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Abstract

h thispaper, compiler techniques are presented for

mapping a concurrent language to a VLIW proces-

s(m. In particular, we examine techniques that map

occam programs to one node of an iWarp processor ar-

ray. These methods are of interest in situations where

multiple tasks are to be placed on the same processor,

e.g. when trying to reduce communications overhead, or

when the number of tasks exceeds the number of proces-

sors. The techniques presented eliminate program spec-

ified communications in situations where the compiler

can statically schedule these communications. These

situations frequently occur in numerical applications.

Compiler optimizations are discussed that pertain to

packing techniques for long instruction words, register

allocation, and scheduling. These compilation strategies

for a single processor can be expanded to a compiler for

a multiprocessor configuration.

I Introduction

IVfodern parallel MIMD computers like the iWarp [4]

frequently have two forms of parallelism: multiple pro-

cessors and parallel functional units on each processor.

The parallelism in the functional units is controlled by a

Very-Long-Instruction- Word (VLIW). To be effective, a

programming language and a compiler must be able to

exploit both forms of parallelism. Toward this end, par-

allel languages and complex compilers have been emerg-

ing. Concurrent programming languages like occam [10]

idlow the programmer to express multiple streams of

control and specify how these streams communicate.

By investigating methods for compiling occam for the

i Warp, we also learn how other concurrent languages
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with explicitly specified communications (e.g. Ada), can

be compiled for VLIW parallel computers.

The occam language, formally defined by CSP [7],

contains concurrent processes that communicate using

one-to-one synchronized communications. This con-

cept, in which the caller and the callee must name the

communication path, is called explicit channel naming.

The objective in this paper is to use the synchronized

nature of occam communication to exploit the type of

parallelism that is afforded by the iWarp’s VLIW tech-

nology. Therefore, although occam was designed to code

programs containing parallel tasks running on separate

processors, this paper investigates how concurrent oc-

cam processes can use the registers and functional units

of a single processor effectively.

VLIW computers are efficient for high-level languages

only when a compiler is able to statically determine

those instructions that can be executed in parallel. Cur-

rent research into VLIW compilers has concentrated on

decomposing large sequential programs using techniques

such as trace scheduling, software pipelining, and hier-

archical reduction of basic blocks [2, 3, 5, 8, 9]. However,

a parallel language allows multiple tasks to run on a sin-

gle processor. This can be an advantage when trying to

reduce the overhead of interprocessor communications

and when the number of tasks exceeds the number of

processors. Although the VLIW compiler techniques

mentioned above can be directly applied to sequential

code within concurrent programs, this paper addresses

additional methods that are directed at multitasking

situations.

In the next section of the paper, a brief description

of the occam language, the INMOS transputer, and the

i Warp processor are presented. In the t bird section, a

discussion is given of methods that can be used to map

occam to the iWarp. We discuss how the parallelism

of concurrent programs can be optimized for the VLIW

computers. Efficient implementations of inter-process

communications are considered as well as efficient reg-

ist er allocations.
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2 Background 3 Compiling occam to the

iWarp

Occam was developed simultaneously with the INMOS

transputer. The relationship between the language and

the architecture is explained by the following quotation:

“A program running in a transputer is formally equiv-

alent to an occam process . . . a network of transputers

can be described directly as an occam program” [11].

Both large grain and fine grain processing are supported

by occam and the transputer.

The occam language is a block structured language.

A block consists of either one statement or is built by

combining several blocks into a construction. IF, CASE,

WHILE, SEQ, PAR and ALT are used to form construc-

tions. In particular, SEQ indicates a traditional sequen-

tial block, while the PAR instruction designates that the

code blocks that are identified with it are to operate in

parallel. The ALT indicates that two or more blocks

are ready to run should they receive communication.

When communication is received, only the blocks cor-

responding to that communication are allowed to run.

(The ALT is similar to the select statement in Ada.)

Further, constructions can be replicated. A replication

that is used with PAR, for example, indicates the cre-

ation of a set of similar parallel occam processes. Com-

munication in occam is specified by input and output

statements that refer to channel names. For example,

“than 1 ? x“ indicates a request to receive data for vari-

able z on channel “chanl ,“ and “chan2 ! yn indicates

an output of y’s value onto channel “chan2.’)

