
Programming Support for Reconfigurable Custom Vector
Architectures∗

Mehmet Ali Arslan
Lund University, Computer

Science
mehmet_ali.arslan@cs.lth.se

Krzysztof Kuchcinski
Lund University, Computer

Science
krzysztof.kuchcinski@cs.lth.se

Flavius Gruian
Lund University, Computer

Science
flavius.gruian@cs.lth.se

Yangxurui Liu
Lund University, Electrical and

Information Tech.
yangxurui.liu@eit.lth.se

ABSTRACT
High performance requirements increased the popularity of uncon-
ventional architectures. While providing better performance, such
architectures are generally harder to program and generate code
for. In this paper, we present our approach to ease programmability
and code generation for such architectures. We present a domain
specific language (DSL) for the programming part, and a constraint
programming approach to scheduling with memory allocation. Our
experiments on implementing a kernel extracted from a DSP appli-
cation on an example reconfigurable custom architecture shows that
it is possible to achieve performance close to hand-written machine
code that is scheduled without memory allocation.

1. INTRODUCTION
Developments in computer architecture and implementation tech-

nology (FPGA, reconfigurable processors, etc.) leads to the de-
velopment of custom architectures. These architectures are often
designed to fulfill high performance requirements for a class of ap-
plications. However, this performance comes with a trade-off in
programmability. Traditional compilers are not built to exploit the
irregular structure and specific features in such architectures, and
to adapt to the frequent changes in them. Therefore, using standard
techniques and tools to compile from a high level language like C
is not a compelling option.

A popular approach is to write machine code by hand. However,
there are several problems with this approach. First of all, coding
becomes extremely hard. The programmer has to select the in-
structions to implement the program. For architectures with VLIW
and SIMD-like features, this means that the programmer needs to
bundle small operations into instructions. To utilize the processor
efficiently and increase throughput, the programmer also needs to
come up with a schedule that parallelizes the code as much as pos-
sible, while respecting the resource and data storage limits. It can

∗This work has been supported by the Swedish Foundation for
Strategic Research (SSF) as part of the High Performance Embed-
ded Computing project (HiPEC).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PMAM ’15, February 7-8, 2015, San Francisco Bay Area, USA
Copyright 2015 ACM 978-1-4503-3404-4/15/02 ...$15.00.
http://dx.doi.org/10.1145/2712386.2712399

take many man-hours to write the machine code that corresponds
to few lines in a high-level language. Secondly, the programmer
needs to know the intricate details and complexities of the archi-
tecture, including but not limited to processor structure, memory
layout, machine instructions, etc. Most of the time this level of
information is limited to the architect only. And even for the archi-
tect, this overwhelming amount of information to be considered in
programming and scheduling results in a tedious and error-prone
process.

Our goal is to increase the programmability of such custom ar-
chitectures without losing performance compared to the hand-written
code (by the architect) by automating the program development
process. As our target platform for this study, we selected a highly
reconfigurable coarse grained architecture named EIT [1], which
is built specifically for implementing MIMO algorithms efficiently.
The architecture includes a pipelined vector processor, an acceler-
ator for specific scalar operations and a specialized memory that
enables access patterns matching the structure of the vector proces-
sor. To achieve our goal, we employ several techniques, as follows.
We propose a domain specific language (DSL) that encapsulates
the SIMD-like nature of the architecture and frees the program-
mer from instruction scheduling and memory allocation for data.
The program written in this DSL is then compiled to an intermedi-
ate representation (IR) which is input to our scheduling procedure.
Scheduling is combined with the memory allocation in a single
constraint programming (CP) model, since these stages are inter-
twined with one another. Finally, the output is a schedule with
memory allocation that contains all information needed by a code
generator turning this schedule into machine code.

Generally in signal processing and specifically in MIMO appli-
cations, a large portion of the computational load comes from ker-
nel programs that, are run many times for each piece of data [1].
This means, shortening the schedule for one kernel can drastically
increase the overall performance. Therefore, aggressive optimiza-
tion techniques targeting these kernels are beneficial even if they
result in long compilation times. In this study we consider such ker-
nels that can be represented as statically scheduled dataflow graphs
without feedback edges.

