 4b.

Both communication schemes are possible in a kind of
transparent mode, whereas the intermediate buffer is mapped
as the remote on-chip buffer and memory requests are di-
rectly performed. Since the intermediate buffer represents a

non-coherent copy of the message passing buffer, update and
invalidation of data have to be controlled in an explicit way.
Update and invalidation operations represent extensions of
the instruction set of the SCC, which we have realized by a
new set of memory mapped register.

As a result of these additional operations, different mem-
ory models are possible for optimization. In contrast to the
described variants of host assisted communication, which
can be realized in a transparent or non-transparent way, lo-
cal put/local get can not be realized in a non-transparent
way. A main advantage of this new local-access communi-
cation scheme is the fact that sender and receiver copy data
to on-chip memory. The communication task performs the
copy operation, and can be seen in this configuration as a
virtual DMA controller.

Figure 5 illustrates the functionality that we have devel-
oped for vSCC. It is a classic design, comparable to DMA
functionality of standard computer systems. Our implemen-
tations works through new memory mapped register, which
we have integrated to the host driver. Three logical regis-
ter can be used to pass information to the vDMA controller,
about start of the memory location (address) amount of data
(count) and coordinating tasks such as trigger the trans-
action start (control). A straight forward implementation
would result in three remote memory accesses to control the
virtual controller. For the Intel SCC continuous allocation
of memory mapped register with an alignment of 32 B re-
duces this overhead because the architecture can fuse write
operations with a write combining buffer (wcb).

Our prototype implementation uses busy waiting on host
as well as on device side. After a core has finished program-
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ming the vDMA controller, a core spins on a flag which is
located in its on-chip memory to get the information that a
memory copy operation has been completed. This method
guarantees a low latency but prevents a core of doing use-
ful work as long as the copy operation is in progress. Due
to the fact that standard RCCE applications are limited
to blocking communication, this implementation implies no
limitations for the results of Section 4.

Because programming the vDMA controller represents a
certain overhead, to recover low latency for small messages
we have defined a threshold for a core to directly transfer
data, which is about 32 B to 128 B dependent on the com-
munication scheme.

4. EVALUATION
In this section, we present results of the implemented com-

munication concept for a cluster of tightly coupled SCC sys-
tems. This includes benchmark results for selected RCCE
applications and visualization of its communication pattern.
For the measurement results, all active cores4 have booted
a Linux instance and are running a RCCE process.

Due to compatibility issues, the SCC systems that have
been delivered by Intel Labs to users of the MARC commu-
nity include a host system. Because the chassis of the host
system has only space for a single-slot PCIe expansion card,
a connection of more than one SCC device is not possible.
Our experiences and experiences of other members of the
MARC community have shown, that alternative hardware
of the host system, which was necessary for an installation
with multiple SCC systems, has to be carefully chosen. We
use a two socket Xeon server (Intel S2600CW board) that
has been equipped with a single port and a four port PCIe
expansion cards (OSS-HIB5-x4). In this unique configura-
tion, we were able to connect 5 SCC devices to a single host.
However, we had to face some reliability issues.

The Intel SCC has been developed as a research system
and is not a fully tested product. Regarding an installa-
tion that consists of multiple SCC devices, the probability
for a core failure increases. For our installation, the situa-
tion occurs frequently that not all 240 cores are available at
startup.

4running with (core/mesh/memory) frequencies in MHz:
(533/800/800)

In the default configuration of the SCC research system,
one independent operating system instance is booted on each
core. As a result, a silent core failure does in general not
have a negative impact on the stability or performance of
the system. We have extended the startup script of RCCE
thereby that it creates a new configuration file with all avail-
able cores before application run. RCCE takes this file as
input to create the mapping of communication ranks to core
ids.

4.1 Ping-Pong
As a fist step towards an evaluation of the developed soft-

ware optimizations, we have compared different schemes of
remote communication for the well-known Ping-Pong ap-
plication. Figure 6 shows an overview on the throughput
results of a Ping-Pong communication pattern in the dia-
gram on the left hand side. The results are separated for
on-chip and inter-device communication. Due to the fact
that the cores of the SCC are based on classic P54C architec-
ture, maximum on-chip communication throughput is about
150 MB/s. We compare the communication performance of
RCCE without any pipelining to iRCCE, which introduces
software pipelining with a static threshold of 4 kB.

The diagram of Fig. 6b shows the inter-device commu-
nication throughput and represents a zoom in of Fig. 6a.
Here, the throughput has been extensively improved by the
presented optimizations in comparison to a simple packet
routing. A direct control of the communication task leads
to reasonable results.

The black curves in Fig. 6b represents the lower and upper
bound for host accelerated default communication schemes.
Because of the high latency from host to device or vice versa,
the inter-device communication throughput will never be
higher, than the variant which uses fast write acknowledges
of the on-board FPGA. Moreover, the black dashed curve
represents an upper limit because the hardware acceleration
is not scalable for up to 240 cores. The obtained throughput
results for offload of communication to the host are promis-
ing. We obtained a maximum throughput which is 71.72 %
of the limit, for the worst case inter-device communication
scheme (local put/remote get).