There are several similarities between the transputer

and the iWarp which suggest a natural extension of

occam to the iWarp machine. In both the transputer

and the iWarp, a collection of processors can operate

in parallel and communicate through nearest neighbor

links. In each architecture, every processor contains lo-

cal memory and other functional units. The physical

links between processors on the iWarp [4] and on the

latest version of the transputer are handled by a com-

munications unit that is separate from the actual pro-

cessor. This allows the physical links to be viewed as

virtual routes to arbitrary processors. In both architec-

tures, the communication units are on the same chip as

the processing units and run concurrently with program

processing.

The transputer emphasizes concurrency, and there-

fore has a micro-coded scheduler that is used to handle

virtual concurrent processes on the same processor, and

a small register file that facilitates register copying. In

contrast, the iWarp was designed for systolic processing

and has a VLIW and a large register set that facilitates

instruction parallelism.

The hardware differences of the transputer and the

iWarp differentiate an occam compiler aimed at the

iWarp from one targeted to the transputer. In an occam

program, a task switch can be as common as a procedure

call. Because task switching normally requires the copy-

ing of the register file, the limited size of this file in the

transputer helps minimize the context switch overhead.

This promotes the execution of occam programs con-

taining many small interacting tasks executing on the

same processor. The iWarp, however, cent sins 128 reg-

isters. Copying all of them at each task context switch

would greatly increase the overhead of an occam im-

plementation, but rest ricting the implementation to a

fixed subset of the registers would not fully utilize the

architectural features of the iWarp.

The transputer’s micro-coded scheduler handles on-

chip concurrency. This scheduler is triggered by any

request for communication, regardless of whether the

communication is on-chip (between two concurrent oc-

cam processes) or off-chip (between two parallel occam

processes), and by a clock, since round-robin scheduling

is implemented. In the iWarp, a scheduler would have

to be implemented in software. This implies that the

scheduler acts as a separate task that not only gains con-

trol after any tasks give up control, but also is invoked

by any interrupts. In addition, it is the responsibility of

the scheduler to decide the order of task execution.

Unlike the transputer, the iWarp is a VLIW computer

that is capable of handling up to nine instructions in

one cycle. The compiler must be capable of determin-

ing what instructions can be executed in parallel and

of scheduling (or packing) these instructions into a sin-

gle cycle. For occam, this scheduling should take into

account the existence of concurrent processes and any

communication between these processes.

In the remainder of this paper, these issues are ex-

amined in the context of compiling occam programs to

a single iWarp processor. Several compiler optimiza-

tion are presented that pertain to the packing of long

instruction words, register usage, and scheduling. Al-

though the focus of this paper is on compilation to a

single VLIW processor with multiple parallel functional

units, the techniques presented here can be expanded to

an array of such processors.

3.1 Flow Graphs for Concurrent Tasks

A frequent first step in any compiler is the determi-

nation of the flow of control across basic blocks and

between procedures. A basic block is a code segment

that contains a sequence of consecutive statements. For

occam (and other parallel languages), this involves the
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development of a traditional directed acyclic graph for

ea,ch task, where a task is a set of one or more procedures

with a single thread of control. The basic blocks within

all occam processes in a program need to be identified,

and this may require the expansion of replication state-

ments to statically determine channels and constants.

The flow of control across baaic blocks is also de-

pendent on any inter-process communications that are

specified in the program. Because occam channels are

statically coded wit hin a program, it is straightforward

tc~ determine where one-to-one synchronous communi-

cations occur. In Figure 1(a), a sample graph is shown.

The nodes are the basic blocks of two loops, and the

dotted line indicates synchronous communication from

“Task A,” who sends the value of the variable x, to

“Taak B,” who receives it in the variable y. The channel

used in this case, is called ‘{comm”. The same notation

can be used to indicate communications in a procedu-

ral flow graph. An example of this is given in a later

section (Figure 3). Both types of flow graphs, along

with a parent/child task hierarchy, provide informa-

tion that can be used to perform optimization related

to task scheduling, register allocation, and instruction

word packing, These optirnizations are described in the

remainder of this section. To perform them, one needs

to determine which basic blocks can, must, or should

never be active at the same time.

