

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
to republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
PMAM 2012, February 26, 2012, New Orleans LA, USA.
Copyright © 2012 ACM 978-1-4503-1211-0/12/02…$10.00.

An Hybrid Model for Very High Level Threads

Jafar Al-Gharaibeh
University of Idaho

Department of Computer Science
Moscow, ID, USA
+1-208-301-0338

jafara@vandals.uidaho.edu

Clinton Jeffery
University of Idaho

Department of Computer Science
Moscow, ID, USA
+1-208-885-4789

jeffery@uidaho.edu

Kostas N. Oikonomou
AT&T Labs Research

200 Laurel Avenue
Middletown, NJ, USA

+1-732-420-5902
ko@research.att.com

ABSTRACT
Languages with multiple paradigms or other special-purpose
features often are implemented in ways that make true
concurrency difficult in the virtual machine or runtime system.
Several popular languages feature a global interpreter lock that
limits them to pseudo-concurrency. This paper presents lessons
learned in developing true concurrency for a goal-directed, object-
oriented language called Unicon. Parts of the work were
anticipated, such as switching to thread-safe C library functions,
while other parts were a surprise, such as eliminating race
conditions in self-modifying virtual machine instructions.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – concurrent programming structures.

General Terms
Design, Languages.

Keywords
threads, concurrency, language design, garbage collection.

1. INTRODUCTION
Many rapid prototyping and scripting languages feature no
concurrency or only user-level concurrency via a global
interpreter lock [4]. These languages may have large code bases
that are unable to take advantage of the advances in modern multi-
core computer hardware. Such languages must acquire true
concurrency or face a lingering decline as multi-core computing
becomes more and more central in hardware design. This paper
describes lessons learned from extending one such language,
Unicon, to support true concurrency.
Adding concurrency to Unicon was motivated by a request from
AT&T Labs Research, where the language has been used to
implement a network performability (“performance + reliability”)
analysis tool called nperf [15]. nperf is computationally intensive,
and seriously needed the benefits of parallelization.

2. BACKGROUND
Different programming languages employ different techniques to
achieve parallelism. Haskell is an example functional language for
which implicit concurrency has been implemented [9]. The nature
of computations in functional languages, which are free of side
effects and depend heavily on graphs, facilitates such implicit
parallelism by assigning different parts of the graph to different
threads [8][18].
Paalvast et al, described Booster [17], a high level parallel
programming language that can be translated into lower level
languages such as FORTRAN and C. The language features the
idea of separation of algorithm description from algorithm
decomposition and representation. After the algorithm and the
data/code decomposition are described, a transformation can be
done automatically to achieve concurrency [17].
ALLOY [13] is an example of a weakly-typed, statically-scoped
parallel programming language based on the functional and
object-oriented paradigms. ALLOY is similar in many aspects to
Unicon and its predecessor Icon. It provides features to express
parallel algorithms and their related control structures including
synchronization and mutual exclusions. Mitsolides and Harrison
[14] describe the concept of “replicators” in ALLOY, which are
control structures that provide a new view of generator.
Replicators help deal with problems related to generators in a
concurrent environment.
Relatively popular modern concurrency-oriented, user-friendly
languages include Java (java.com) and Erlang (erlang.org). Java
features portable true concurrency and mitigates the pain of
writing locking code for concurrency synchronization using
monitor semantics. Erlang is arguably higher level, with a more
esoteric functional syntax and a message passing model for
communication and synchronization.
The most famous scripting language, Python, and its popular
competitor Ruby feature a Global Interpreter Lock, or GIL.
Experimental implementations such as Jython and Iron Python
feature true concurrency, but users tend to stick with original
interpreters such as CPython despite their use of a GIL. Recent
work on CPython has made progress towards eliminating the GIL,
but it is still present.
The SR (Synchronizing Resources) programming language is a
language for developing parallel programs. The parallelism in SR
is mainly exploited through message passing [1], even though it
provides mechanisms for techniques like rendezvous and remote
procedure call. SR has a highly expressive message passing

55

interface, which is useful in many applications, but it is
considered by some to provide a low level abstraction in
applications where other concurrency mechanisms can be used
[3].
OpenMP (Open Multi-Processing) is a shared memory, multi-
platform API. It achieves concurrency through a unique approach
using compiler directives, and a combination of library routines
and environment variables [5]. The directives enable the compiler
and the runtime system to create several threads when appropriate
to accomplish certain tasks, without direct intervention from the
programmer. OpenMP provides a simple mechanism for
parallelizing some parts of the program. Most of the work is
handled automatically. The directives can be skipped by the
compiler if a sequential version is required. Despite its simplicity,
OpenMP requires compiler support, and in some cases can
introduce race conditions that are hard to debug, especially with
the little control that the programmer has over the threads. These
issues and more are addressed in [7] [12].

