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ABSTRACT 
Languages with multiple paradigms or other special-purpose 
features often are implemented in ways that make true 
concurrency difficult in the virtual machine or runtime system. 
Several popular languages feature a global interpreter lock that 
limits them to pseudo-concurrency. This paper presents lessons 
learned in developing true concurrency for a goal-directed, object-
oriented language called Unicon. Parts of the work were 
anticipated, such as switching to thread-safe C library functions, 
while other parts were a surprise, such as eliminating race 
conditions in self-modifying virtual machine instructions. 

Categories and Subject Descriptors 
D.3.3 [Programming Languages]: Language Constructs and 
Features – concurrent programming structures. 

General Terms  
Design, Languages. 
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1. INTRODUCTION 
Many rapid prototyping and scripting languages feature no 
concurrency or only user-level concurrency via a global 
interpreter lock [4]. These languages may have large code bases 
that are unable to take advantage of the advances in modern multi-
core computer hardware. Such languages must acquire true 
concurrency or face a lingering decline as multi-core computing 
becomes more and more central in hardware design. This paper 
describes lessons learned from extending one such language, 
Unicon, to support true concurrency. 
Adding concurrency to Unicon was motivated by a request from 
AT&T Labs Research, where the language has been used to 
implement a network performability (“performance + reliability”) 
analysis tool called nperf [15]. nperf is computationally intensive, 
and seriously needed the benefits of parallelization. 

2. BACKGROUND 
Different programming languages employ different techniques to 
achieve parallelism. Haskell is an example functional language for 
which implicit concurrency has been implemented [9]. The nature 
of computations in functional languages, which are free of side 
effects and depend heavily on graphs, facilitates such implicit 
parallelism by assigning different parts of the graph to different 
threads [8][18].  
Paalvast et al, described Booster [17], a high level parallel 
programming language that can be translated into lower level 
languages such as FORTRAN and C. The language features the 
idea of separation of algorithm description from algorithm 
decomposition and representation. After the algorithm and the 
data/code decomposition are described, a transformation can be 
done automatically to achieve concurrency [17]. 
ALLOY [13] is an example of a weakly-typed, statically-scoped 
parallel programming language based on the functional and 
object-oriented paradigms. ALLOY is similar in many aspects to 
Unicon and its predecessor Icon. It provides features to express 
parallel algorithms and their related control structures including 
synchronization and mutual exclusions. Mitsolides and Harrison 
[14] describe the concept of “replicators” in ALLOY, which are 
control structures that provide a new view of generator. 
Replicators help deal with problems related to generators in a 
concurrent environment. 
Relatively popular modern concurrency-oriented, user-friendly 
languages include Java (java.com) and Erlang (erlang.org). Java 
features portable true concurrency and mitigates the pain of 
writing locking code for concurrency synchronization using 
monitor semantics. Erlang is arguably higher level, with a more 
esoteric functional syntax and a message passing model for 
communication and synchronization.  
The most famous scripting language, Python, and its popular 
competitor Ruby feature a Global Interpreter Lock, or GIL. 
Experimental implementations such as Jython and Iron Python 
feature true concurrency, but users tend to stick with original 
interpreters such as CPython despite their use of a GIL. Recent 
work on CPython has made progress towards eliminating the GIL, 
but it is still present. 
The SR (Synchronizing Resources) programming language is a 
language for developing parallel programs. The parallelism in SR 
is mainly exploited through message passing [1], even though it 
provides mechanisms for techniques like rendezvous and remote 
procedure call. SR has a highly expressive message passing 
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interface, which is useful in many applications, but it is 
considered by some to provide a low level abstraction in 
applications where other concurrency mechanisms can be used 
[3]. 
OpenMP (Open Multi-Processing) is a shared memory, multi-
platform API. It achieves concurrency through a unique approach 
using compiler directives, and a combination of library routines 
and environment variables [5]. The directives enable the compiler 
and the runtime system to create several threads when appropriate 
to accomplish certain tasks, without direct intervention from the 
programmer. OpenMP provides a simple mechanism for 
parallelizing some parts of the program. Most of the work is 
handled automatically. The directives can be skipped by the 
compiler if a sequential version is required. Despite its simplicity, 
OpenMP requires compiler support, and in some cases can 
introduce race conditions that are hard to debug, especially with 
the little control that the programmer has over the threads. These 
issues and more are addressed in [7] [12].  

