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ABSTRACT

Programming heterogeneous MPSoCs (Multi-Processor Sys-
tems on Chip) is a grand challenge for embedded SoC providers
and users today. In this paper, we argue for the need and
significance of positioning the language and tool design from
the perspective of practicality to address this challenge. We
motivate, describe and justify such a practical design of a
compilation framework for heterogeneous MPSoCs targeting
the domain of streaming applications, named MAPS (MP-
SoC Application Programming Studio). MAPS defines a
clean, light-weight C language extension to capture stream-
ing programming models. A retargetable source-to-source
compiler is developed to provide key capabilities to con-
struct practical compilation frameworks for real-world, com-
plex MPSoC platforms. Our results have shown that MAPS
is a promising compiler infrastructure that enables program-
ming of heterogeneous MPSoCs and increases productivity
of MPSoC software developers.

Categories and Subject Descriptors

D.3.4 [Processors]: Compilers; D.3.2 [Language Classi-
fications]: Concurrent, distributed, and parallel languages;
D.1.3 [Concurrent Programming]: Parallel programming

General Terms

Design, Languages

Keywords

MPSoC programming, compiler infrastructure

1. INTRODUCTION
Heterogeneous MPSoCs are widely used in modern em-

bedded systems such as wireless terminals and modems. The
hardware integration level of commercial MPSoC platforms
increases so rapidly that a single chip consisting of multiple
programmable processors of different types becomes real-
ity. Platforms such as OMAP [26], KeyStone [27] from TI
(Texas Instruments) and P2012 [3] from STMicroelectronics
are state-of-the-art examples of such MPSoCs. They provide
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higher performance and lower power consumption than pre-
vious uni-processor systems. However, programming such
MPSoC platforms remains a grand challenge for embedded
SoC providers and users today [20].

1.1 Embedded MPSoC Programming
This work focuses on the challenge of MPSoC program-

ming particularly in the embedded systems industry. Pro-
grammability issues for multi-processor systems are not new
and have been studied intensively in the area of HPC (High
Performance Computing) systems. Despite the fact that the
problem setting is very similar, manifold differences exist be-
tween industries:

• Embedded systems are highly specialized in terms of
functionality, integration and energy efficiency. A much
higher level of disaggregation in embedded electron-
ics industry exists where a large number of competent
IP vendors provide solutions in specialized areas, e.g.
wireless modems and video decoders. Due to the dra-
matic increase in engineering costs and complexity of
today’s electronic designs, the embedded industry fa-
vors a horizontal business model where system compa-
nies build heterogeneous MPSoC based products con-
sisting of many processors from different, individual
IP vendors. The IP vendors usually have proprietary
programming tool-chains (e.g. C compilers) for their
products. This differs from the vertical model in HPC
industry where major providers maintain control of the
product development cycle ranging from hardware to
software tool-chains.

• The life cycle for embedded products is typically shorter
than for HPC systems. The pressure of reducing time-

to-market and time-in-market forces companies to fre-
quently evolve MPSoC platforms by incremental changes
for new product generations. This requires that the
compiler framework must be quickly adaptable and re-

targetable within a short time frame.

As a result of both factors, during the process of technical
developments towards multicores in the embedded indus-
try, the advancement in the hardware community is unfor-
tunately not in sync with its counterpart in the software
support and always occurs ahead. The MPSoC programma-
bility support is treated as an afterthought.

1.2 Current Practice
To illustrate the problem of MPSoC programming, Fig. 1

shows a comparison of programming flows for uni-processor
systems and for MPSoCs. In the uni-processor flow, software
programmers follow the sequential programming model (C
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Figure 1: Programming Flow (a) Uni-processor: Compil-
ers perform an end-to-end translation from parsing source
code, target independent optimization, target dependent op-
timization to final binary generation. (b) MPSoC: No com-
pilation framework for MPSoCs is in place. The process is
largely manual.

being the most popular language) and rely on the compilers

to generate target-specific code correctly and optimally, as
shown in Fig. 1 (a). Software programmers focus on struc-
turing algorithms correctly and are shielded from low-level
architectural details by using a vendor compiler. This has
been a successful practice for the past few decades before the
introduction of MPSoCs due to the pivotal role of compilers.

However, the traditional compiler technology does not
scale for MPSoCs. Fig. 1 (b) demonstrates the current
problematic programming flow for MPSoCs, which results
in a low software productivity. Applications firstly need to
be partitioned into parallel tasks, followed by the step of spa-
tial and temporal mapping of those partitioned tasks onto
MPSoC processing elements. As explained earlier, the pro-
grammable processors in heterogeneous MPSoCs nowadays
often come with their own compilers and have own software
stacks (API, OS). Therefore, after partitioning and map-
ping, correct code must be generated for those individual
processors respectively to be further compiled. Compared to
the uni-processor, those are new tasks on the programmers’
shoulders now which are non-trivial. Unlike the pivotal role
of traditional compilers in the uni-processor flow, little com-

piler support exists for MPSoC programming. This practice
is currently labor-intensive, error-prone and costly.