The rest of this section introduces the architecture and the con-
straint programming technique briefly. It is followed by discussion
on related work. In section 3, we describe the programming inter-
face we implemented (DSL and its output, the IR) and the con-
straint model for scheduling and memory allocation. Section 4
presents the experiments and discusses the results followed by the
conclusions and future work.

49

1.1 The EIT architecture
As previously mentioned, the architecture we target, as an ex-

ample to reconfigurable custom architectures, includes a pipelined
vector processor, an accelerator for specific scalar operations and
a specialized memory that enables access patterns matching the
structure of the vector processor. The implementation is based on
a reconfigurable processor array framework presented in [2]. Fig-
ure 1 shows an overview of the micro-architecture of the proces-
sor. The processor consists of 6 processing (PE1−6) and 2 mem-
ory (ME1−2) elements interconnected via high-bandwidth low-
latency links. According to the type of underlying operations, re-
source elements are partitioned in two. The vector block performs
computationally intensive vector operations, while the accelera-
tor part performs special operations such as division/square-root
and CORDIC (COordinate Rotation DIgital Computer). Operation
modes of these elements are specified in embedded configuration
memories, which are re-loadable in every clock cycle. To ease run-
time control of the whole processor, a master node (PE1) is re-
sponsible for tracking the overall processing flow. It also controls
configuration memories based on instructions stored in ME1.

The vector block has three processing (PE2−4) and one memory
(ME2) element, functioning as a multi-stage computation pipeline
and a register bank, respectively. PE3 performs all vector opera-
tions. To concurrently compute multiple data streams, it is con-
structed from four homogeneous parallel processing lanes, each
having four complex-valued multiply-accumulate (CMAC) units.
This makes it possible to perform simultaneously four vector oper-
ations, that can have up to three operands, with vectors of four ele-
ments. To assist these vector computations, PE2 and PE4 pre- and
post-process data to perform for example matrix Hermitian and re-
sult sorting. By combining these three processing elements, several
consecutive data manipulations can be accomplished in one single
instruction without storing and loading intermediate results. From
the software perspective, the processing elements PE2−4 form a
seven stage pipeline that does load (one stage), pre-processing (one
stage), vector processing (two stages), post-processing (two stages)
and write-back operations (one stage).

This execution scheme is similar to that of VLIW processors, but
has additional flexibility for loading configurations into individual
processing elements without affecting others, hence resulting in re-
duced control overhead.

The memory is organized in 16 banks to enable parallel access,
needed for the vector processor. Banks are further grouped into
pages to regulate the access to different lines in the banks. Each
access is configured through descriptor registers assigned to each
page. Two 4x4 matrices can be read and one 4x4 matrix can be
written to the memory, simultaneously. Further details on the mem-
ory implementation can be found in [1]. We detail our abstraction
of this implementation in section 3.4.

1.2 CP
In this paper we extensively use constraint satisfaction methods

implemented in the constraint programming environment JaCoP
[3]. In this section, we briefly introduce constraint programming
and related constraints used in this work.

A constraint satisfaction problem is defined as a 3-tuple S =
(V ,D ,C) where V = {x1,x2, . . . ,xn} is a set of variables, D =
{D1,D2, . . . ,Dn} is a set of finite domains (FD), and C is a set
of constraints. Finite domain variables (FDV) are defined by their
domains, i.e. the values that are possible for them. A finite do-
main is usually expressed using integers, for example x :: 1..7. A
constraint c(x1,x2, . . . ,xn) ∈ C among variables of V is a subset of
D1×D2× . . .×Dn that restricts which combinations of values the

Figure 1: Micro-architecture of the vector processor, consisting of
6 PEs and 2 MEs. Solid and dashed lines depict data and control
bus, respectively.

variables can simultaneously take. Equations, inequalities and even
programs can define a constraint. Each constraint is paired with
a consistency technique to eliminate the infeasible values. These
techniques can be complete (removing all infeasible values at once)
or incomplete (removing a subset of infeasible values) depending
on the choice of algorithms implementing them.