3. LANGUAGE DESIGN 
Compared with the very rich related work, the goal of this work is 
modest. Unicon is an object-oriented descendant of the Icon 
programming language [6] [10]. This section presents the design 
of the concurrency features added to Unicon, with the express 
goal of minimizing the additions required at the source code level, 
and providing a simpler higher-level concurrency mechanism. 
Unicon’s ancestor Icon integrates Prolog-like goal-direction and 
implicit backtracking within a conventional syntax and an 
imperative semantic core. Icon’s traditional domain is string and 
file processing, and the rapid development of experimental 
algorithms and data structures. Unicon is a superset that extends 
Icon along two dimensions: features such as classes and packages 
for larger-scale projects, and extensive access to modern I/O 
capabilities such as graphics, networking, and databases. 

3.1 Co-expressions 
Because Icon features synchronous, ultra-lightweight threads 
called co-expressions, the easiest graft of concurrency onto 
Unicon was to extend that type. Co-expressions are similar to 
coroutines, except that they can be composed from arbitrary 
expressions. Co-expressions are finer-grained than coroutines, 
which are limited to the function call level. Co-expressions are 
created by a control structure (create expr) and control is 
transferred between co-expressions by either implicit means 
(producing a result or failing) or an explicit transmit-and-activate 
operator [sendvalue] @ co-expression. This primitive is always 
a rendezvous in Icon, since co-expressions are synchronous. 
Although co-expressions can be implemented on top of POSIX 
threads, at the language level they feel far simpler. They require 
no locking and provide easy data sharing via global and heap 
variables. Co-expressions also have a native implementation in 
assembler code on popular processors that is much faster than the 
pthreads implementation, on the order of ~100x on modern 
processors. For example the x86_64 native co-expression switch 
consists of 7 instructions. But unlike this native implementation, 
the pthreads implementation can be scheduled by the operating 
system to make use of multiple cores. It was natural to build 
Unicon’s concurrency facilities on top of the pthread library, but 
then run native co-expressions within each thread—an hybrid 
model. 

3.2 Minimalist Concurrent Extension 
From a language design standpoint, adding concurrency to Unicon 
consisted of: (1) adding a way to tell co-expressions to execute 
concurrently, and (2) extending the activation operator @ for 
thread synchronization and communication. These were achieved 
by introducing a control structure thread expr analogous to 
create expr, and extending the @ operator to maintain producer-
consumer queues for asynchronous operation. 
Unicon’s version of the @ operator enables the following forms 
of communication: 
 

Name Example Description 
send/receive x :=  y @ thread If queues empty, rendezvous 
send y @thread No wait; no answer needed 
receive x := @thread No wait if message is 

already here 
produce y @ Send to any receiver 
consume x := @ Receive from any sender 

 

The language was also extended with seven new built-in functions 
for high-level access to mutual exclusion primitives and condition 
variables. The built-in function wait() was extended to allow a co-
expression argument to support the semantics of join() in thread 
programming. Also, new syntax was introduced for critical 
regions, to provide a higher-level alternative to the mutual 
exclusion functions. The syntax is 
critical mtx: expr 
meaning that expr will be serialized on the mutex mtx, which will 
be automatically locked before executing expr and unlocked after 
that. The remainder of this paper focuses on the lessons learned 
from the implementation of concurrency within the legacy virtual 
machine interpreter, known as iconx. 

3.3 Code Example 
Figure 1 presents a code example in Unicon for solving a simple 
problem; computing the summation of a list of elements. Two 
versions are presented in the figure. Lines 1 through 8 represent 
the sequential version, while the remaining code is the parallel 
version. The parallel version takes some extra steps to create the 
threads and divide the job to four threads and collect their results. 
For a huge list with millions of elements, the parallel code runs 
nearly four times faster than the sequential version. 
This example is not representative of a typical real world 
application. The sequential version is trivial, making the addition 
of a few more lines of code very noticeable. In a more serious 
context (such as, nperf mentioned earlier in this paper), the code 
that is added to enable parallel execution may be negligible 
compared to the size of the original code. The extra code in the 
figure that is added to the parallel version is responsible for 
creating the threads and dividing the work among them (lines 14 
through 18). listsum() in the sequential version can be compared 
to slicesum() in the parallel version. listsum() finds the 
summation of the list while the latter finds the summation of a 
subset of the list (elements start through start+length) allowing 
different threads to work on different slices of the same list. 
slicesum() also includes a mutex (region) to protect the global 
sum where all threads accumulate their results at the end (line 
28). 
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4. VIRTUAL MACHINE 
The Unicon virtual machine is a modified version of the Icon 
virtual machine. The extensions made to support true concurrency 
would apply equally to the Icon implementation. Similar 
languages face analogous situations, where the lessons learned 
here may be applicable. 