1.3 Our Position
In this paper, the practical design of a compilation frame-

work for heterogeneous MPSoCs targeting the domain of
streaming applications, named MAPS, is presented. Stream-
ing programming models have gained acceptance recently in
embedded software design, as they closely resemble compu-
tation of signal processing, wireless and multimedia applica-
tions.

We argue for the need and significance of positioning the
language and tool design from the perspective of practicality

to address the MPSoC programming problem in this work.
The design goal is being able to apply the proposed compi-
lation framework in practice for real-life, complex MPSoC
platforms. The MAPS compilation framework achieves this

through two parts: (a) a C language extension design that
models concurrent processes of streaming applications fol-
lowing the KPN (Kahn Process Networks) model in a clean,
practical and efficient manner; and (b) a retargetable source-

to-source compiler design that serves as an extensible infras-
tructure to automate the MPSoC compilation process.

The MAPS compiler framework and the C language ex-
tension together provide a combination of key capabilities
that are critical for practical MPSoC programming:

1. Portability and retargetability: The C language exten-
sion design minimizes the cost for porting programs
among different target architectures. The compiler
framework supports retargetability for real-life, com-
plex heterogeneous MPSoCs where processors have pro-
prietary APIs and target specific primitives.

2. Low entrance barrier: The amount of effort which is
needed to learn and migrate legacy C source code for
MPSoCs is kept low.

3. Clean and concise representation: Specification of con-
currency in source code is clean and concise.

4. Flexible, extensible compiler: As mentioned earlier, the
complexity of compilation frameworks for MPSoCs re-
quires a more flexible and extensible software archi-
tecture design compared to uni-processor compilers.
A flexible, extensible compiler allows e.g. integration
of different optimization modules and customization of
the compiler framework for various use-case scenarios.

The rest of this paper is organized as follows: Section 2
describes the C language extension, CPN (C for Process
Networks). Section 3 presents the design of MAPS com-
piler framework. Some limitations which exist in the cur-
rent status of this work are discussed in Section 4. In Sec-
tion 5, our experimental results are presented including ap-
plications and experiences of using MAPS as a compiler in-
frastructure. Section 6 gives a survey of related works and
compares MAPS to them. Section 7 concludes the paper
with a summary and outlook into future work.

2. LANGUAGE DESIGN
As this work focuses on streaming applications, a short

description of the streaming program model is given firstly in
this section. There are several different approaches to realize
those models in programming practice: we chose using the
language extension over other choices. The rationale behind
our design decision is discussed, followed by an overview of
CPN.

2.1 Streaming Models
Streaming (or dataflow) models have gained acceptance

recently in embedded software design. KPN [11] is a promi-
nent example widely used in practice to model signal pro-
cessing applications. A KPN is represented as a directed
graph which is built of nodes representing autonomous pro-
cesses of computation. The edges between the nodes repre-
sent unbounded unidirectional FIFO (first-in first-out) chan-
nels that transmit data items. Reading from an empty FIFO
channel results in the process being blocked until data to
read becomes available. A four-process KPN example is
shown in Fig. 2(a). The processes in a KPN can access
channels anywhere in their arbitrary control flow so that it
is flexible enough to model data dependent behavior. A true
subset of KPN, SDF (Synchronous Dataflow) [18], requires
that the control flow of an SDF process is an endless loop
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Figure 2: Process Network Examples: (a) A four-process
KPN example (b) A three-process SDF example: the num-
bers indicate how many tokens are consumed or produced
per iteration.

with pre-defined fixed channel accesses. Fig. 2(b) is an ex-
ample of SDF with three processes. For instance, process
f always consumes 10 tokens from process e, and produces
20 tokens for process g per iteration. SDF is very common
in specifying signal processing algorithms in that many al-
gorithms such as sampling and filter operations follow this
model strictly. As KPN and SDF resemble the way humans
think of parallel processing, the models are perceived as in-

tuitive ways to specify streaming programs.

2.2 Design Rationale
MAPS defines a clean, light-weight C language extension

called CPN (C for Process Networks) to capture stream-
ing models. A minimum set of new keywords is added to
the C language to describe processes and channels. A lan-
guage extension approach allows to specify semantics of pro-
cess networks at a high level e.g. containing enough struc-
tural information about the channel accesses. This firstly
enables retargetability towards typical embedded MPSoCs
where processing elements have different APIs and specific
low-level primitives (that often cannot be abstracted by a
common API). Secondly, programs are portable and seman-
tic analysis opens abundant opportunities for code transfor-
mations and optimizations (e.g. process fusion and fission).
Although C is not an ideal vehicle to carry concurrency spec-
ification, this design compromise is made considering the
large C legacy code base and popularity of C in the embed-
ded industry.