3. LANGUAGE DESIGN
Compared with the very rich related work, the goal of this work is
modest. Unicon is an object-oriented descendant of the Icon
programming language [6] [10]. This section presents the design
of the concurrency features added to Unicon, with the express
goal of minimizing the additions required at the source code level,
and providing a simpler higher-level concurrency mechanism.
Unicon’s ancestor Icon integrates Prolog-like goal-direction and
implicit backtracking within a conventional syntax and an
imperative semantic core. Icon’s traditional domain is string and
file processing, and the rapid development of experimental
algorithms and data structures. Unicon is a superset that extends
Icon along two dimensions: features such as classes and packages
for larger-scale projects, and extensive access to modern I/O
capabilities such as graphics, networking, and databases.

3.1 Co-expressions
Because Icon features synchronous, ultra-lightweight threads
called co-expressions, the easiest graft of concurrency onto
Unicon was to extend that type. Co-expressions are similar to
coroutines, except that they can be composed from arbitrary
expressions. Co-expressions are finer-grained than coroutines,
which are limited to the function call level. Co-expressions are
created by a control structure (create expr) and control is
transferred between co-expressions by either implicit means
(producing a result or failing) or an explicit transmit-and-activate
operator [sendvalue] @ co-expression. This primitive is always
a rendezvous in Icon, since co-expressions are synchronous.
Although co-expressions can be implemented on top of POSIX
threads, at the language level they feel far simpler. They require
no locking and provide easy data sharing via global and heap
variables. Co-expressions also have a native implementation in
assembler code on popular processors that is much faster than the
pthreads implementation, on the order of ~100x on modern
processors. For example the x86_64 native co-expression switch
consists of 7 instructions. But unlike this native implementation,
the pthreads implementation can be scheduled by the operating
system to make use of multiple cores. It was natural to build
Unicon’s concurrency facilities on top of the pthread library, but
then run native co-expressions within each thread—an hybrid
model.

3.2 Minimalist Concurrent Extension
From a language design standpoint, adding concurrency to Unicon
consisted of: (1) adding a way to tell co-expressions to execute
concurrently, and (2) extending the activation operator @ for
thread synchronization and communication. These were achieved
by introducing a control structure thread expr analogous to
create expr, and extending the @ operator to maintain producer-
consumer queues for asynchronous operation.
Unicon’s version of the @ operator enables the following forms
of communication:

Name Example Description
send/receive x := y @ thread If queues empty, rendezvous
send y @thread No wait; no answer needed
receive x := @thread No wait if message is

already here
produce y @ Send to any receiver
consume x := @ Receive from any sender

The language was also extended with seven new built-in functions
for high-level access to mutual exclusion primitives and condition
variables. The built-in function wait() was extended to allow a co-
expression argument to support the semantics of join() in thread
programming. Also, new syntax was introduced for critical
regions, to provide a higher-level alternative to the mutual
exclusion functions. The syntax is
critical mtx: expr
meaning that expr will be serialized on the mutex mtx, which will
be automatically locked before executing expr and unlocked after
that. The remainder of this paper focuses on the lessons learned
from the implementation of concurrency within the legacy virtual
machine interpreter, known as iconx.

3.3 Code Example
Figure 1 presents a code example in Unicon for solving a simple
problem; computing the summation of a list of elements. Two
versions are presented in the figure. Lines 1 through 8 represent
the sequential version, while the remaining code is the parallel
version. The parallel version takes some extra steps to create the
threads and divide the job to four threads and collect their results.
For a huge list with millions of elements, the parallel code runs
nearly four times faster than the sequential version.
This example is not representative of a typical real world
application. The sequential version is trivial, making the addition
of a few more lines of code very noticeable. In a more serious
context (such as, nperf mentioned earlier in this paper), the code
that is added to enable parallel execution may be negligible
compared to the size of the original code. The extra code in the
figure that is added to the parallel version is responsible for
creating the threads and dividing the work among them (lines 14
through 18). listsum() in the sequential version can be compared
to slicesum() in the parallel version. listsum() finds the
summation of the list while the latter finds the summation of a
subset of the list (elements start through start+length) allowing
different threads to work on different slices of the same list.
slicesum() also includes a mutex (region) to protect the global
sum where all threads accumulate their results at the end (line
28).

56

4. VIRTUAL MACHINE
The Unicon virtual machine is a modified version of the Icon
virtual machine. The extensions made to support true concurrency
would apply equally to the Icon implementation. Similar
languages face analogous situations, where the lessons learned
here may be applicable.