A global constraint on the other hand, combines several simpler
constraints and handles them together. While semantically equiv-
alent to the conjunction of these simpler constraints, a global con-
straint lets the solver exploit the structure of a problem by providing
a broader view to it [4]. In this paper we use intensively two global
constraints, namely Cumulative, Diff2.
Cumulative constraint [5] was originally introduced to spec-

ify the requirements on task scheduling on a number of resources.
It expresses the fact that at any time the total use of these resources
for the tasks does not exceed a given limit. It has four parameters:
a list of tasks’ starts, a list of tasks’ durations, a list of amount of
resources required by each task, and the upper limit of the amount
of used resources. All parameters can be either domain variables or
integers.

The Diff2 [6] constraint is designed to model the placement
of rectangles in two dimensional space in such a way that they do
not overlap. It takes as an argument a list of rectangles and assures
that for each pair of i, j (i 6= j) of rectangles, there exist at least
one dimension k where i is after j or j is after i. A rectangle is
defined by a tuple [O1,O2,L1,L2], where Oi and Li are called the
origin and the length of the rectangle in i-th dimension respectively.
The Diff2 constraint is used in this paper for defining constraints
for resource binding, scheduling and lifetime binding for memory
spaces (see section 3.4).

2. RELATED WORK
There are many aspects to code generation for custom architec-

tures that relate to our work. Some of them are instruction selec-
tion, instruction scheduling and resource and register allocation.
There is plenty of attention towards each of these topics, either in
isolation or in combination, as in this work. Here we try to identify
and report the most related ones.

Instruction selection and scheduling for a given processor or multi-
processor are complex problems known to be NP-complete. Spe-
cial attention has been recently given to custom architectures that
have complex instructions and non-regular instruction sets as well
as possible reconfigurability of the processor under run-time. This
makes it difficult to use well known compiler infrastructures, such

50

as LLVM [7]. An extensive survey about instruction selection by
Blindell [8] is an invaluable text for further reading on the subject.

There are methods used for solving these problems optimally.
Mixed integer programming (MIP), constraint programming (CP)
or dynamic programming are common methods for mixed con-
strained versions of these problems.

Bednarski [9] explores optimal or highly optimized code gen-
eration techniques for in-order issue superscalar processors and
various VLIW processors, using dynamic programming and inte-
ger linear programming (ILP). The dynamic programming method
generates all possible solutions and searches for the optimal while
shrinking the search space via pruning and compression techniques.
Bednarski’s work continues with investigating ILP formulation of
the optimal code generation problem, again for VLIW architec-
tures.

The work in [10] presents Unison, a code generator that ad-
dresses integrated global register allocation and instruction schedul-
ing for architectures with VLIW capabilities, implemented with
constraint programming. Input programs are represented in SSA
(static single assignment) form. Merging instruction scheduling
with register allocation in one model, Unison outperforms LLVM
in most of the experiments presented and generates optimal code
for a significant portion. Our approaches differ mainly in target ar-
chitecture type (presence of vector processing capabilities) and the
fact that our focus is on data memory allocation and access, while
theirs is on register allocation.

Optimal basic block instruction scheduling for multiple-issue pro-
cessors by Malik et al. [11] is another work using constraint pro-
gramming. They schedule basic blocks from the SPEC 2000 in-
teger and floating point benchmarks. The architectural model is
VLIW-like, where several processing units run different types of
basic instructions. Similar to our model, applications are repre-
sented as DAGs. Their target architecture does not have vector pro-
cessing capabilities.

Another optimal method for instruction scheduling and register
allocation is presented in [12], by Eriksson et al. They focus on
clustered VLIW architectures and present an ILP method, com-
bining instruction selection and scheduling with register allocation.
For scheduling loops they employ modulo scheduling [13], which
is a well established software pipelining technique that we use in
this work as well, which is implemented in CP paradigm.

A heuristic approach for resource aware mapping on coarse grained
reconfigurable arrays (CGRA) is presented in [14]. As in previ-
ously mentioned works, they also perform scheduling and register
allocation in one single step. In scheduling, they employ modulo
scheduling with backtracking. Reconfiguration costs are not men-
tioned in this work.

Our previous work [15] uses CP for instruction selection and
scheduling for reconfigurable processor extensions that run very
complex instructions and other architecture models such as VLIW
processors as well as multicore RISCs. Instruction selection for
complex instructions employs a custom global constraint for sub-
graph isomorphism. In this work we focus less on instruction se-
lection and more on scheduling with memory allocation.