2.3 CPN Overview
A brief overview of CPN is given in this section. CPN

is an extension of the standard C language to support the
description of streaming models. It is designed to keep the
syntax as close to C as possible while making PNs structured
and readable. We chose to introduce a few new keywords
(prefixed with __PN) for channels, processes and channel
accesses of streaming models.

Channels
Channel declaration in CPN is similar to declaring a global

variable in C with an additional keyword __PNchannel.
Examples can be found in Listing 1. Elementary C types
such as int, char and float and enumerations are valid
channel types. Structures, unions and arrays of valid chan-
nel types are valid, too.

A channel is by default empty at the beginning of the ex-
ecution. If initial tokens are needed on the channels, e.g. to
avoid deadlocks, CPN also supports having initial tokens in
channels by specifying initializers in the channel declaration
(channel A at line 7 in Listing 1).

Processes
Similar to C++ templates, the concept of process tem-

plates is used in CPN to allow for code reuse. A process
template describes the functionality of a process and the

1 typedef struct { int i; double d; } my_struct_t;

2 typedef union { float f; short s[4]; }

my_union_t;

3

4 __PNchannel char B[3][3];

5 __PNchannel my_struct_t C;

6 __PNchannel my_union_t D;

7 __PNchannel int A = {1, 2, 3}; /* Initial

channel tokens */

Listing 1: CPN Example Code: Channel Declaration

1 /* Run Length Decoding, e.g. 4A2B5C3D ->

AAAABBCCCCCDDD */

2 __PNkpn RLD __PNin(int EncIn) __PNout(int

DecOut)

3 {

4 int count, i;

5 while (1) {

6 __PNin(EncIn) /* read a token (# of

appearances) from EncIn, e.g. 4 */

7 count = EncIn;

8 __PNin(EncIn) /* read a token (data

itself) from EncIn, e.g. A */

9 for (i = 0; i < count; ++i) /* write

data to DecOut, e.g 4 times of

A */

10 __PNout(DecOut)

11 DecOut = EncIn;

12 }

13 }

Listing 2: CPN Example Code: KPN Process Template
(Run Length Decoding)

channels this process needs to access (either read or write).
Processes are always created as instances of process tem-
plates. Readability and conciseness of the code is improved,
e.g. when multiple processes in a network share the same
functionality.

An example of a KPN process template is shown in List-
ing 2. It describes the functionality of Run Length Decod-
ing (RLD). Run Length Encoding (RLE) is a simple data
compression technique used e.g. in fax machines. Data are
encoded into a stream of duos, i.e. the number of appear-
ances and the data element itself. For instance, the original
data AAAABBCCCCCDDD is compressed into 4A2B5C3D. RLD
is the inverse of RLE. A KPN process template (__PNkpn)
with identifier RLD is shown in Listing 2. It reads integers
from its input channel EncIn and outputs integers to chan-
nel DecOut indicated by keywords __PNin and __PNout

respectively. The body of a KPN process template can con-
tain arbitrary code, which is allowed to access input and
output channels at any point of its control flow.

Access to a channel is always realized via __PNin or
__PNout in the body for KPN-like processes. Those state-
ments enable access to the next data tokens (read) or free
entries (write) in the channel, respectively. The code inside
the body of the __PNin or __PNout statement can access
those items like a local variable. At lines 6-7 of Listing 2,
firstly, a token from the input channel EncIn is read and
assigned to a local variable count. Then, the data are de-
coded by writing the encoded data into the output channel
DecOut using in the loop of lines 9-11. Both the __PNin

and the __PNout statements have blocking semantics, i.e.
they will suspend process execution until the channel con-
tains enough data tokens or free entries.

As SDF frequently appears in streaming applications, a
shortcut is provided in CPN to simplify the program repre-
sentation. The example in Listing 3 defines an SDF process
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1 __PNsdf Add __PNin(int a, int b) __PNout(int

sum) {

2 /* initialization code could be placed here */

3 __PNloop { /* infinite loop */

4 /* a and b are read from the channel

implicitly */

5 sum = a + b; /* channel variables are

accessible in C code */

6 /* sum is written to the channel implicitly

*/

7 }

8 }

Listing 3: CPN Example Code: SDF Process Template
(Adder)

1 __PNchannel int decoder1_input = {4, ’A’, 2,

’B’, 5, ’C’, 3, ’D’};

2 __PNchannel int decoder2_input = {3, ’E’, 5,

’F’, 4, ’G’, 2, ’H’};

3

4 __PNchannel int decoder1_output,

decoder2_output;

5 __PNchannel int add_output;

6

7 __PNprocess decoder1 = RLD

__PNin(decoder1_input)

__PNout(decoder1_output);

8 __PNprocess decoder2 = RLD

__PNin(decoder2_input)

__PNout(decoder2_output);

9 __PNprocess add = Add __PNin(decoder1_output,

decoder2_output) __PNout(add_output);

Listing 4: CPN Example Code: Process Instantiation

template (__PNsdf) for an adder functionality, reading in-
tegers from input channels a and b and writing integers to
channel sum. The __PNloop statement resembles the infi-
nite loop of an SDF process. Its body contains all the code
to be executed between reading from all input channels and
writing to all output channels. SDF-like processes implicitly
access all their input and output channels in the __PNloop
statement (line 3 in Listing 3). The number of tokens to ac-
cess in every iteration is given in the __PNin and __PNout

clauses of the SDF template header. If this number is not
specified, the default value 1 is used.