4.1 VM Registers
Virtual machine “registers”, which were formerly global variables
in the VM C code, include the program counter, stack pointer, the
several frame pointers necessary to manage calls, returns,
suspension and resumption on the stack, and other pieces of
virtual machine state. To add concurrency, these elements of state
are moved into a struct threadstate that is allocated for each
thread in thread local storage. The threadstate structure is fairly
large, under the assumption that memory is cheap whereas thread
synchronization is expensive. POSIX threads API calls are used to
obtain references to the threadstate structure where it is needed.
A key concern when using thread-local storage is performance.
Initially, all references to VM registers were replaced, via macros,
by references through a global threadstate pointer variable
declared with the storage specifier __thread that is available in
some compilers such as gcc and Sun’s (now Oracle’s) cc. This
implementation was straightforward but incurred a substantial
performance cost. In addition, it was not available in the pthreads

implementation on OS X and the pthreads subset for Mingw gcc
on Microsoft Windows. Switching to the more portable pthreads
API for thread-local storage using pthread_getspecific() allowed
a faster implementation than __thread. The straightforward
implementation invoked pthread_getspecific() once at the top of
each C function containing references to VM register and state
variables. The many calls to this API wherever the VM state is
referenced in the runtime system still entail an unattractive
performance cost. Passing a pointer to the thread state as an extra
parameter on the stack where it is needed as discussed in Section
7 will finally mitigate this cost.

4.2 Self-Modifying Instructions
The Unicon virtual machine has seven instructions with integer
operands denoting offsets to other instructions, or to static data in
the bytecode. They are used for literals, globals, static variables,
and also for instructions that jump to addresses, such as
Op_Goto. For performance reasons, when the opcode first
executes, offsets are converted to pointers. The opcode is
modified to indicate that the operand is a pointer, and the
instruction proceeds at full speed on subsequent executions.
This implementation introduces a race condition when multiple
threads execute the self-modifying instruction at the same time.
The problem was solved by adding a mutex for each self-
modifying instruction opcode. Figure 2 shows an example self-
modifying virtual machine instruction protected with a mutex.
Mutex contention could be reduced further by allocating a
separate mutex for each instance of each opcode (requiring a
number of mutexes proportional to the size of the program)
instead of using just seven mutexes for the seven self-modifying
opcodes; it is unlikely that this would be worth implementing,
since each instance of a self-modifying instruction uses its mutex
only once when it replaces itself. Some intermediate granularity
such as allocating up to these 7 mutexes per procedure/method,
class, or object file might be shown beneficial by further study.

Figure 1. Self modifying instruction protected by a mutex

case Op_Real: /* real, offset address */
 MUTEX_LOCKID(MTX_OP_AREAL);

 if (ipc.op[-1] == Op_Areal) {
 MUTEX_UNLOCKID(MTX_OP_AREAL);
 goto L_areal;
 }

 PushVal(D_Real);
 opnd = GetWord;
 opnd += (word)ipc.opnd;

 PushAVal(opnd);
 PutInstr(Op_Areal, opnd, 1);

 InterpEVValD((dptr)(rsp-1), e_literal);
 MUTEX_UNLOCKID(MTX_OP_AREAL);
 break;

lock the mutex

Check if another
thread has done
this already

Calculate the absolute address
using the offset.

Store the absolute address back in
the instruction replacing the offset.

1. # sequential version. : loop through the entire list
2. # simply summating them and return the result
3. procedure listsum(L)
4. sum:=0
5. every 1 to *L do
6. sum+:=L[i]
7. return sum
8. end
9. #--#
10. # parallel version: divide the work between 4 threads.
11. global sum
12. procedure listsum(L)
13. # create the threads, prepare their data and fire them
14. thrds := list(); sum := 0; Q := *L/4
15. every put(thrds,thread(create slicesum(L,(0 to 3)* Q, Q)))
16. every wait(!thrds) # wait for the threads to finish
17. return sum
18. end
19. # find the summation of n to m elements in list L.
20. procedure slicesum(L, start , length)
21. static region
22. initial region := mutex()
23. tot := 0
24. every tot +:= L[start to start+length]
25. critical region: sum+ := tot
26. end

Figure 2. Computing the summation of an entire list
elements, sequential [1:8] and parallel [10:26]

57

5. RUNTIME SYSTEM
Achieving thread-safety in the implementation without a global
interpreter lock required extensive modifications to the runtime
system, notably the garbage collector.

