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Abstract
Recent integrated CPU-GPU processors like Intel’s Broadwell and
AMD’s Kaveri support hardware CPU-GPU shared virtual mem-
ory, atomic operations, and memory coherency. This enables fine-
grained CPU-GPU work-stealing, but architectural differences be-
tween the CPU and GPU hurt the performance of traditionally-
implemented work-stealing on such processors. These architectural
differences include different clock frequencies, atomic operation
costs, and cache and shared memory latencies. This paper describes
a preliminary implementation of our work-stealing scheduler, Li-
bra, which includes techniques to deal with these architectural dif-
ferences in integrated CPU-GPU processors. Libra’s affinity-aware
techniques achieve significant performance gains over classically-
implemented work-stealing. We show preliminary results using a
diverse set of nine regular and irregular workloads running on an
Intel Broadwell Core-M processor. Libra currently achieves up to a
2× performance improvement over classical work-stealing, with a
20% average improvement.

1. Introduction
On multi-core CPUs, work-stealing [1, 3–5] efficiently load-
balances CPU cores by enabling idle cores to steal work from other
ones. A traditional work-stealing implementation assigns a work-
queue to each CPU hardware thread, and distributes the workload,
divided into chunks, between those queues. At runtime, each hard-
ware thread executes work chunks from its own queue until that
becomes empty, at which time it begins stealing work from other
queues. This continues until all queues are empty and the compu-
tation is complete.

Today’s widespread integrated CPU-GPU processors combine
a CPU and a GPU with different power/performance characteris-
tics to improve overall energy use and performance. However, ef-
fectively leveraging the compute capabilities of both the CPU and
GPU in integrated processors has been a challenge [2, 6–8]. Never-
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Figure 1: Classical work-stealing (left) and Libra’s affinity-aware
work-stealing that uses hierarchical stealing (right).

theless, recent hardware improvements have made effective, finer-
grain computation possible using both the CPU and GPU. Proces-
sors such as Intel’s Broadwell and Skylake and AMD’s Kaveri and
Carrizo offer hardware CPU-GPU shared virtual memory (SVM),
memory coherency, and atomic operations. That hardware support
makes it possible to implement fine-grain work-stealing on inte-
grated CPU-GPU processors.

However, implementing CPU-GPU work-stealing efficiently is
difficult: GPUs typically operate at lower clock frequencies than
CPUs and have different core configurations and memory hierar-
chies, making their performance different than CPUs by an order
of magnitude or more. In particular, because CPUs typically have
lower-latency paths to local caches as well as lower-latency atomic
instructions, a CPU is usually faster than a GPU at stealing work
from another work queue even if it is not the best device to execute
that work. As a result, while classically-implemented work-stealing
is able to dynamically balance work across compute units, applica-
tion performance may still suffer.

This paper describes our initial implementation of an affinity-
aware CPU-GPU work-stealing scheduler, Libra, on an Intel
Broadwell Core-M processor. Libra utilizes this processor’s hard-
ware shared virtual memory (SVM), memory coherency, and CPU-
GPU atomics support. To improve work-stealing performance de-
spite the architectural differences between the CPU and GPU, Li-
bra uses two key techniques: 1) lightweight online profiling to
initially distribute work across the CPU and GPU, and 2) hierar-
chical work-stealing to limit stealing by the device (typically the
CPU) with lower performance executing the workload. Using a set
of nine regular and irregular workloads, we demonstrate that Libra
significantly improves performance over classical work-stealing:
up to a 2× better with an average 20% improvement.



Abbrev Name Input
MM Matrix-Multiply 2048 by 2048
NB N-Body 4096 bodies
SL Skip-List 10M keys
BFS Breadth-First Search G3(1.6M V, 3M E)
SPMV Sparse-Matrix Vector Clueweb(100M V, 2B E)
SS Substring-Finder 28657 items
BH Barnes-Hut 1M bodies
BH-U Barnes-Hut (unsorted) 1M bodies
FD Face-Detect image 3000x2171

Table 1: Benchmark characteristics
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Figure 2: Performance relative to the static Oracle CPU-GPU work
distribution, for classical work-stealing and affinity-aware work-
stealing.

2. Our Approach
The goal of our Libra work-stealing runtime is to efficiently and
dynamically balance data-parallel computation across the cores of
CPU and GPU. To achieve this, our runtime: (1) maps high-level
parallel computations to OpenCL work-groups; (2) binds the work-
groups to physical cores; (3) assigns work-stealing deques to work-
groups; and (4) finally, implements work-stealing among the work-
groups.

Libra starts by launching a different number of work-groups on
each device based on the device’s hardware characteristics. For the
CPU, we launch one work-group per hardware thread, and for the
GPU, we launch one work-group per execution unit.

Classical work-stealing assumes that stealing has a uniform cost
across all workers. In an integrated CPU-GPU processor, however,
this assumption is typically incorrect. In addition, since the CPU
and GPU have different execution characteristics, many applica-
tions exhibit a strong affinity to (execute better on) one device over
the other. Since device affinity may also depend on input data, de-
termining application affinity must be determined at runtime.

We use lightweight online profiling to determine device affinity
at runtime for a given workload-input pair. This lets us optimize
initial work placement, which reduces overall runtime steals. It
especially minimizes stealing between devices, and so helps to
reduce CPU-GPU contention caused by steal attempts.

In addition, we use hierarchical stealing to minimize stealing by
the device (typically the CPU) with lower affinity. This also lowers
cross-device stealing. In this technique, the worker threads on each
device are restricted to stealing only from the same device as long
as any work remains on one of its deques. Only when all deques on
the same device are empty is a worker thread allowed to steal from
the other device’s deques. Figure 1 depicts how classical work-
stealing and affinity-aware work-stealing differ when stealing.

3. Evaluation
We evaluated Libra on a laptop computer with 8GB of memory
running 64-bit Windows 8. It includes a 1.2GHz Intel Broadwell
(5th generation) Core-M 5Y71 processor with two CPU cores and
an integrated Intel HD Graphics 5300 GPU with 24 execution units
(EUs). The GPU has a maximum clock speed of 900 MHz and each
of its EUs have seven 16-wide SIMD hardware threads. We enabled
hyper-threading on the system.

Our evaluation used a diverse set of benchmarks spanning a
spectrum of application domains and runtime characteristics, es-
pecially their execution regularity. An “irregular” workload has
execution imbalance across different chunks of computation. The
benchmarks are listed in Table 1.

We show the performance of both Libra and classic work-
stealing compared to the baseline performance using a near-ideal,
statically-determined Oracle work distribution. The Oracle static
distribution is obtained via exhaustive search: we ran each bench-
mark with different fixed CPU-GPU work partitions, varying the
percentage of work given to the CPU from 0% to 100% in steps of
10%, and selected the best-performing CPU-GPU work distribu-
tion.

In summary, our affinity-aware Libra work-stealing scheduler
overcomes limitations of classically-implemented work-stealing
for integrated CPU-GPU processors. It currently outperforms clas-
sical work-stealing by an average of 20% and is up to 2× better on
some workloads. It also performs on par with the near-ideal Oracle
static distribution. As a dynamic load-balancing scheduler, Libra
can cope with execution-time irregularity caused by, e.g., differ-
ences in input data. We are continuing to improve our techniques
and to evaluate Libra’s use on other integrated processors.
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