Processes can be instantiated from previously defined pro-
cess templates using __PNprocess. Listing 4 creates pro-
cesses from the process templates defined above and con-
nects channels to them.

Language Features
As CPN is designed to model streaming programs, a num-

ber of specific features are built into the language extension
for streaming computing to make the code further clean and
concise. For instance, multiple-item access on channels and
multicasting (i.e. multiple reader support on one channel)
are supported. Here one feature is introduced in detail: slid-

ing window access.
Sliding windows are often seen in stream programs [29].

It refers to the fact that some operations which work on
multiple channel items operate in an overlapping manner on
the data. A common example is the FIR (Finite Impulse
Response) filter. Several channel items are accessed at the
same time and most of those channel items might also be
accessed on successive iterations.

We implemented a special keyword to model sliding the
access window on a channel. Sliding the access window on a
channel to read from means that a number of elements at the
beginning of the channel array variable are marked as being

1 __PNkpn SobelHor __PNin(int in[WIDTH])

__PNout(int out[WIDTH])

2 {

3 int y, x;

4 ...

5 __PNin(in:3) {

6 for (y = 1; y < HEIGHT - 1; ++y) {

7 __PNout(out) {

8 out[0] = 0;

9 for (x = 1; x < WIDTH - 1; ++x)

10 out[x] = ( -1 * in[0][x-1] + -2 *
in[0][x] + -1 * in[0][x+1]

11 + 1 * in[2][x-1] + 2 *
in[2][x] + 1 *
in[2][x+1]

12 ) / 8;

13 out[WIDTH - 1] = 0;

14 }

15 if (y < HEIGHT - 2)

16 __PNmove(in:1);

17 }

18 }

19 ...

20 }

Listing 5: CPN Example Code: Sliding window

consumed, the remaining items are moved to the front of
the channel array variable and the rest of the channel array
variable is filled with new items from the channel. If not
enough new channel items are available, the operation will
block. Similar operations can apply to a channel for writing
with sliding window access.

Sliding the access window is done with the following com-
mand __PNmove(channel:number) where channel de-
notes the channel identifier and number the (constant) num-
ber of items the access window is to be slid. Listing 5 shows
a code excerpt of the two-dimensional Sobel edge detection
application. The algorithm performs filtering horizontally
and vertically to compute an approximation of the gradi-
ent. Listing 5 is the horizontal filter part. At line 5 using
__PNin(in:3), it asks to take 3 lines of the input image
in for computing the gradient. Assume here that lines 7,
8 and 9 of the input image are read in. At line 16 using
__PNmove(in:1), the access window is moved by 1, mean-
ing that the lines 8, 9, and 10 of the image become the next
3 lines for calculation.

3. COMPILER DESIGN
Once applications are written in CPN, a compiler frame-

work is needed to take them as input, compile and generate
correct and optimized binary code for target MPSoC plat-
forms. Ideally, it would act in the same role as the black-box
compiler for uni-processors (see Figure 1(a)). The complex-
ity of MPSoCs nowadays requires a more flexible design in
reality, though. Our compiler design rationale is firstly dis-
cussed in this section, followed by the details of our imple-
mentation.

3.1 Design Rationale
Many previous approaches for multiprocessor systems fol-

low the principle of compiler design for uni-processors: the
compiler works on input programs, builds an internal in-
termediate representation, performs optimizations and gen-
erates target binary code. This black-box monolithic de-
sign philosophy is that (a) the compiler performs generation
of correct and optimized target code without (much) help
from programmers; (b) the compiler has as much informa-
tion about architectural details as possible in order to per-
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form target-specific code generation and optimization. The
essence of this design philosophy is to incorporate the com-
plexity into a single tool (compiler) that is developed by a
small group of highly skilled experts. Therefore, program-
mers have a much improved productivity in designing soft-
ware assuming a straightforward programming model (se-
quential) and a simple, common memory model.

We studied and revisited this monolithic design approach
used in the past few decades (shown in Figure 3) and our
observations are:

1. The complexity of hardware architectures grows in such
rapid manner that a monolithic compiler is unable to
keep pace. For most of uni-processors like RISCs, com-
pilers still managed to include architectural details.
However, the gap between the architecture complexity
and the amount of information that a single tool can
incorporate has grown wider: more complex architec-
ture templates appear, like (clustered-) VLIW DSPs,
ASIPs (Application-Specific Instruction set Processors)
and eventually multicores which have multiple of those
scalar processors on a single chip. The level of user in-
tervention required in developing and using compilers
increases rapidly (shown in Figure 3), which is another
proof that the monolithic approach is reaching its limit
of feasibility.