4.1 VM Registers 
Virtual machine “registers”, which were formerly global variables 
in the VM C code, include the program counter, stack pointer, the 
several frame pointers necessary to manage calls, returns, 
suspension and resumption on the stack, and other pieces of 
virtual machine state. To add concurrency, these elements of state 
are moved into a struct threadstate that is allocated for each 
thread in thread local storage. The threadstate  structure is fairly 
large, under the assumption that memory is cheap whereas thread 
synchronization is expensive. POSIX threads API calls are used to 
obtain references to the threadstate  structure where it is needed. 
A key concern when using thread-local storage is performance. 
Initially, all references to VM registers were replaced, via macros, 
by references through a global threadstate pointer variable 
declared with the storage specifier __thread that is available in 
some compilers such as gcc and Sun’s (now Oracle’s) cc. This 
implementation was straightforward but incurred a substantial 
performance cost. In addition, it was not available in the pthreads 

implementation on OS X and the pthreads subset for Mingw gcc 
on Microsoft Windows. Switching to the more portable pthreads 
API for thread-local storage using pthread_getspecific() allowed 
a faster implementation than __thread. The straightforward 
implementation invoked pthread_getspecific() once at the top of 
each C function containing references to VM register and state 
variables. The many calls to this API wherever the VM state is 
referenced in the runtime system still entail an unattractive 
performance cost. Passing a pointer to the thread state as an extra 
parameter on the stack where it is needed as discussed in Section 
7 will finally mitigate this cost. 

4.2 Self-Modifying Instructions 
The Unicon virtual machine has seven instructions with integer 
operands denoting offsets to other instructions, or to static data in 
the bytecode. They are used for literals, globals,  static variables, 
and also for instructions that jump to addresses, such as 
Op_Goto. For performance reasons, when the opcode first 
executes, offsets are converted to pointers. The opcode is 
modified to indicate that the operand is a pointer, and the 
instruction proceeds at full speed on subsequent executions. 
This implementation introduces a race condition when multiple 
threads execute the self-modifying instruction at the same time. 
The problem was solved by adding a mutex for each self-
modifying instruction opcode. Figure 2 shows an example self-
modifying virtual machine instruction protected with a mutex. 
Mutex contention could be reduced further by allocating a 
separate mutex for each instance of each opcode (requiring a 
number of mutexes proportional to the size of the program) 
instead of using just seven mutexes for the seven self-modifying 
opcodes; it is unlikely that this would be worth implementing, 
since each instance of a self-modifying instruction uses its mutex 
only once when it replaces itself. Some intermediate granularity 
such as allocating up to these 7 mutexes per procedure/method, 
class, or object file might be shown beneficial by further study. 

Figure 1. Self modifying instruction protected by a mutex 

case Op_Real:    /* real, offset address */ 
   MUTEX_LOCKID(MTX_OP_AREAL); 
    
   if (ipc.op[-1] == Op_Areal) {  
        MUTEX_UNLOCKID(MTX_OP_AREAL);  
        goto L_areal;  
        } 
 
   PushVal(D_Real); 
   opnd = GetWord; 
   opnd += (word)ipc.opnd; 
    
   PushAVal(opnd); 
   PutInstr(Op_Areal, opnd, 1); 
    
   InterpEVValD((dptr)(rsp-1), e_literal); 
   MUTEX_UNLOCKID(MTX_OP_AREAL); 
   break; 

lock the mutex 

Check if another 
thread has done 
this already 

Calculate the absolute address 
using the offset. 

Store the absolute address back in 
the instruction replacing the offset.  

1. # sequential version. : loop through the entire list 
2. # simply summating them and return the result 
3. procedure listsum(L) 
4.    sum:=0 
5.    every 1 to *L do 
6.         sum+:=L[i] 
7.    return sum 
8. end 
9. #----------------------------------------------------------------------# 
10. # parallel version:  divide the work between 4 threads. 
11. global sum 
12. procedure listsum(L) 
13.    # create the threads, prepare their data and fire them 
14.    thrds := list();   sum := 0; Q := *L/4 
15.   every put(thrds,thread(create slicesum(L,(0 to 3)* Q, Q))) 
16.    every wait(!thrds)      # wait for the threads to finish 
17.    return sum 
18. end 
19. # find the summation of n to m elements in list L.  
20. procedure slicesum(L, start , length) 
21.    static region 
22.    initial region := mutex() 
23.    tot := 0 
24.    every tot +:= L[start to start+length] 
25.    critical region:  sum+ := tot 
26. end 

Figure 2. Computing the summation of an entire list 
elements, sequential [1:8] and parallel [10:26] 
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5. RUNTIME SYSTEM 
Achieving thread-safety in the implementation without a global 
interpreter lock required extensive modifications to the runtime 
system, notably the garbage collector. 