For all variants of inter-device communication, a drop
down of the throughput for a message size from 8 kB can be
observed. This value is the threshold, where a message does
not completely fit into the MPB 5. Consequently, the data
transmission has to be split into two transfers, whereas the
second transfer contains a small payload. This effectively re-
duces the resulting throughput. The gap between green and
blue curve of Fig. 6 indicate, that local put scheme better
suits a low-latency interconnect, which corresponds to local
communication.

Our measurements show, that point-to-point communica-
tion throughput of the local put/local get scheme is close to
the hardware accelerated version. Furthermore, the slope at
8 kB of the hybrid local communication pattern could be re-
moved. This is the result of an optimization that we applied
to the communication pattern. For larger messages, sender
and receiver can progress communication in parallel by in-
terleaving put and get operations to local on-chip memory.
Here, the communication task can introduce a pipelining
effect.

5The Local Memory Buffer of 8 kB holds the MPB and flags
for synchronization
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Figure 6: Performance comparison of point-to-point communication for vSCC

4.2 Application Benchmark
We have evaluated the scalability of our system with mul-

tiple SCCs by using the BT Benchmark from the NAS Par-
allel Benchmark (NPB) suite [1]. Mattson et al. ported the
BT benchmark from the well-known NAS parallel bench-
mark suite to RCCE [10].

Figure 7 shows absolute performance results for the BT
benchmark in class C problem size (162 × 162 × 162). This
problem size is suitable for the vSCC with 240 cores, as each
core has a peak performance of 533 MFLOP/s. A resulting
theoretical peak performance for the grid of SCC processors
with 225 cores is 120 GFLOP/s. Due to the applied work
distribution method and communication pattern 225 repre-
sents the maximum configuration, since the application can
only handle a number of processes, which is a square num-
ber.

Overall, we see a good scalability of the application with
host accelerated inter-device communication. As in the given
case, for an application without specific topology awareness,
the benchmark results demonstrate good performance of the
communication extensions that are presented in this paper.
To indicate the necessity of our optimizations, the diagram
of Fig. 7 holds the results for optimal and worst configura-
tion of inter-device communication. Lower black curve and
red curve of Fig. 6 show the corresponding point-to-point
communication throughput, which is a good performance
indicator for the given application because only send and
recv functions are used.

The NPB BT application uses a communication pattern
which is based on locality. Message passing applications
need an appropriate placement of processes to nodes of a
cluster to achieve a good performance, especially for het-
erogenous networks. In other words, applications should
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Figure 7: NPB Performance Results (class C)

prefer connections with high throughput for communication.
This basic assumption is also true for a cluster-on-a-chip pro-
cessor such as the Intel SCC, where processes are mapped
to cores.

Figure 8 visualizes the communication traffic for the in-
vestigated NPB BT application on vSCC, to further detail
the communication performance of our new prototype. Each
filled square of the diagram indicates a communication be-
tween two ranks (x is sender and y receiver), whereas dark
means high and light means low communication traffic.
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The diagram visualizes a neighboring based communica-
tion pattern, since the majority of data points are located
close to the diagonal. For sake of clarity, we selected a ses-
sion size of 64 for the shown graphic, which highlights inter-
device traffic by grey boxes.

The overall amount of inter-device communication clearly
influences the application performance, since this communi-
cation path represents a bottleneck. For the given example,
the maximum communication traffic between two ranks is
about 186 MB. The communication pattern, which repre-
sents a ring, is challenging for a grid of SCCs as been pre-
sented in this work. Compared to the communication task
that implements a simple routing of on-chip packets, a sig-
nificant better speedup can be achieved.

5. CONCLUSION AND OUTLOOK
Expecting many-core processors with hundreds of proces-

sor cores in the future, on-chip communication latencies will
automatically rise. Processor architectures that follow a de-
sign concept of many small cores with restricted functional-
ity represent an option to fulfill a rising demand of energy
efficiency. Classic concepts that include dedicated cores for
the acceleration of communication were successfully applied
to target similar challenges in the past [7]. The aspect of
building many-core systems as a coprocessor makes those
concepts even conspicuous for current computing systems.

In this paper, we have followed a reverse acceleration ap-
proach to scale a prototype of a cluster-on-a-chip architec-
ture to 240 cores. We named our new research framework
vSCC due to its composition of multiple SCC devices, which
are tightly coupled through a virtual on-chip interconnect.
Because the virtual extension works by tunneling the pro-
prietary on-chip network protocol through a single host via
PCIe, this setup raises latencies by a factor of 120. Our
concept to handle those challenges is a separation between
throughput and latency aware operations. In order to create
a scalable grid of cluster-on-a-chip processors, we have im-
plemented a reverse-acceleration model and applied classic
software techniques to hide latencies for throughput oriented
operations.

We have investigated in this work new communication
schemes for a cluster-on-a-chip processor with benefits of
offload communication and relaxed consistency. As a re-
sult of our optimizations, we were able to recover 24 % of
effective on-chip communication throughput for the virtual
extension, which is an impressive result for the investigated
high-latency communication path. To achieve these results
we propose extensions to the experimental SCC many-core
architecture.

Parallel applications which extensively use blocking point-
to-point communication with a neighborhood communica-
tion pattern show an excellent scalability. Our setup cre-
ates a prototype of a highly scalable many-core architecture
with useful workarounds in software for hardware limita-
tions. Consequently, our work may be used as a reference
guide for similar application environments.

For future work, we plan to extend our communication
concept to accelerate asynchronous communication.
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