5.1 Allocation and Separate Heaps
Allocation is a frequent operation for which speed is a top priori-
ty. Unicon programs start with a heap consisting of one string and
one block (structure) region, and allocate more regions as needed.
At any moment, the string and block regions used for allocation
are together referred to as the current heap. If the memory request
is bigger than what is available in the current heap, other regions
are checked. If enough memory is found, the current heap is
switched to use the satisfying region. Garbage collection is trig-
gered if there is not enough free memory in the heaps. If the re-
quest cannot be granted even after the garbage collection, a new
region is allocated.
Using a shared heap with multiple threads, when a thread
allocates memory and updates the heap’s state variables, the
operation must be protected by a mutex. The locks required in the
shared heap strategy were slowing down the frequent task of
memory allocation, especially when there was more than one
thread running, limiting the scalability of this approach. It was
decided then to switch to use private heaps to solve this problem.
The terms “private heap” and “public heap” are introduced to
describe allocation controls in the heaps that avoid the need for
mutexes; the terms do not imply restrictions on memory accesses.
Separate, per-thread heaps allow threads to allocate from their
own private heaps at full speed. Heaps that are not owned by any
thread are referred to as public heaps. Public heaps are a product
of threads out-growing their private heaps. This happens when a
thread requests more memory and that request can only be granted
by allocating a new private heap. A program starts with no public
heaps and one private heap for the main thread. Figure 3 shows
the heap layout with regards to threads.
All heaps (public and private) are visible to all threads, so any
thread can access variables and data structures in any heap at any
time. The accesses can be protected at the application level, if
needed. In other words, a thread can allocate memory only in its
private heap, but can access (read and write) variables in all
heaps.
When a memory request cannot be granted in the private heap,
public heaps are checked to see if any of them has enough free
memory to grant the request. If so, the private heap is swapped
with the public heap, changing the private heap to public and vice-
versa. The pool of public heaps is protected by a mutex. If public
heaps do not have enough free memory, a garbage collection will
take place. If the memory request cannot be granted after that, the
thread allocates a fresh heap.

5.2 Garbage Collection
The frequency of garbage collection depends on heap size and
application memory usage patterns. Historically, many Icon
applications ran to completion without ever garbage collecting.
However, modern object oriented event-driven applications run
for long periods of time, and garbage collect proportionally often,
despite increases in physical memory and heap size. When
garbage collection does occur, it concerns every thread.
Since garbage collection does not happen often and its negative
impact on performance can be greatly reduced using large heaps,
garbage collection is kept as simple as possible under concurrent

execution. To allow safe access to data in other threads’ heaps,
garbage collection suspends all running threads except the thread
that triggered it, referred to as the GC thread. The GC thread
performs a conventional garbage collection, during which the
program runs sequentially without safety issues.
The GC thread first locks the garbage collection mutex
MTX_THREADCONTROL, and then sets a global flag that
announces the need to perform garbage collection. It directs all
running threads to converge to a special routine called
thread_control, the coordination point for thread suspension and
resumption. All threads once per virtual machine instruction
check the global flag. The runtime system keeps track of how
many threads are running using a global counter NARthreads.
Before a thread blocks on a mutex it decrements the counter, and
increments it after unblocking. The counter itself is protected by a
mutex and can be incremented only if there is no garbage
collection request pending or taking place (Figure 4).
After a call for garbage collection causes a thread to enter the
thread_control function, the thread decrements the running
threads counter NARthreads and goes to sleep on the gc
condition variable. The GC thread tests the running threads
counter until its value decreases to 1, meaning that the GC thread

MUTEX_LOCKID(MTX_NARTHREADS);
 NARthreads--;
MUTEX_UNLOCKID(MTX_NARTHREADS);

THREAD_JOIN(thread);

MUTEX_LOCKID(MTX_THREADCONTROL);
MUTEX_LOCKID(MTX_NARTHREADS); NAR

NARthreads++;

MUTEX_UNLOCKID(MTX_NARTHREADS);
MUTEX UNLOCKID(MTX THREADCONTROL);

Decrement
the counter

Do a blocking operation, a
system call (long IO for
example) or a delay, etc.

Increment the counter. Wait for GC to
finish if there is one.

Figure 4. Tracking the number of running threads

Pool of Public
Heaps

Public heap 1

Public heap 2

Public heap m

Thread 1 Thread 1

Thread 2

Thread 3

Thread n

Thread 2

Thread 3

Thread n

Private heaps

Figure 3. Threads, private heaps and public heaps

58

is running by itself. Then the GC thread proceeds to perform the
garbage collection. After finishing, the GC thread unlocks the
garbage collection mutex, and does a broadcast to the gc
condition variable. This wakes up all of the threads blocked on the
gc variable, allowing them to resume their execution and return to
where they called the thread_control function in the first place.
In garbage collection-intensive applications, it may happen that
two (or more) threads trigger a garbage collection at the same
moment. This situation can be handled in various ways. The
simplest solution is to block all of the threads requesting garbage
collection after the first one and let the first one proceed and finish
as described above (block all of the other threads and then wake
them up again). A better solution, the one adopted in this design,
is to make the threads that are competing for garbage collection
aware of each other. Instead of a sequence of “block all others”
followed by a “wake up others” performed by each GC thread, a
GC thread can hand the control over to the next GC thread in line,
if there is one, and then go to sleep. Only the last GC thread in the
line wakes up all of the blocked threads. This strategy eliminates
intermediate block/wakeup operations, leaving only one “block
others” operation by the first GC thread and one “wake up others”
operation by the last GC thread. A counting semaphore (gc
semaphore) controls the queuing and synchronizing of several
threads to garbage collect. The first thread to request a garbage
collection does not block on the semaphore, but subsequent
requesters do. After finishing garbage collection, each thread
signals the semaphore to wake up the next GC thread and goes to
sleep. The last GC thread to wake up is responsible for waking up
all of the threads after finishing.
An additional measure increases the effectiveness of the strategy
just described: triggering a pre-emptive garbage collection if
another thread has a garbage collection request pending. After a
thread triggers a garbage collection and starts the protocol to
suspend all other threads, each thread answers the call, but before
going to sleep on the gc condition variable it checks if its heap is
“nearly” full. The “nearly full” value depends on the heap size and
on the nature of the application. Currently the implementation is
set to force a thread to garbage collect if its heap is 92% full or
more. The 92% figure is mainly an experimental value that was
picked after conducting few tests. Thus if the thread’s heap has
only 8% of its total size free, the thread queues up to do garbage
collection instead of going to sleep on the gc condition variable.
This technique forces several garbage collections that might be
separated by very short periods of time to cluster together,
requiring only a single suspension for all of the threads to do the
several garbage collections. Instead of relying on a hardwired
number (92%), a more dynamic approach might take into account
the heap size and the rate of allocation to decide whether to force
a garbage collection. Figure 5 shows an abstract overview of
garbage collection and concurrency control.