3.2 Scheduling of Long Instruction

Words by Task Elimination

A VLIW computer has multiple functional units (re-

sources) that can be executed simultaneously. Lam and

others [2, 5, 8, 9] have developed techniques for extract-

ing candidate instructions for the long instruction word

flom sequential programs. These instructions are ones

that can be executed in the same cycle. The extraction

methods include: trace scheduling, loop unrolling, loop

software pipelining, and hierarchical reduction of basic

blocks.

A single basic block rarely contains enough instruc-

tions to effectively make use of a long instruction word,

especially since the execution order of the code in a basic

block is usually governed by data dependencies, Hence,

in all of the above techniques, several basic blocks, or in-

stances of the same basic block (in the case of loops) are

determined to be executable as a “sequential thread”.

Therefore, the code from all of these basic blocks is used

to perform the packing of the long instruction word.

The “sequential thread” is determined in light of a flow

graph with conditional paths, by either duplicating code

for both sides of a conditional, or by adding code to undo

the effect of incorrectly executed instructions.

In an occam compiler for the iWarp, the techniques

used for sequential programs can be applied to the code

within a single task, if care is taken not to cross com-

munications points. Because of the presence of concur-

rently executing multiple tasks, however, it should be

possible to find basic blocks from different tasks that

can be packed together to fill the long instruction word.

This is of particular interest since basic blocks from dif-

ferent tasks should have no data dependencies except

for those defined by inter-task communication. Hence,

there should be fewer packing constraints in code from

different tasks, as oompared to code from basic blocks

of the same task.

If parts of concurrent tasks were to be executed in

this fashion, then they would actually be executing in

parallel (capitalizing on the parallelism of the multi-

ple functional units), and not concurrently. This may

reduce the overhead incurred when scheduling concur-

rent tasks. Traditionally, the task scheduler must be

invoked when concurrent tasks interact, as in the case

with occam communication events. The dotted line

in the flow graph shown in Figure 1(a) indicates an

occam communication synchronization. Without opti-

mization, the task scheduler would be invoked after the

first task (either A or B) reaches the communication

point. That first task will wait there until its part-

ner task also reaches the communication point. Then

the scheduler determines which of the two tasks will

continue first, postponing the scheduling of the second

task until later. Each of these scheduling points will

most likely incur the overhead of a task context switch.

Eliminating even some of these task context switches

would enhance execution efficiency.

Because the occam language promotes synchronized

communication bet we en concurrent processes, it can be

assured that some basic blocks from two communicat-

ing tasks can always be executed at the same time.

These blocks, therefore, can be statically scheduled into

a long instruction word. The blocks would be those

basic blocks that follow the communication, and would

include basic blocks from both tasks involved in commu-

nications. The identity of these basic blocks is derivable

from the flow graphs. In the example described in Fig-

ure 1(a), basic blocks l?3 and B4 would qualify, since

they will always be ready to execute after a successful

communication. This implies that the code from these

two blocks can be statically scheduled together into the

same instruction words, as is indicated in Figure l(b).

The techniques described for sequential languages can

now be applied to map this single basic block into long

instructions. Note that only one basic block needs to

be scheduled after the communication, so that this op-

timization also reduces the task scheduling overhead.

Further optimizations are possible for the flow graphs

described in Figure 1 if the compiler can statically

bound the execution time of a31 basic blocks in the

two loops. In this case, the need for the synchronized
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Figure 1: Eliminating synchronized communication

transmission of the second z can be completely elimi-

nated. This can be accomplished by recognizing that

if the compiler can guarantee a synchronized entrance

to blocks l?l and B2, and also that the execution times

of these two blocks can be statically bounded, then the

compiler can also guarantee a synchronized exit from

both blocks. No-op’s can be inserted if one block is

larger than the other. This assures a synchronized ar-

rival for both sides of the communications, therefore

eliminating any need for communications or scheduler

overhead, and changing the communication into a sim-

ple assignment stat ement.