5.1 Allocation and Separate Heaps 
Allocation is a frequent operation for which speed is a top priori-
ty. Unicon programs start with a heap consisting of one string and 
one block (structure) region, and allocate more regions as needed. 
At any moment, the string and block regions used for allocation 
are together referred to as the current heap. If the memory request 
is bigger than what is available in the current heap, other regions 
are checked. If enough memory is found, the current heap is 
switched to use the satisfying region. Garbage collection is trig-
gered if there is not enough free memory in the heaps. If the re-
quest cannot be granted even after the garbage collection, a new 
region is allocated.  
Using a shared heap with multiple threads, when a thread 
allocates memory and updates the heap’s state variables, the 
operation must be protected by a mutex. The locks required in the 
shared heap strategy were slowing down the frequent task of 
memory allocation, especially when there was more than one 
thread running, limiting the scalability of this approach. It was 
decided then to switch to use private heaps to solve this problem. 
The terms “private heap” and “public heap” are introduced to 
describe allocation controls in the heaps that avoid the need for 
mutexes; the terms do not imply restrictions on memory accesses. 
Separate, per-thread heaps allow threads to allocate from their 
own private heaps at full speed. Heaps that are not owned by any 
thread are referred to as public heaps. Public heaps are a product 
of threads out-growing their private heaps. This happens when a 
thread requests more memory and that request can only be granted 
by allocating a new private heap. A program starts with no public 
heaps and one private heap for the main thread. Figure 3 shows 
the heap layout with regards to threads. 
All heaps (public and private) are visible to all threads, so any 
thread can access variables and data structures in any heap at any 
time. The accesses can be protected at the application level, if 
needed. In other words, a thread can allocate memory only in its 
private heap, but can access (read and write) variables in all 
heaps. 
When a memory request cannot be granted in the private heap, 
public heaps are checked to see if any of them has enough free 
memory to grant the request. If so, the private heap is swapped 
with the public heap, changing the private heap to public and vice-
versa. The pool of public heaps is protected by a mutex. If public 
heaps do not have enough free memory, a garbage collection will 
take place. If the memory request cannot be granted after that, the 
thread allocates a fresh heap. 

5.2 Garbage Collection 
The frequency of garbage collection depends on heap size and 
application memory usage patterns. Historically, many Icon 
applications ran to completion without ever garbage collecting. 
However, modern object oriented event-driven applications run 
for long periods of time, and garbage collect proportionally often, 
despite increases in physical memory and heap size. When 
garbage collection does occur, it concerns every thread. 
Since garbage collection does not happen often and its negative 
impact on performance can be greatly reduced using large heaps, 
garbage collection is kept as simple as possible under concurrent 

execution. To allow safe access to data in other threads’ heaps, 
garbage collection suspends all running threads except the thread 
that triggered it, referred to as the GC thread. The GC thread 
performs a conventional garbage collection, during which the 
program runs sequentially without safety issues. 
The GC thread first locks the garbage collection mutex 
MTX_THREADCONTROL, and then sets a global flag that 
announces the need to perform garbage collection. It directs all 
running threads to converge to a special routine called 
thread_control, the coordination point for thread suspension and 
resumption. All threads once per virtual machine instruction 
check the global flag. The runtime system keeps track of how 
many threads are running using a global counter NARthreads. 
Before a thread blocks on a mutex it decrements the counter, and 
increments it after unblocking. The counter itself is protected by a 
mutex and can be incremented only if there is no garbage 
collection request pending or taking place (Figure 4). 
After a call for garbage collection causes a thread to enter the 
thread_control function, the thread decrements the running 
threads counter NARthreads and goes to sleep on the gc 
condition variable. The GC thread tests the running threads 
counter until its value decreases to 1, meaning that the GC thread 

MUTEX_LOCKID(MTX_NARTHREADS); 
 NARthreads--;  
MUTEX_UNLOCKID(MTX_NARTHREADS); 

 

THREAD_JOIN(thread); 

MUTEX_LOCKID(MTX_THREADCONTROL); 
MUTEX_LOCKID(MTX_NARTHREADS); NAR 
 

NARthreads++;  
 

MUTEX_UNLOCKID(MTX_NARTHREADS); 
MUTEX UNLOCKID(MTX THREADCONTROL); 

Decrement 
the counter 

Do a blocking operation, a 
system call (long IO for 
example) or a delay, etc.