2. Compilers usually take a significant time to mature
with an enormous amount of investment. As explained
in Section 1, heterogeneous MPSoC platforms will uti-
lize more and more individual IPs from different ven-
dors. Therefore, a monolithic approach for multicores
that generate target specific binary code (for different
processors) directly is not economical, as it does not
leverage the existing C compilers for uni-processors.

3. The usage scenarios of compilers are much more di-
verse now, especially in the embedded domain. Mul-
tiple optimization goals are commonly seen such as
performance, energy efficiency and code size.

Moving along the trajectory shown in Figure 3, we argue
that for heterogeneous multicore systems, a new flexible,
extensible compiler design is desired and required, instead of
continuing the monolithic approach. The user interventions
to account for the new architecture trends will further grow,
including a user-defined mapping specification and objective
functions for code generation and optimization.

3.2 Our Implementation
The software architecture of the compiler framework de-

veloped to compile CPN programs to heterogeneous MP-
SoCs is introduced in this section. The complete compila-
tion flow for a specific MPSoC is a tool framework consisting
of many components. The core component cpn-cc, a source-
to-source (CPN-to-C) compiler, is firstly elaborated followed
by a description on how the complete compilation framework
can be constructed in a flexible, extensible manner guided
by the user.

Instead of a monolithic approach, a source-to-source (CPN-
to-C) compiler, cpn-cc, was developed as the core compo-
nent in the framework. The cpn-cc is implemented based on
Clang [16], the C frontend of LLVM compiler infrastructure.
Figure 4 (a) shows a high-level, internal structure of cpn-cc

which consists of the frontend, generic and platform-specific
transformations, and a C code generator. Those components
and some special considerations during the implementation
are described below:

CPN 

Program 

Frontend 

CPN AST 
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Transformations 
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Figure 4: (a) Structure of the source-to-source compiler cpn-

cc (b) An example of a complete compiler framework for
a three-processor heterogeneous MPSoC: the parts with a
shaded background are optional to the core compiler frame-
work.

• Frontend: The frontend starts with C preprocessors
to provide functionality like the inclusion of header
files. After preprocessing, the source code is processed
by the tokenizer to which new CPN keywords were
added and the parser which was extended with new
grammar rules for CPN syntax elements like process
templates and channel accesses. Then, the CPN-aware
semantic analysis builds the AST (Abstract Syntax
Tree) as an intermediate representation in the memory
for further processing. It contains all CPN language
elements and constructs occurring in the source code.

• AST Transformations: After preparation by the
frontend, the AST transformations perform the job of
source-to-source translation. They are categorized into
Generic and Platform-specific transformations, very
similar to the sequence of code optimizations in a clas-
sic uni-processor compiler [1]. Generic transformations
are platform independent. One example is the trans-
formation from SDF templates to KPNs, where SDF
process templates are rewritten into KPNs with an
endless loop with explicit channel accesses in the be-
havior code. Platform-specific transformations replace
the AST nodes of CPN constructs by C nodes repre-
senting platform-specific API calls, e.g. FIFO primi-
tives. Therefore, the result of the AST transformations
will be a plain C code AST without any of the exten-
sions introduced by CPN (but with target-specific API
calls). Several ASTs are built in this phase, one for
each processor on the target MPSoC platform.

• C Code Generator: As the last step of source-to-
source translation, the AST printer of Clang generates
the C source code from the ASTs after transforma-
tions. In some cases, other additional auxiliary files
like configurations and makefiles also need to be gen-
erated in order to be further compiled with the indi-
vidual processor native C compilers.

Compared to other source-to-source translation tools which
are not based on a formally built AST (e.g. textual replace-
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ments), our approach provides a cleaner and more power-
ful infrastructure for source code transformation based on
the AST. The full semantic information allows code opti-
mizations in a larger program context. The readability of
the generated source code is also kept and the structure is
close to the original code. Compared to other approaches
not based on an AST, more effort is needed to build a fully
working compiler, though. The effort is well justified in that
cpn-cc is designed to be retargetable and a majority of cpn-
cc components can be re-used for different target MPSoC
platforms.

A complete compilation framework for heterogeneous MP-
SoCs can be built around the cpn-cc in a flexible and exten-

sible manner to suit different MPSoC target platforms in
different scenarios. An example of such a framework for a
specific MPSoC is shown in Figure 4 (b):

• In addition to CPN programs that are considered as
functional specification, an important input provided
by the user is the mapping info, which specifies the spa-
tial mapping of processes to processing elements and
temporal order for execution. Unlike the monolithic
approach which tries to automatically compute the
mapping and scheduling, we have designed the map-
ping info as an input to the core compiler in order to
keep a clean and lean software architecture. The map-
ping info can be provided by the user manually or can
be generated by an external tool.