3. OUR APPROACH
The flow of the proposed programming support is depicted in

figure 2. The application programmer is provided with a domain
specific language written in Scala. When the application written
in the DSL is run, an intermediate representation of the application
is generated. This run can be used for debugging as well. The IR
is the main input for the constraint programming model that gen-
erates a valid and efficient schedule and a corresponding memory

Application
in

DSL
IR

Schedule &
memory allocation

Execution as
Scala code

Debugging

Constraint
solving

Figure 2: Programming support flow

allocation.
This section explains describes the domain specific language (sec-

tion 3.1) together with example code and intermediate representa-
tion. It continues with details of the constraint model for scheduling
(section 3.3) and memory allocation (section 3.4).

3.1 Domain Specific Language
To ease programming, we devised a DSL that captures the SIMD-

like nature of the architecture while leaving instruction schedul-
ing and memory related details for the later stages of code gener-
ation. This way, the programmer is still able to write architecture-
specific code without dealing with processor internal details, such
as scheduling instructions in the pipeline without conflicts or where
data is stored to and loaded from. The DSL provides architecture
specific data types (matrix, vector, scalar) and handles necessary
conversions between them both implicitly and explicitly.

The DSL is written as a library in Scala, and therefore the pro-
grammer is able to use any debugging tool available for Scala.
This debugging is about the functional correctness of the code writ-
ten in the DSL and not the machine code generated after schedul-
ing. We have selected Scala since it is used quite commonly in
implementation of embedded DSLs. It offers programming con-
structs such as pattern matching with case classes, traits, and com-
bines functional programming with object-oriented programming
(object-functional)[16].

Because of the reconfigurable nature of the architecture, the num-
ber of possible operations that can be run on the vector core is con-
siderably large. To limit the operation set that is included in the
DSL in our current implementation, we took a subset of the pos-
sible operations that are used in the MIMO applications and im-
plemented them. Note that the modularity provided by Scala in
the DSL implementation renders extending the operation set triv-
ial, thus changing the operation set implemented by the DSL is not
considered a problem.

Each operation in the DSL corresponds to an operation imple-
mented in the architecture. This way, the programmer is still able
to influence the details, which is desirable when programming such
specialized architectures. Note that, this also means that the oper-
ations selected by the programmer during coding will be more or
less the ones that are used in the machine code, even though these
operations can be merged with others to build large instructions in
later stages of code generation.

A simple matrix multiplication written in the DSL is given in
listing 1. In this example we multiply a 4x4 matrix with its trans-
pose. A matrix comprises four vectors of four scalars each. Instead
of an explicit transpose operation, we access each jth vector in A
as a column vector and get the dot product of it with the ith vector.
This is done on line 16 with the operation v_dotP that takes two
vectors and returns their dot product as a scalar.

51

vector_1

v_dotP_8 v_dotP_36v_dotP_6 v_dotP_26v_dotP_10 v_dotP_16v_dotP_12

vector_2

v_dotP_38v_dotP_28 v_dotP_22v_dotP_20 v_dotP_18

vector_3

v_dotP_30 v_dotP_40v_dotP_32

vector_4

v_dotP_42

scalar_5

merge_14

scalar_7scalar_9 scalar_11

vector_13

scalar_15

merge_24

scalar_17scalar_19 scalar_21

vector_23

scalar_25

merge_34

scalar_27scalar_29 scalar_31

vector_33

scalar_35

merge_44

scalar_37scalar_39 scalar_41

vector_43

Figure 3: Intermediate representation of listing 1

Listing 1: Matrix multiplication in the DSL

1 //Hard coded input vectors
2 val v1 = EITVector(1,2,3,4)
3 val v2 = EITVector(2,3,4,5)
4 val v3 = EITVector(3,4,5,6)
5 val v4 = EITVector(4,5,6,7)
6
7 val A = EITMatrix(v1,v2,v3,v4)
8
9 //Output buffer

10 val resultVectors = ListBuffer[EITVector]()
11
12 for(i<-0 until 4){
13 val scalars: Array[EITScalar] = new Array(4)
14 for(j<-0 until 4) {
15 //Vector dot product
16 scalars(j) = A(i) v_dotP A(j)
17 }
18 resultVectors.append(EITVector(scalars))
19 }
20 val res = EITMatrix(resultVectors.toList:_*)

The intermediate representation (IR) is generated from the code
written in the DSL, depicted in figure 3.