Increment the counter. Wait for GC to 
finish if there is one. 

Figure 4. Tracking the number of running threads 

Pool of Public 
Heaps 

Public heap 1 

Public heap 2 

Public heap m 

Thread 1 Thread 1 

Thread 2 

Thread 3 

Thread n 

Thread 2 

Thread 3 

Thread n 

Private heaps 

Figure 3. Threads, private heaps and public heaps
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is running by itself. Then the GC thread proceeds to perform the 
garbage collection. After finishing, the GC thread unlocks the 
garbage collection mutex, and does a broadcast to the gc 
condition variable. This wakes up all of the threads blocked on the 
gc variable, allowing them to resume their execution and return to 
where they called the thread_control function in the first place. 
In garbage collection-intensive applications, it may happen that 
two (or more) threads trigger a garbage collection at the same 
moment. This situation can be handled in various ways. The 
simplest solution is to block all of the threads requesting garbage 
collection after the first one and let the first one proceed and finish 
as described above (block all of the other threads and then wake 
them up again). A better solution, the one adopted in this design, 
is to make the threads that are competing for garbage collection 
aware of each other. Instead of a sequence of “block all others” 
followed by a “wake up others” performed by each GC thread, a 
GC thread can hand the control over to the next GC thread in line, 
if there is one, and then go to sleep. Only the last GC thread in the 
line wakes up all of the blocked threads. This strategy eliminates 
intermediate block/wakeup operations, leaving only one “block 
others” operation by the first GC thread and one “wake up others” 
operation by the last GC thread. A counting semaphore (gc 
semaphore) controls the queuing and synchronizing of several 
threads to garbage collect. The first thread to request a garbage 
collection does not block on the semaphore, but subsequent 
requesters do. After finishing garbage collection, each thread 
signals the semaphore to wake up the next GC thread and goes to 
sleep. The last GC thread to wake up is responsible for waking up 
all of the threads after finishing. 
An additional measure increases the effectiveness of the strategy 
just described: triggering a pre-emptive garbage collection if 
another thread has a garbage collection request pending. After a 
thread triggers a garbage collection and starts the protocol to 
suspend all other threads, each thread answers the call, but before 
going to sleep on the gc condition variable it checks if its heap is 
“nearly” full. The “nearly full” value depends on the heap size and 
on the nature of the application. Currently the implementation is 
set to force a thread to garbage collect if its heap is 92% full or 
more. The 92% figure is mainly an experimental value that was 
picked after conducting few tests. Thus if the thread’s heap has 
only 8% of its total size free, the thread queues up to do garbage 
collection instead of going to sleep on the gc condition variable. 
This technique forces several garbage collections that might be 
separated by very short periods of time to cluster together, 
requiring only a single suspension for all of the threads to do the 
several garbage collections. Instead of relying on a hardwired 
number (92%), a more dynamic approach might take into account 
the heap size and the rate of allocation to decide whether to force 
a garbage collection.  Figure 5 shows an abstract overview of 
garbage collection and concurrency control. 

5.3 Input/Output Sub-system 
The Unicon input output sub-system includes very high-level 
facilities for accessing files, networks and messaging, 2D and 3D 
graphics, databases, pipes and pseudo-ttys. The underlying C 
library functions implementing these capabilities are often thread- 
safe [22]. However, Unicon language-level IO operations usually 
involve several underlying library calls that must be atomic with 
respect to threads. Each IO handle is assigned a mutex when it is 
opened. Any IO operation that uses this handle locks the mutex to 
guarantee the atomicity of such operations. 

5.4 C Library Thread Safety 
In addition to IO, many C library functions called by the Unicon 
VM are documented in the POSIX standards as thread-unsafe. 
Most calls to thread-unsafe functions were replaced with the 
thread-safe alternatives available in modern C implementations. 
Other, infrequently called, thread-unsafe functions were protected 
by mutexes. A few of the thread-safe alternatives were not 
portable; new wrapper functions or implementations were 
developed in such cases. 

6. DISCUSSION 
Introducing concurrency to Unicon involved transforming parts of 
the virtual machine and runtime system to support the new 
feature. One of the biggest issues was to handle garbage collection 
correctly without imposing great overhead and allowing the 
threads to run at full speed most of the time (sec. 5.2). 
Another issue was making the whole virtual machine and the 
runtime system thread-safe (sec. 4, 5). Many changes that had to 
be made were obvious and straightforward. Others needed more 
experimentation, debugging, and code analysis before catching 
possible race conditions and problem scenarios. Even after 
extensive analysis, code review, and bug fixes, tests revealed 
occasional race conditions, deadlocks, and crashes. 