• Transformations are implemented in a modular way
and thus can be customized for different target plat-
forms in a plug-and-play fashion. A large portion of
common transformations can be reused among many
MPSoC targets, which eases a lot the retargeting pro-
cess of the framework. Target specific transformations
can be developed in order to better exploit the specific
hardware details.

• The compilation framework is able to collaborate with
other state-of-the-art tools thanks to the extensible de-
sign. For example, an intelligent mapping info genera-
tor, referred as Mapping Generator in Figure 4 (b), can
be easily integrated with the core compiler framework.

In some scenarios of embedded system design, software
development needs to proceed simultaneously with the
architecture development e.g. using a Platform Gener-
ator (see Figure 4). Our work also enables retargeting
the compiler framework to work with ESL (Electronic
System Level) design tools for early system level de-
sign. Another possible usage scenario also shown in
Figure 4 is to include an external tool which converts
a sequential C code automatically into CPN code to
further improve the productivity of programmers.

The main concept of this flexible and extensible design is
to enable components re-use in constructing compiler frame-
works for different MPSoC platforms. Therefore, retargetabil-
ity can be achieved with minimal effort. As embedded sys-
tem design today involves many other third-party and ven-
dor tools inevitably, this design makes it also easy to col-
laborate with those tools thus preserving existing software
investments.

4. CURRENT LIMITATIONS
There are limitations in the current status of our work.

The main target platforms which MAPS addresses are those
consisting of programmable processors. Those processors
are C programmable by vendor C compilers. There is an
increasing usage of hardware accelerators e.g. using ASIC,
FPGA or weakly programmable processors in embedded MP-
SoC platforms. Our current framework cannot directly work
for those yet. Additionally, our current implementation has
much room for advanced automatic parallelization techniques
for further improvements. Currently, the retargeting process
of MAPS is not fully automated. We plan to address those
limitations in our future work.

5. RESULTS
The previous two sections describe our design and im-

plementation of the MAPS compiler infrastructure. In this
section, we evaluate this design in: (a) illustrative uses of
MAPS for real-word MPSoC platforms and other scenar-
ios; (b) how retargetability of MAPS for different MPSoC
platforms is achieved.
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5.1 Applications and Experiences
MAPS, as a MPSoC compiler infrastructure, has been

used for a number of MPSoC platforms to demonstrate its
feasibility and value in automating the compilation process.
Those platforms include commercial platforms that are avail-
able in silicon such as TI OMAP3530 and TI C6678. Virtual
prototypes of MPSoC platforms (e.g. Synopsys MCO [25])
are also supported, and other multicore platforms (mostly
x86 or ARM based) where a Pthreads environment is avail-
able. First, we briefly describe those platforms below.
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Figure 5: MPSoC platform block diagrams

• TI OMAP3530 [26] is a heterogeneous MPSoC plat-
form which features an ARM Cortex A8 processor and
a TI C64x+ DSP (Digital Signal Processor), shown
in Fig. 5(a). Software-wise, Linux is used as OS on
the ARM, while a lightweight multitasking operating
system (TI DSP/BIOS) is used on the DSP. TI also
provides a DSP/Link layer which handles the inter-
processor communications. OMAP is a typical MPSoC
platform where compiler tool chains for processors are
separate and different. The gcc compiler needs to be
used for the ARM processor while the DSP requires a
proprietary C compiler from TI.

• TI C6678 [27] is based on TI’s KeyStone multicore
architecture which integrates eight C66x DSPs, shown
in Fig. 5(b). Besides the local L1/L2 memory for each
DSP and global shared memory, the C6678 platform
is featured with the Multicore Navigator that consists
of more than eight thousand queues for direct com-
munications between processor cores. This feature is
particularly desirable for streaming programs. A soft-
ware development tool-chain (compiler, linker, etc.) is
available for the DSP from TI. However, no platform-
wide compilation framework is available.

• Synopsys MCO (MultiCore Optimization) tech-
nology is a SystemC-based virtual platform solution
for hardware/software co-development in the early sys-
tem design phase. Multicore platforms can be modeled
using a high-level abstraction of a processing element,
named Virtual Processing Unit (VPU) [14]. The VPUs
on the platform are able to execute SystemC modules
that model application tasks. Those tasks contain C
code that can be extended with explicit timing anno-
tations and with communication directives to access
the communication infrastructure of the modeled hard-
ware platform. An automatic compilation framework
is desired for multicore platforms in MCO to enable
seamless hardware/software co-development. MAPS
has been retargeted to support MCO so that system
architects can quickly evaluate software design choices
on a high-level virtual platform.

• Pthreads is a widely known parallel programming
API and largely available on multicore platforms (e.g.
x86 or ARM based). MAPS has been retargeted to
generate stream programs using the Pthreads API to
realize concurrent processes with FIFO communica-
tions. This expands the platforms that MAPS sup-
ports to virtually all platforms which are capable of
running Pthreads. Alternatively, this option is also
valuable when programmers perform functional verifi-
cation on the host.