5.3 Input/Output Sub-system
The Unicon input output sub-system includes very high-level
facilities for accessing files, networks and messaging, 2D and 3D
graphics, databases, pipes and pseudo-ttys. The underlying C
library functions implementing these capabilities are often thread-
safe [22]. However, Unicon language-level IO operations usually
involve several underlying library calls that must be atomic with
respect to threads. Each IO handle is assigned a mutex when it is
opened. Any IO operation that uses this handle locks the mutex to
guarantee the atomicity of such operations.

5.4 C Library Thread Safety
In addition to IO, many C library functions called by the Unicon
VM are documented in the POSIX standards as thread-unsafe.
Most calls to thread-unsafe functions were replaced with the
thread-safe alternatives available in modern C implementations.
Other, infrequently called, thread-unsafe functions were protected
by mutexes. A few of the thread-safe alternatives were not
portable; new wrapper functions or implementations were
developed in such cases.

6. DISCUSSION
Introducing concurrency to Unicon involved transforming parts of
the virtual machine and runtime system to support the new
feature. One of the biggest issues was to handle garbage collection
correctly without imposing great overhead and allowing the
threads to run at full speed most of the time (sec. 5.2).
Another issue was making the whole virtual machine and the
runtime system thread-safe (sec. 4, 5). Many changes that had to
be made were obvious and straightforward. Others needed more
experimentation, debugging, and code analysis before catching
possible race conditions and problem scenarios. Even after
extensive analysis, code review, and bug fixes, tests revealed
occasional race conditions, deadlocks, and crashes.

GC Queue

1st ?

Thread

Thread

NARthreads--

GC request

No

Yes

Resume
one thread

 NARthreads++

Suspended

No

Thread

Thread

Near Full
heap?

No

Yes

Thread
Call?

Yes

 NARthreads--

Resume
all threads

 NARthreads++

Thread

Running threads…

Thread Thread Thread
Thread

Set the Thread
call flag

NARthreads=1?

Yes

GC Queue
Empty?

Perform GC

Yes

Wake up
 “all” signal

No

No

Wake up
 “one” signal

Figure 5. A high level view of the dynamics of
suspending/resuming threads for Garbage Collection

59

Two methods proved to be very effective in fixing such problems.
The first method was the use of wrapper functions and macros
around the thread and synchronization functions, a quick and easy
way to control their behavior and to add debugging print
information. The second method was the use of the powerful tools
for analyzing and debugging multi-threaded applications that are
part of the Sun Studio suite, available on Solaris, and for many
Linux distributions. Section 6.1 discusses the use of the above two
techniques to debug Unicon’s source code. Section 6.2 presents
some preliminary evaluation of concurrency in Unicon.

6.1 Parallel Programming and Debugging
Techniques
The first method included writing a macro that encapsulates calls
to pthread library functions. These macros are exceptionally
useful in catching deadlock problems. If a test program exhibits a
deadlock behavior, the macros used to lock/unlock mutexes were
modified to print information about the mutexes that they operate
on. After getting to the deadlock state, the information printed by
macros would reveal any mutex lock that was not paired with a
matching unlock. In many situations, this output pointed directly
at the problem or enabled a trace to its source. A fix was then
applied and the test repeated until the deadlock problem was
eliminated. Figure 6 shows an example macro applied to
encapsulate the function pthread_mutex_lock().
The macro/wrapper function method can only be used to solve a
deadlock problem if one actually occurs under testing. It does not
help reveal hidden but possible deadlock scenarios that are
waiting for the right conditions to happen. It also has nothing to
do with diagnosing or discovering race conditions. The Solaris
performance analyzer, collect tool, and the thread analyzer were
used [20] [21].