GC Queue 

1st ? 

Thread  

Thread 

NARthreads-- 

GC request 

No 

Yes 

Resume 
one thread 

 NARthreads++ 

Suspended  

No 

Thread  

Thread 

Near Full 
heap? 

No

Yes 

Thread 
Call? 

Yes 

 NARthreads-- 

Resume 
all threads 

 NARthreads++ 

Thread 

Running threads… 

Thread Thread Thread
Thread

Set the Thread 
call flag 

NARthreads=1? 

Yes 

GC Queue 
Empty? 

Perform GC 

Yes 

Wake up 
 “all” signal 

No 

No 

Wake up 
 “one” signal 

Figure 5.  A high level view of the dynamics of 
suspending/resuming threads for Garbage Collection 
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Two methods proved to be very effective in fixing such problems. 
The first method was the use of wrapper functions and macros 
around the thread and synchronization functions, a quick and easy 
way to control their behavior and to add debugging print 
information. The second method was the use of the powerful tools 
for analyzing and debugging multi-threaded applications that are 
part of the Sun Studio suite, available on Solaris, and for many 
Linux distributions. Section 6.1 discusses the use of the above two 
techniques to debug Unicon’s source code. Section 6.2 presents 
some preliminary evaluation of concurrency in Unicon. 

6.1 Parallel Programming and Debugging 
Techniques 
The first method included writing a macro that encapsulates calls 
to pthread library functions. These macros are exceptionally 
useful in catching deadlock problems. If a test program exhibits a 
deadlock behavior, the macros used to lock/unlock mutexes were 
modified to print information about the mutexes that they operate 
on. After getting to the deadlock state, the information printed by 
macros would reveal any mutex lock that was not paired with a 
matching unlock. In many situations, this output pointed directly 
at the problem or enabled a trace to its source. A fix was then 
applied and the test repeated until the deadlock problem was 
eliminated. Figure 6 shows an example macro applied to 
encapsulate the function pthread_mutex_lock(). 
The macro/wrapper function method can only be used to solve a 
deadlock problem if one actually occurs under testing. It does not 
help reveal hidden but possible deadlock scenarios that are 
waiting for the right conditions to happen. It also has nothing to 
do with diagnosing or discovering race conditions. The Solaris 
performance analyzer, collect tool, and the thread analyzer were 
used [20] [21]. 

One of the trickiest race conditions that collect and thread 
analyzer revealed were the self-modifying instructions discussed 
in section 4.2. These race conditions were not noticed during 
weeks of manual code analysis and debugging, but after a few test 
runs under collect, the thread analyzer caught them all.  
The thread analyzer detects potential, rather than actual problems. 
Some race conditions that the tool may discover are “false 
positives” or “benign” data races. A false positive might happen 
when a memory address gets recycled, for example after a 
garbage collection, and then gets used by a different thread. It 
might happen also when the code is set up in a way where 
different accesses to a given address would never overlap.  An 
example where this happens in Unicon’s VM and the thread 
analyzer reports a race condition is in Figure 7. No thread can get 
to the case Op_Areal before one of the threads changes the offset 
to an absolute address in the case Op_real. The code in Op_real 
is protected by a mutex but the code in Op_Areal is not. Both 
cases work on the same memory address. After switching to the 
absolute address in the first case all of the subsequent accesses by 
the different threads will be diverted to the read-only access in the 
second case which is thread-safe. The thread analyzer cannot 
deduce this and reports a race condition. 

Figure 7. The thread analyzer, showing a possible data race in Unicon’s runtime system 

#define MUTEX_LOCK( mtx, msg) { int retval;\ 
  
 
 if (retval=pthread_mutex_lock(&(mtx))) != 0) \ 
          handle_thread_error(retval);} 

printf(“locking mutex:%s\n”, msg);\ 

Figure 6. A debugging printf in a mutex macro 
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A benign data race on the other hand is an intentional data race 
that enhances the performance of the program, while not affecting 
its correctness. For example, if a few threads call a pollevent() 
function every few hundred iterations, and they all share a global 
counter to keep track of how many iterations they have done 
already, but the exact number of iterations is not really important, 
it would be a waste of time to have them lock/unlock to increment 
the counter. Doing an extra 20 or 50 iterations might be 
acceptable by the program logic, so it is better to leave the loop 
running at full speed as opposed to locking and unlocking to 
protect the counter. 