We have successfully applied the MAPS compiler infras-
tructure for these MPSoC platforms. Though there exist
some differences in different MAPS instances for these plat-
forms, the basic principle and flow applies to all. As an
example, the case of using MAPS for the TI OMAP3530 is
introduced below, shown in Fig. 6. The example from List-
ing 4 is used as an input program for the cpn-cc compiler. A
mapping info file is required for cpn-cc to perform source-to-
source compilation, e.g. the spatial mapping of processes to
processors of OMAP3530. The cpn-cc compiler builds and
transforms the AST to replace __PN nodes by OMAP3530
specific APIs. At the right side of Fig. 6, a simplified code
excerpt of the transformation results for FIFO channel ac-
cesses is shown. The generated code is both editable and
readable, thus enabling opportunities for performance fine-
tuning by programmers. Note, it is critical that all trans-
formations take place at the AST level which provides com-
plete semantic contents of the source code. For instance,
the channel DecOut is a FIFO communication which occurs
between different processors under this mapping, while the
channel EncIn communication is local. This information
needs to be determined by the compiler in order to select
the correct target specific API: in this case, interproc func-
tions for inter-processor FIFOs and local for local FIFOs.
Simple textual replacement techniques are insufficient in this
case. After source-to-source compilation, target specific C
files are generated for ARM and DSP and the existing ven-
dor tool-chains are re-used. The compilation flow is thus
fully automated.

Though this paper is not intended to study parallelization
of specific benchmarks using MAPS, some performance re-
sults are presented here from using MAPS on TI multi-DSP
platform C6678 for completeness (see [23] for retargeting
MAPS to C6678 in detail). Two signal processing bench-
marks were selected: a digital audio filter and an airborne
radar application. The digital audio application implements
fast convolution filtering using FFT (Fast Fourier Trans-
form) and inverse FFT and it performs low-pass filtering
on a stereo audio signal. Two parallelized versions of the
application are written in CPN programming model to ex-
plore parallelism: (a) exploiting parallel processing on left
and right channel of the input signal simultaneously; (b)
further parallelization by splitting 1024 point Fourier trans-
forms into two 512 point blocks. The second radar applica-
tion is to detect moving objects on the ground from air by
sending periodic radar pulses. Fig. 7 shows graphical rep-
resentations of both benchmarks. Both benchmarks existed
initially as sequential C code. The conversion from sequen-
tial C code to parallel CPN versions took us about half day
to complete per benchmark, thanks to CPN being close to
C.

In order to evaluate both benchmarks on the C6678 plat-
form, we used a mapping heuristic, GBM (Group-Based
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Mapping) proposed in [5], to generate spatial mapping for
both benchmarks. GBM takes constraints e.g. available
number of processors as inputs to compute mapping. Fig. 8
and Fig. 9 show the performance results when the constraint
on available number of processors increases from 1 to 8 for
the audio filter and from 1 to 4 for the radar application
respectively. Each data point corresponds to the runtime
result of the generated mapping which is measured on the
hardware board. It can be seen that achieved speed-ups
increase when the number of available processors rises for
both benchmarks. The higher number of parallel processes
in Audio-2 gives better results than Audio-1 in that 8 cores
on the C6678 platform can be better utilized by Audio-2.
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Figure 8: Results of the audio filter

The productivity of software developers is also increased
greatly as the compilation process is automated. In addi-
tion, programs written in CPN are also portable to other
MPSoC platforms.

5.2 Retargetability
One of the main parameters of different MAPS instances

is so-called target info shown on the left of Fig. 6. It con-
tains target specific information such as available resources
(processors, inter-communication schemes) and API calls,
which needs to be known to the source-to-source compiler.
For retargeting MAPS towards different MPSoC platforms,
it is essential to update this info. Our experience on the re-
targetability of the MAPS infrastructure is reported in this
section.
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Table 1 summarizes the retargeting process that was done
towards the reported MPSoC platforms. The main types of
information required for retargeting are:

• Platform details: this includes how many programmable
processors the target platform has. This gives the
knowledge where concurrent processes are possible to
execute simultaneously to the compiler.

• Multi-tasking Runtime: this indicates how the run-
time environments of processors of the target MPSoC
support concurrent processes. Often in case of an OS
like Linux or proprietary ones running on a processor,
the OS has multi-tasking APIs to manage concurrent
tasks (or processes).

• Communication: processes of streaming applications
execute simultaneously while communicating with each
other. Therefore, it is necessary for the compiler to
know possible ways to perform the communication be-
tween processes. This also includes the type (inter- or
intra- processor) and specific API calls.

The actual retargeting process consists of utilizing this
target specific information in various places of the MAPS
infrastructure. The effort that we spent to support these
platforms is reported in Table 1. It ranges from 20 man-
days to 5 man-days, depending on the complexity of target
platforms. The time also includes the initial time required
to learn the platform details. This effort is acceptable and
justified by the increase in automation level of compilation
process.