3.2 Intermediate Representation
The IR is a dataflow graph represented as a directed acyclic graph

(DAG) G : (V,E) where V denotes the vertices (nodes) and E de-
notes the edges which represent the data dependency between the
nodes. Nodes can be either operation nodes or data nodes. The
graph is also bipartite. Every data node that is not an input of the
application, is preceded by one operation node i.e. the operation
that produces it. Similarly, every operation node is succeeded by a
data node i.e. the data that is produced by it. For each node i, cat(i)
denotes the category it belongs to, which can be one of the follow-
ing: vector_op, matrix_op, scalar_op, index, merge, vector_data,
scalar_data. Additionally op(i) annotates the operation for each
operation node.

This dataflow graph is generated in XML format from the DSL
code, which is later on input to the code generation tool chain. A
visualization of the graph for the code in listing 1 is shown in fig-
ure 3. For clarity, the data nodes are drawn as rectangles while
operations are ovals.

3.2.1 Data nodes
There are two types of data nodes shown in figure 3, namely

vector and scalar nodes. These are actually all the data node types
present in the IR. The matrix data type from the DSL is not in-
cluded. Instead, data that is defined as a matrix in the DSL is ex-
panded into four vector data nodes in the IR. The reason behind
this decision is to keep the vectors as decoupled as possible to let
the code generator decide on how to merge them, freely (see sec-
tion 3.3). This can enable opportunities to improve the schedule. It

v a l v5 = A. m_squsum

⇓
vector_1

m_squsum_6

vector_5

vector_2 vector_3 vector_4

Figure 4: A matrix operation in the DSL an its IR

vector_1

v_squsum_7v_squsum_5 v_squsum_6 v_squsum_8

scalar_9

merge_12

scalar_10scalar_9 scalar_11

vector_13

vector_2 vector_3 vector_4

Figure 5: Vector implementation of A.m_squsum in figure 4

also leads to an easier modeling for the memory related constraint
regarding the vector data (see section 3.4).

3.2.2 Operation nodes
The DSL implements a set of vector operations, e.g. v_dotP

in listing 1, and each one of them corresponds to a single operation
node in the IR, with the operation annotated as op(i). These include
the pre- and post-processing operations in the vector pipeline, such
as masking and sorting. Operations defined on matrices result in a
matrix operation node (see figure 4). In some of the cases it is pos-
sible to represent a matrix operation as four vector operations, each
resulting in a scalar output. Figure 5 depicts such a vector imple-
mentation of the matrix operation in figure 4. However, the scalar
outputs should then be merged to form the vector result, which is
the proper output of the matrix operation. Using the matrix ver-
sions of such operations removes these merge nodes and decreases
the total number of nodes generated.

Apart from the nodes mentioned above, there are also nodes for
scalar operations, such as the square root operation that runs in an
accelerator separate from the vector core. Merging (as can be seen
in figure 3) and indexing vectors are also included as nodes in the
IR.

52

vector_a

v_sum

vector_c

mask_z

vector_d

vector_b

vector_a

v_sumANDmask_z

vector_d

vector_b

vector_a

m_squsum

vector_c

sort

vector_d

vector_b vector_a vector_b

vector_a

m_squsumANDsort

vector_d

vector_b vector_a vector_b

Figure 6: Merging examples. To the left: Merging a vector operation with a pre-processing operation. To the right: Merging a matrix
operation with a post-processing operation when the post-processing is done on the vector output.

3.3 Scheduling an application
In this phase, scheduling is responsible for the following:

• assigning a start time for each node

• finding a configuration for the vector pipeline on each cycle

• minimizing the schedule length

While realizing these goals, there is a set of constraints that has to
be respected. These can be categorized as following:

• precedence constraints

• resource constraints

In the rest of this section we explain each goal with its respective
constraints.