6.2 Thread Performance Evaluation 
Even after a successful implementation of concurrency, improving 
application performance by using threads is not trivial. The 
performance gain depends on the application coding style 
(whether the application was a concurrent design starting from a 
clean slate, or a conversion of an originally sequential program) 
and the dependencies in the code and data. Synchronization poses 
a challenge in some applications. Synchronization and thread-
local storage are also a source of slowdown for the language 
infrastructure.  Garbage collection remains the biggest factor in 
preventing some applications from taking full advantage of 
multiple cores available in a given machine, especially for 
memory- intensive and long-running programs.  
Several experiments were conducted to measure the performance 
of threads in Unicon under different conditions, including the 
number of threads, heap size, garbage collection frequency, and 
many other factors. Results were obtained on a Sun SPARC 
M9000 with 128 cores running Solaris 10 (64-bit). Experiments 
used three simple multi-threaded Unicon programs. The first, sum, 
includes a simple loop that counts to a fairly large integer. The 
program can split this job among several threads. The loop does 
not do any memory allocation and so is not affected by garbage 
collection at all. On the other hand, the program heavy is a 
garbage collection-intensive test that keeps allocating memory 
and trashing it, filling the heaps very quickly and forcing very 
frequent garbage collections. The last program, sl, finds the sum 
of a long list of integers. All times are in seconds and were 
measured using the shell command time(1), which  means the 
time measured include the creation, setup and initialization of the 
program and the threads, and also the time to setup data in the 
case of sl test. Figure 8 shows the performance of these programs 
with an increasing number of threads. The three programs 
accomplish completely different tasks that require different times 
to finish. Plotting them on the same figure is not to compare the 
absolute numbers from one program against another, but rather to 
compare the behaviors of the programs under changing 
conditions, and show how each program is affected by changing 
some of the parameters of the experiment.  
sum runs twice as fast when the number of threads is doubled, as 
expected, since the threads are independent and the program does 
not do garbage collection. heavy follows the same pattern with 2 
and 4 threads. However, because it is memory-allocation 
demanding with a very high rate of garbage collection, adding 
more threads has a negative impact: more threads require more 
synchronization and more time to suspend and resume for each 
garbage collection. sl gets high speedup with more threads but a 
little less than sum. That is mainly because sl first initializes the 
big list of integers to be used, and this is done by the main thread 
before the other threads start. This initialization takes a constant 
time, independent of the number of threads. 

Figure 9. Heap size effect on the performance of  
garbage collection intensive program 

Figure 10. Forcing threads with semi-full heaps to GC 

Figure 8. The effect of adding more threads in several 
programs. heavy is garbage collection very intensive 
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Figure 9 demonstrates the effect of the heap size allocated for 
each thread on the performance of a program. The heap size 
affects how frequent the garbage collection is. For these results 
we used the garbage collection-intensive heavy program. The 
figure shows that in an extreme case of garbage collection, a 
program does not benefit, or gets only a modest increase in speed 
from larger heaps with few threads running. The speedup 
increases with the number of threads if combined with an increase 
in heap size. Figure 10 illustrates the value of forcing some 
threads that have almost full heaps to garbage collect if another 
thread triggered a garbage collection. 

6.3 Concurrency Extension Efforts  in 
Similar Languages 
Section 2 gave an overview of related work, but it is useful to 
compare the Unicon effort to similar projects in which 
concurrency is added to formerly sequential very high level 
languages. This excludes the many worthy languages designed 
specifically to support concurrency, but the focus helps identify 
languages that might benefit from mutual study and cross 
fertilization of ideas. An extended discussion of many languages’ 
approaches to concurrency is available online [16]. 
It is difficult to identify peer languages, since there may be dozens 
or hundreds. Unicon is frequently characterized as being similar to 
Python or Ruby in language level; Object Rexx or JavaScript and 
its cousins might also be peers. Only those implementations 
supporting true concurrent execution on multiple processors/cores 
are comparable, and of those, the most comparable would be 
efforts to extend pseudo concurrency to true concurrency. For 
such comparable languages, it would be useful to compare the 
designs as well as the implementations. An exhaustive 
comparison of many languages’ designs and implementations is 
beyond the scope of this paper. Space allows only for highlights to 
be presented. 
In terms of language design, Karaorman and Bruno point out that 
concurrency (when not attained via invention of a new, 
intrinsically concurrent language) has often been introduced with 
no language extension at all, by adding a concurrency class library 
[11]. While this answers the question of what is the minimal 
language design possible, it does not provide insight on how to 
balance the needs of programmers for simplicity versus expressive 
power. 
Python and Ruby had threads introduced to their design early on, 
but as mentioned in Section 2, a global interpreter lock prevents 
true execution in their primary implementations. Replacing a 
global interpreter lock with many dozens of mutexes (Unicon’s 
runtime system uses 34, plus however many the programmer 
requests) does not guarantee higher parallel performance, it just 
allows for the probability of attaining it. Since alternative Python 
and Ruby implementations with true concurrency have not 
unseated their primary C implementations, concurrency 
integration in a language must be balanced against other practical 
aspects of the language implementation. 
JavaScript has cooperative concurrency analogous to Unicon’s co-
expressions prior to the start of this project. Open Object Rexx has 
object-based concurrency with a complex feature set [2]. A study 
of the evolution of its concurrency support might require 
understanding of its relationship to its proprietary commercial 
predecessor. 