6. RELATEDWORKS
There has been a wide range of works on streaming pro-

gramming and compilation frameworks (see [12] for a recent
survey). Those are categorized into four classes below.

Approaches based on new languages
New languages, instead of using or extending existing lan-

guages, have been proposed to specify concurrency in stream-
ing programs. StreamIt [30] from MIT is an architecture
independent language which is based on SDF with some ex-
tensions. The basic unit of computation is the filter, which
implements an independent actor to translate data from in-
put channels to output channels. In addition, hierarchical
primitives such as pipeline, split-join and feedback loop are
provided in StreamIt to compose filters into graphs. Other
similar works include Tiny-SHIM [8], CAL [9] and ACOTES
Project [22].

In general, new language approaches have salient advan-
tages that a programming model can be built as close to
streaming computing characteristics as possible and code

optimization can benefit from many structural hints (e.g.
hierarchical primitives in StreamIt). A drawback is that
new languages usually require a long period of time to be
accepted in industry.

Approaches using APIs
Unlike developing new languages, many projects use APIs

to specify streaming applications. YAPI [7] and TTL [31] are
abstract, task-level interface APIs for design and program-
ming of embedded MPSoCs. While YAPI is used to model
applications as process networks, TTL can be used both for
parallel software specification and as a platform interface for
integrating hardware and software tasks. In the DOL frame-
work [28], processes of streaming applications are described
in C with APIs to realize e.g. data communication. The
structure of whole programs is specified in an XML file.

API approaches are in general attractive for C program-
mers due to little learning curve required. Another implica-
tion using APIs is that a possible huge investment on devel-
oping a compiler can be avoided. Nevertheless, using APIs
usually makes code cluttered thus lowering the readability.
It is also difficult to extract high-level information e.g. the
structure of streaming programs from low-level APIs so that
opportunities for high-level optimizations (e.g. process fu-
sion) are reduced.

Approaches using language extensions
Between the approaches using new languages and those

using APIs, there have been also many research propos-
als on various types of language extensions (mostly to C)
to describe streaming programs. Brook [4] is a streaming
programming environment for GPU-based computing. The
language extends C to include data-parallel constructs called
streams and defines functions by the keyword kernel to op-
erate on streams. Other similar approaches include Stream-
C/KernelC [13] and Cg [19].

The commonality in those works is that the language de-
sign is specifically towards certain architectures like GPUs,
media processors or network processors. The focus is mostly
on enriching data parallelism representation and extending
manipulation for streams in the languages.

Automatic parallelizing compilation techniques
Compilation techniques of streaming programs for MP-

SoCs have been extensively studied recently (see [21] for an
overview). Those include automatic parallelization of se-
quential code (mostly loops) like Compaan in [15] (used in
HEAP Project [17]), a parallelization technique of nested
loop programs in [10], DSWP in [24] and pn in [32].

The Cetus tool [6] is a compiler infrastructure which tar-
gets C programs and supports source-to-source transforma-
tions. The original goal of Cetus was for research on multi-
core compiler optimizations that emphasizes automatic par-
allelization. Lately, it has been reported in [2] that Cetus
was used to build translators for programs written in the
OpenMP directive language for multicore compilation, e.g.
an OpenMP to MPI translator for many-cores and a transla-
tor for OpenMP onto GPU architectures. Compared to our
work, Cetus focuses more on automatic loop parallelization
and supporting OpenMP programs for multicore machines.

7. SUMMARY
This paper describes our approach to tackle the embed-

ded MPSoC programming challenge from a practical per-

spective. In our opinion, it is of paramount importance that
the language and compiler design for MPSoCs has roots in
practicality. MAPS, a compiler infrastructure for heteroge-
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TI OMAP3530 TI C6678 Synopsys MCO Pthreads

Platform details ARM + DSP Nx DSPs Nx VPUs Multicores
supporting
Pthreads

Multi-tasking
Runtime

OS thread
(ARM and
DSP)

OS thread MCO task mod-
ules

OS thread

Communication shared memory shared memory
or message-
passing

shared memory
or message-
passing

shared-memory

Retargeting effort 20d 20d 10d 5d

Table 1: Retargeting MAPS towards MPSoC platforms

neous MPSoCs, has been presented. CPN, a language ex-
tension to C to model streaming applications, is designed for
portability and conciseness. The compiler cpn-cc which does
source-to-source translation on the AST is able to perform
code transformations at high-level and leverage the existing
C compilers of processors on the target MPSoC platforms.
We evaluated the design of MAPS by applying it to off-the-
shelf MPSoCs from TI (both homogeneous and heteroge-
neous) and other platforms.

Several improvements are planned beyond this work, in-
cluding integrating platform-specific heuristics for code opti-
mization and enhancing CPN language by allowing combin-
ing several processes into a super process template (called
process nesting or container). More case studies will also be
carried out to evaluate the quality of generated code further.
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