One of the trickiest race conditions that collect and thread
analyzer revealed were the self-modifying instructions discussed
in section 4.2. These race conditions were not noticed during
weeks of manual code analysis and debugging, but after a few test
runs under collect, the thread analyzer caught them all.
The thread analyzer detects potential, rather than actual problems.
Some race conditions that the tool may discover are “false
positives” or “benign” data races. A false positive might happen
when a memory address gets recycled, for example after a
garbage collection, and then gets used by a different thread. It
might happen also when the code is set up in a way where
different accesses to a given address would never overlap. An
example where this happens in Unicon’s VM and the thread
analyzer reports a race condition is in Figure 7. No thread can get
to the case Op_Areal before one of the threads changes the offset
to an absolute address in the case Op_real. The code in Op_real
is protected by a mutex but the code in Op_Areal is not. Both
cases work on the same memory address. After switching to the
absolute address in the first case all of the subsequent accesses by
the different threads will be diverted to the read-only access in the
second case which is thread-safe. The thread analyzer cannot
deduce this and reports a race condition.

Figure 7. The thread analyzer, showing a possible data race in Unicon’s runtime system

#define MUTEX_LOCK(mtx, msg) { int retval;\

 if (retval=pthread_mutex_lock(&(mtx))) != 0) \
 handle_thread_error(retval);}

printf(“locking mutex:%s\n”, msg);\

Figure 6. A debugging printf in a mutex macro

60

A benign data race on the other hand is an intentional data race
that enhances the performance of the program, while not affecting
its correctness. For example, if a few threads call a pollevent()
function every few hundred iterations, and they all share a global
counter to keep track of how many iterations they have done
already, but the exact number of iterations is not really important,
it would be a waste of time to have them lock/unlock to increment
the counter. Doing an extra 20 or 50 iterations might be
acceptable by the program logic, so it is better to leave the loop
running at full speed as opposed to locking and unlocking to
protect the counter.

6.2 Thread Performance Evaluation
Even after a successful implementation of concurrency, improving
application performance by using threads is not trivial. The
performance gain depends on the application coding style
(whether the application was a concurrent design starting from a
clean slate, or a conversion of an originally sequential program)
and the dependencies in the code and data. Synchronization poses
a challenge in some applications. Synchronization and thread-
local storage are also a source of slowdown for the language
infrastructure. Garbage collection remains the biggest factor in
preventing some applications from taking full advantage of
multiple cores available in a given machine, especially for
memory- intensive and long-running programs.
Several experiments were conducted to measure the performance
of threads in Unicon under different conditions, including the
number of threads, heap size, garbage collection frequency, and
many other factors. Results were obtained on a Sun SPARC
M9000 with 128 cores running Solaris 10 (64-bit). Experiments
used three simple multi-threaded Unicon programs. The first, sum,
includes a simple loop that counts to a fairly large integer. The
program can split this job among several threads. The loop does
not do any memory allocation and so is not affected by garbage
collection at all. On the other hand, the program heavy is a
garbage collection-intensive test that keeps allocating memory
and trashing it, filling the heaps very quickly and forcing very
frequent garbage collections. The last program, sl, finds the sum
of a long list of integers. All times are in seconds and were
measured using the shell command time(1), which means the
time measured include the creation, setup and initialization of the
program and the threads, and also the time to setup data in the
case of sl test. Figure 8 shows the performance of these programs
with an increasing number of threads. The three programs
accomplish completely different tasks that require different times
to finish. Plotting them on the same figure is not to compare the
absolute numbers from one program against another, but rather to
compare the behaviors of the programs under changing
conditions, and show how each program is affected by changing
some of the parameters of the experiment.
sum runs twice as fast when the number of threads is doubled, as
expected, since the threads are independent and the program does
not do garbage collection. heavy follows the same pattern with 2
and 4 threads. However, because it is memory-allocation
demanding with a very high rate of garbage collection, adding
more threads has a negative impact: more threads require more
synchronization and more time to suspend and resume for each
garbage collection. sl gets high speedup with more threads but a
little less than sum. That is mainly because sl first initializes the
big list of integers to be used, and this is done by the main thread
before the other threads start. This initialization takes a constant
time, independent of the number of threads.

Figure 9. Heap size effect on the performance of
garbage collection intensive program

Figure 10. Forcing threads with semi-full heaps to GC

Figure 8. The effect of adding more threads in several
programs. heavy is garbage collection very intensive

61

Figure 9 demonstrates the effect of the heap size allocated for
each thread on the performance of a program. The heap size
affects how frequent the garbage collection is. For these results
we used the garbage collection-intensive heavy program. The
figure shows that in an extreme case of garbage collection, a
program does not benefit, or gets only a modest increase in speed
from larger heaps with few threads running. The speedup
increases with the number of threads if combined with an increase
in heap size. Figure 10 illustrates the value of forcing some
threads that have almost full heaps to garbage collect if another
thread triggered a garbage collection.