A synchronized entrance by both tasks into the begin-

ning of the loop can be guaranteed because it is assumed

that the combined block B3 + B4 has a bounded exe-

cution time, and it is known that the entrance to this

block was synchronized by the first communication of

x. This implies that after the first communication, the

total loop can be reduced to a single block. This first

communication is now being used to synchronize the

entire loop. To simplify things, a new synchronization

point can be added aa shown in Figure 1(c), to replace

the first transmission of x in the loop. Once both tasks

reach this point, the total loop can be executed without

the intervention of the scheduler. Both tasks would be

executing in parallel using only the functional units.

If an occam program contains an ALT construct, the

technique of eliminating the communication point which

reduced Figure l(b) to Figure l(c) cannot be used. This

is because resolution is nondeterrninistic and will occur

at runtime. However, the potential for parallel basic

block execution of an ALT construct with another oc-

cam construct (following a paired communication) does

exist. In the example shown in Figure 2(a), an occam

ALT construct is shown. A sequential code segment A

is to be executed if an input value is received on chan-

nel ‘tChanl.” Otherwise, the sequential code segment

B is to be executed. The IF construct in the example

contains three sequential branches, two of which contain

matching communications events on this channel. The

constructs can be paired, as shown in Figure 2(b), to

indicate the potential for parallelism. Code segment A

is duplicated for the two branches of the IF construct.

The code following the output communication can be

scheduled in parallel with the code following the corre-

sponding input statement. This approach is similar to

that used by Lam [9] to handle sequential i~statements.

The method presented in this section of combining

basic blocks after communication points can be used

for any communication by two tasks on the same pr~

cessor, The technique of further reducing basic blocks

and eliminating communication points can be general-

ized to any situations where the time between the syn-

chronization point and the communications can be cal-

culated. Other situations where this is possible include

systolic or multiple processes where the off-chip input

is known to arrive at regular time intervals, and in the

case where statements spawn sets of similar tasks at

the same time, thus creating a known synchronization

point. The technique is not possible when processes are

dependent upon asynchronously generated communica-

tion. The advantage of eliminating tasks is that the run-

time involvement of the scheduler can be avoided, which

implies that several task context switches do not need
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Figure 2: Matching communication in an ALT

tc, be performed. This addresses one of the claimed dis-

advantages of concurrent programming languages, i.e.

the overhead of communications when using a scheduler.

These techniques of graph reduction can be applied re-

cursively if there are multiple communication synchro-

ni zation points. The instructions in the newly formed

bi~sic blocks of the final graph are again candidates for

instruction scheduling. It is assumed that the compiler

can resolve discrepancies such as loops of different sizes.

3.3 Register Sets

The use of a VLIW suggests a need for a large register

set that supplies operands to the multiple instructions.

To reduce the overhead of a task context switch, con-

current processes would ideally use distinct register sets

(removing the need to save and restore data housed in

registers when a task switch occurs). The large reg-

ister file on the iWarp provides the opportunity to do

this. The naive approach for this partitioning would be

to use a simple segmentation of the register set. How-

ever, this may cause undue register copying when there

are many parallel processes, and when more than one

process must be allocated the same set of registers. A

more optimal approach would be to examine the flow

graphs describing the procedural call flow, the control

flow across basic blocks, and the parent/child spawning

hierarchy. The information derived from these can be

used to infer when tasks, or even parts of tasks} will

actually interfere with each other.

Current compiler technology for sequential programs

examines inter-procedural control flow when allocating

registers [12, 13, 14]. This is done after intra-procedural

allocation occurs [6]. A common approach is to examine

the procedural call graph and then allocate registers,

starting at the leaf procedures and continuing down the

call graph to the root. Consider the procedural call

graph for Task A in Figure 3. From this graph, it can be

determined that procedures E and F can share the same

registers because they will not both be active at the

same time, but procedures ~inA and B cannot share

registers because they will both need to be allocated

at the same time. By noting that the procedures D

and X communicate, it can be similarly determined that

procedure chains ??UZinA, B, D and ~inB, V, X will be

active at the same time and therefore, should not use

the same registers.