The overhead cost of true concurrency is non-negligible, 
especially when it affects non-concurrent execution. When 
CPython was parallelized in 1999 by Greg Stein, removal of its 
global interpreter lock reduced sequential performance by 50%, 
and true concurrency in CPython has been prevented for over a 
decade due to this negative result [19]. 
For Unicon, similar initial negative performance was ameliorated 
by aggressively reducing the necessity for mutexes and redundant 
lookups in thread-local storage as described in Section 4.1. The 
overhead associated with concurrency in Unicon is presently 
around 12-27%, and should be reduced to less than 8% by passing 
a reference to each thread’s local storage on the stack as a 
parameter to frequently executing functions, eliminating their 
need to call the pthreads API. For non-concurrent execution it 
should be further reduced, to less than 4%, by providing 
concurrent and non-concurrent versions of selected virtual 
machine functions, and switching over to concurrency-supporting 
versions of the functions only when threads are activated. 
Compared with pure functional or logic programming languages, 
implicit parallelism is a challenge in a pragmatic language such as 
Unicon. Implicit parallelism is a major opportunity due to the very 
high level of the language. Both co-expressions and generators 
represent natural units for analysis; in some instances the code 
may be parallelized implicitly. Generators are especially exciting 
prospects for implicit parallelism, as they naturally describe a 
fine-grained, demand-driven parallel computation. 

7. FUTURE WORK 
While they have already proven useful in an important real-world 
application, the Unicon concurrency facilities will become more 
useful with refinement. Future work includes completion of the 
implementation, further performance tuning, and extension to a 
broader range of concurrency modes appropriate to the Unicon’s 
domain. 
Completion and maturing of the implementation includes a study 
of implicit locking for the language’s built-in list, table, set, 
record, and object types. At present, explicit mutexes are available 
to protect heap-allocated variables, but a language at this semantic 
level would benefit from implicit (automatic) protection for 
shared structures. 
Garbage collection is not yet aware of threads blocking on IO. 
There is already a technique used to handle blocking in mutexes 
and the sleep() function that can be generalized for this purpose. 
Preliminary work has been done toward the implementation of 
SIMD data-parallel operators that will complement the more 
general concurrency of threads. Another major area for future 
work is improvement of the garbage collector. Analysis can 
determine that some threads may garbage collect without stopping 
all the other threads; for example, producers and consumers that 
have no shared memory references and communicate purely 
through message passing. When synchronous collection is 
required and threads do have to be stopped, the garbage collector 
uses a mark and sweep algorithm; the marking phase could be 
readily parallelized.  

8. CONCLUSIONS 
This paper describes the design and implementation of 
concurrency in Unicon, a very high level object-oriented, goal-
directed language. Concurrency was added to the virtual machine 
and runtime system by extending an existing non-concurrent 
thread type. A primary design goal was to add explicit 
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concurrency with a minimal impact on the syntax. This goal was 
achieved initially, but the goal has changed over time into a new 
goal to find an appropriate balance between simplicity and power 
for explicit concurrent programming. 
The primary contribution of the work consists of the invention of 
thread-safety mechanisms that in many cases avoid the use of 
mutex-based synchronization. This effort was especially 
important in the memory allocator and garbage collector. For the 
majority of the runtime system, the thread-safety mechanism of 
choice was to migrate data into thread local storage and then focus 
on reducing the cost of accessing that storage. 
Unicon’s concurrency features have been deployed successfully in 
a large piece of research software running on the Solaris platform. 
The act of porting Unicon’s concurrency to Linux, OS X, and 
Windows resulted in lessons learned and forced code 
improvements (such as avoiding __thread) that increased 
performance, benefitting all platforms. 
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