6.3 Concurrency Extension Efforts in
Similar Languages
Section 2 gave an overview of related work, but it is useful to
compare the Unicon effort to similar projects in which
concurrency is added to formerly sequential very high level
languages. This excludes the many worthy languages designed
specifically to support concurrency, but the focus helps identify
languages that might benefit from mutual study and cross
fertilization of ideas. An extended discussion of many languages’
approaches to concurrency is available online [16].
It is difficult to identify peer languages, since there may be dozens
or hundreds. Unicon is frequently characterized as being similar to
Python or Ruby in language level; Object Rexx or JavaScript and
its cousins might also be peers. Only those implementations
supporting true concurrent execution on multiple processors/cores
are comparable, and of those, the most comparable would be
efforts to extend pseudo concurrency to true concurrency. For
such comparable languages, it would be useful to compare the
designs as well as the implementations. An exhaustive
comparison of many languages’ designs and implementations is
beyond the scope of this paper. Space allows only for highlights to
be presented.
In terms of language design, Karaorman and Bruno point out that
concurrency (when not attained via invention of a new,
intrinsically concurrent language) has often been introduced with
no language extension at all, by adding a concurrency class library
[11]. While this answers the question of what is the minimal
language design possible, it does not provide insight on how to
balance the needs of programmers for simplicity versus expressive
power.
Python and Ruby had threads introduced to their design early on,
but as mentioned in Section 2, a global interpreter lock prevents
true execution in their primary implementations. Replacing a
global interpreter lock with many dozens of mutexes (Unicon’s
runtime system uses 34, plus however many the programmer
requests) does not guarantee higher parallel performance, it just
allows for the probability of attaining it. Since alternative Python
and Ruby implementations with true concurrency have not
unseated their primary C implementations, concurrency
integration in a language must be balanced against other practical
aspects of the language implementation.
JavaScript has cooperative concurrency analogous to Unicon’s co-
expressions prior to the start of this project. Open Object Rexx has
object-based concurrency with a complex feature set [2]. A study
of the evolution of its concurrency support might require
understanding of its relationship to its proprietary commercial
predecessor.

The overhead cost of true concurrency is non-negligible,
especially when it affects non-concurrent execution. When
CPython was parallelized in 1999 by Greg Stein, removal of its
global interpreter lock reduced sequential performance by 50%,
and true concurrency in CPython has been prevented for over a
decade due to this negative result [19].
For Unicon, similar initial negative performance was ameliorated
by aggressively reducing the necessity for mutexes and redundant
lookups in thread-local storage as described in Section 4.1. The
overhead associated with concurrency in Unicon is presently
around 12-27%, and should be reduced to less than 8% by passing
a reference to each thread’s local storage on the stack as a
parameter to frequently executing functions, eliminating their
need to call the pthreads API. For non-concurrent execution it
should be further reduced, to less than 4%, by providing
concurrent and non-concurrent versions of selected virtual
machine functions, and switching over to concurrency-supporting
versions of the functions only when threads are activated.
Compared with pure functional or logic programming languages,
implicit parallelism is a challenge in a pragmatic language such as
Unicon. Implicit parallelism is a major opportunity due to the very
high level of the language. Both co-expressions and generators
represent natural units for analysis; in some instances the code
may be parallelized implicitly. Generators are especially exciting
prospects for implicit parallelism, as they naturally describe a
fine-grained, demand-driven parallel computation.

7. FUTURE WORK
While they have already proven useful in an important real-world
application, the Unicon concurrency facilities will become more
useful with refinement. Future work includes completion of the
implementation, further performance tuning, and extension to a
broader range of concurrency modes appropriate to the Unicon’s
domain.
Completion and maturing of the implementation includes a study
of implicit locking for the language’s built-in list, table, set,
record, and object types. At present, explicit mutexes are available
to protect heap-allocated variables, but a language at this semantic
level would benefit from implicit (automatic) protection for
shared structures.
Garbage collection is not yet aware of threads blocking on IO.
There is already a technique used to handle blocking in mutexes
and the sleep() function that can be generalized for this purpose.
Preliminary work has been done toward the implementation of
SIMD data-parallel operators that will complement the more
general concurrency of threads. Another major area for future
work is improvement of the garbage collector. Analysis can
determine that some threads may garbage collect without stopping
all the other threads; for example, producers and consumers that
have no shared memory references and communicate purely
through message passing. When synchronous collection is
required and threads do have to be stopped, the garbage collector
uses a mark and sweep algorithm; the marking phase could be
readily parallelized.