To extend Mulder’s approach to a concurrent envi-

ronment, the call chain of each task is split into three

sections: the chains above the communication (group

1), the chains below the communication (group 2), and

those parts of the chains below the communication

that are deallocated at the point of the communication

(group 3). A fourth group (group 4) is also identified

that contains those variables from groups 1 and 2 that

would be used before and after the communication. Ta-
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Figure 3: Procedural call graph with communications

ble 1 shows the procedures from Figure 3 that fit into

these groups. Notice that the procedures that commu-

nicate are contained in groups 1, 2 and 4. In these

procedures, the basic block graph will be used to make

the determination of which registers are allocated for

which group. It should also be noted that when us-

ing the techniques developed for sequential programs,

group 3 will usually not be allocated registers that will

in any way effect the register allocation at the point of

the communication.

GROUP TASK A TASK B

1 D’, E, F x’, Y
2 ~inA, B, D“ ~inB, V“, X“

3 c w
4 Dltl Vul, Xw , y///

Table 1: Separation of call chain for flow graph in

Figure 3

Pseudo-registers for each of these groups are allocated

using the approach defined by Mulder. The goal is to

find those tasks that communicate with each other (and

therefore will be set ready to execute at the same time)

and allocate their registers to be non-interfering when-

ever possible. Therefore, group 1 of task A and group

1 of task B will be set to be non-interfering as well as

groups 2 of both tasks. The non-interference can be ac-

complished by first allocating registers to one task, and

then allocating the group 1 registers of any communi-

cating task in the group 2 registers of the first task,

Although a perfect solution is not always possible, situ-

ations that occur in loops and those described in section

3.2 can be prioritized. In sample programs that were ex-

amined, it was found that long procedure chains were

infrequent and the scheme could be easily applied.

This approach will require the copying of registers

just prior to a communication. Since it cannot be deter-

mined when asynchronous communications will occur,

the point when a task reaches a request for communica-

tion is a natural time to switch register sets. Group 4 is

the only group that should be in registers at the point

of a communication.

By linking the registers together, a co-dependency is

established between those tasks. The scheduler must be

aware of these co-dependencies. The fact that the goal

of the register allocation scheme is to avoid copying at

the point of a task context switch means that there is

not an automatic purging of the register file (or part

of it) when a task is removed from the CPU. However,

register allocations can be shared between tasks, and

therefore some swapping of data must be instigated if a

task that does not currently own the registers is sched-

uled to execute. This must be handled by the scheduler.

To facilitate this, the compiler informs the scheduler

which tasks are co-dependent in execution, and which

are anti-dependent because they have both been allo-

cated the same registers. The scheduler tries to sched-

ule co-dependent tasks that own their respective register
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allocations. If the scheduler decides to allocate a task

thiat does not own its registers, the scheduler first saves

the registers. The runtime overhead of this approach

was not extensive for the example programs examined,

as there was little sharing of registers.

4 Conclusion

The optimization method described in this paper is sim-

ilar to that of Zaafrai, Dietz and O ‘Keefe [15] which

uses predictable execution times of code segments in

two communicating parallel tasks to eliminate the need

to check if a communications point has been reached.

For VLIW processors, this parallelism can be on a sin-

gle processor. The technique is not restricted to occam,

but can be applied to any concurrent language where

communications can be specified, and synchronization

points can be statically determined, such as Ada. By

eliminating predictable communications between paral-

lel processes on a single iWarp processor, one of the

major criticisms of using tasking languages can be min-

imized. The runtime overhead of the scheduler can be

eliminated when sequential processing is possible.

The techniques for reducing task communications

were successfully applied to several programs [I]. In

the case of a matrix multiply program, all task con-

text switches were completely eliminated. The result-

ing code was equivalent to that of a sequentially coded

program. In a signal processing application, the com-

munications was significantly reduced, but could not

be completely eliminated due to ALT statements. In

these and other exercises, it was demonstrated that

the instruction word scheduling and register allocation

schemes described in the paper offer potential reduc-

ticms in the overhead associated with executing concur-

rent programs on a single processor. In multiprocessor

situations, the technique could be directly incorporated

into existing methods for mapping concurrent tasks onto

several processors. An ongoing research project is con-

cerned with the determination of mapping strategies

that more closely integrate these single processor op-

timization techniques wit h load balancing issues.
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