8. CONCLUSIONS
This paper describes the design and implementation of
concurrency in Unicon, a very high level object-oriented, goal-
directed language. Concurrency was added to the virtual machine
and runtime system by extending an existing non-concurrent
thread type. A primary design goal was to add explicit

62

concurrency with a minimal impact on the syntax. This goal was
achieved initially, but the goal has changed over time into a new
goal to find an appropriate balance between simplicity and power
for explicit concurrent programming.
The primary contribution of the work consists of the invention of
thread-safety mechanisms that in many cases avoid the use of
mutex-based synchronization. This effort was especially
important in the memory allocator and garbage collector. For the
majority of the runtime system, the thread-safety mechanism of
choice was to migrate data into thread local storage and then focus
on reducing the cost of accessing that storage.
Unicon’s concurrency features have been deployed successfully in
a large piece of research software running on the Solaris platform.
The act of porting Unicon’s concurrency to Linux, OS X, and
Windows resulted in lessons learned and forced code
improvements (such as avoiding __thread) that increased
performance, benefitting all platforms.

9. ACKNOWLEDGEMENTS
This work was made possible by the generous support of AT&T
Labs Research, as well as a contract with the Specialized
Information Services division of the National Library of
Medicine.

10. REFERENCES
[1] Andrews, G., and Olsson, R. 1993. The SR Programming

Language: Concurrency in Practice.: Benjamin/Cummings.

[2] Ashley, D. W., et al. 2009 . Open Object Rexx: Programming
Guide. http://www.oorexx.org/docs/rexxpg/book1.htm
(accessed 01/30/2012)

[3] Bal, H., Steiner, J., and Tanenbaum, A. 1989. Programming
Languages for Distributed Computing Systems. ACM
Computing Surveys. 21, 3, 261-322.

[4] Beazley, D. 2009. Inside the Python GIL. Python
Concurrency Workshop.
http://www.dabeaz.com/python/GIL.pdf (accessed
01/30/2012)

[5] Capman, B., Jost, G., and van der Pas, R. 2007. Using
OpenMP. MIT Press.

[6] Griswold, R., and Griswold, M. 1999. The Icon
Programming Language, 3rd ed. Peer-to-Peer
Communications., San Jose, CA.

[7] Gustafson, P. Sun Developer Network.
http://developers.sun.com/solaris/articles/cpp_race.html
(accessed 01/30/2012)

[8] Hasselbring, W. 1997. Approaches to High-Level
Programming and Prototyping of Concurrent Applications.
Software-Technik Memo 91. ftp://ls10-www.cs.uni-
dortmund.de/pub/Technische-Berichte/Hasselbring_SWT-
Memo-91.ps.gz (accessed 01/30/2012)

[9] Hudak, P. 1988. Exploring parafunctional programming:
Separating the What from the How. IEEE Software, January,
1988, 54-61.

[10] Jeffery, C., Mohamed, S., Parlett, R., and Pereda, R. 2003.
Programming with Unicon. http://unicon.org/book/ub.pdf
(accessed 01/30/2012)

[11] Karaorman, M., and Bruno, J. 1993. Introducing concurrency
to a sequential language. Communications of the ACM, 36, 9,
103-115.

[12] Kolosov, A., Ryzhkov, E., and Karpov, A. 2008. Intel
Software Network. http://software.intel.com/en-
us/articles/32-openmp-traps-for-c-developers (accessed
01/30/2012)

[13] Mitsolides, T. 1992. The Design and Implementation of
ALLOY, a Higher Level Parallel Pro-gramming Language.

[14] Mitsolides, T., and Harrison, M. 1990. Generators and the
replicator control structure in the parallel environment of
alloy. In Proceedings of PLDI '90 - ACM SIGPLAN
conference on Programming language design and
implementation, 189-196.

[15] Oikonomou, K. N. 2010. Network Performability Evaluation.
Guide to Reliable Internet Services and Applications, C. R.
Kalmanek, S. Misra, and C. R. Yang, Eds. Springer, 113-
135.

[16] Oshineye, A. Discussion of “The Free Lunch is Over: A
Fundamental Turn Towards Concurrency in Software”.
http://lambda-the-ultimate.org/node/458 (accessed
01/30/2012)

[17] Paalvast, E. M., Sips, H. J., and Breebaart, L. C. 1991.
"Booster: a High-Level Language for Portable Parallel
Algorithms," Applied Numerical Mathematics. 8, 2, 177-192.

[18] Peyton-Jones, S. L. 1987. The Implementation of Functional
Programming Languages. Prentice Hall International.

[19] Python FAQ. http://docs.python.org/faq/library#can-t-we-
get-rid-of-the-global-interpreter-lock (accessed 01/30/2012)

[20] Sun Studio Express - Using The Thread Analyzer - Tutorial.
http://www.oracle.com/technetwork/testcontent/tha-using-
141353.html (accessed 01/30/2012)

[21] Sun Studio Performance Analyzer Quick Start Guide.
http://www.oracle.com/technetwork/server-
storage/solaris/analyzer-qs-136436.html (accessed
01/30/2012)

[22] Thread-safety and POSIX.1.
http://www.unix.org/whitepapers/reentrant.html (accessed
01/30/2012)

63