We assign three finite domain variables (FDV) for each node:
s, l,d. si will denote the start time variable for node i while li de-
notes its latency and di its duration. Latency represents the time
that passes from the start time of the operation until its output is
ready to use. Each operation occupies the resource it is run on for
some time, which is denoted by duration. For data nodes, both of
these variables are set to zero.

3.3.1 Precedence constraints
Precedence between two nodes is represented in the IR as an

edge between them. An edge from node i to node j means that i
has to be finished before j can start. Since the dependency here is a
data dependency, it is the latency that has to be taken into account
and not duration. This relation is embodied in constraint (1).

∀(i, j) ∈ E : si + li ≤ s j (1)
The vector pipeline consists of seven stages, including pre-, core-

and post-processing, that amounts up to a latency of 7 clock cycles.
In order to decrease complexity, we model the pipeline as a whole,

instead of modeling its stages one by one. This results in a discrep-
ancy between the IR and the constraint model, since operations that
would be run in the same pipeline (which follow the pre-, core-, and
post-processing pattern) are represented with one node each. We
remove this discrepancy by merging vector operations that follow
the pre-, core-, and post-processing pattern into one node, when-
ever possible. This is carried out on the IR before the schedul-
ing starts. Two such examples are depicted in figure 6. This de-
creases the complexity in two ways. First, the number of nodes is
decreased, which almost always results in an easier problem. Sec-
ond, and more importantly, after this merging, we do not need to
model each pipeline stage separately. We can now assume that each
vector operation has a latency of 7 clock cycles, i.e. the latency of
the pipeline.

3.3.2 Resource constraints
The vector processor is capable of running up to four vector op-

erations or one matrix operation, simultaneously. If we see the pro-
cessor as having four vector lanes of computation, we have to make
sure that we do not overload them at any time point in the schedule.
For this purpose CP offers a well-studied global constraint named
Cumulative, that is used commonly for task scheduling prob-
lems [5] (see section 1.2).

For the group of operations nodes that are run in the vector core
we impose constraint (2). The parameters are their start times, du-
rations, number of resources (lanes) they occupy (which is repre-
sented with ri for node i), respectively. The last parameter (nLanes)
is the number of available resources, which is in this case four. This
grouping includes all vector and matrix operations. The difference
between a vector and a matrix operation is that a vector operation
occupies only one lane (r = 1), while a matrix operation occupies
all four lanes (r = 4) i.e. nothing else can run in the vector proces-
sor at the same time. The duration of either operation is 1 clock
cycle (d = 1).

Cumulative(S, D, R, nLanes)

where :

S = [si | cat(i) = vector_op∨ cat(i) = matrix_op]

D = [di | cat(i) = vector_op∨ cat(i) = matrix_op]

R = [ri | cat(i) = vector_op∨ cat(i) = matrix_op] (2)

Different lanes of the vector processor can not be configured to
execute different operations simultaneously. Therefore, we need to
ensure that at any given time, the operations in different lanes are
the same. This is done by differentiating the start times of each
vector operation pair (see constraint (3)).

∀(i, j) | cat(i) = cat(j) = vector_op∧op(i) 6= op(j) :

si 6= s j (3)

In a similar way, we impose one Cumulative constraint for
the scalar processor and one for the part of the architecture that is
responsible of indexing and merging (that we see as just another
resource). Since they can run only one operation at a time, the
resource limit for these constraints is 1.

3.3.3 Scheduling data nodes
So far we only discussed the scheduling of the operation nodes,

however data nodes should also be scheduled. The relation between
these nodes and the memory is explained in the next section. Here
we only detail the part pertaining to the schedule.

We assume that the inputs to the application are ready from the
start. Hence, any data node without any predecessors get the start

53

time zero. Any other data node starts, when the operation that pro-
duces it finishes and its latency is passed. Constraint (4) captures
this relation where pred(i) denotes the predecessor of node i in the
graph. Note that each data node (except the application inputs) has
only one predecessor, namely the operation that produces it.

∀i | cat(i) = vector_data∨ cat(i) = scalar_data :

si =spred(i)+ lpred(i) (4)

3.3.4 Minimizing the schedule length
Minimizing the schedule length is achieved by using the latest

completion time (si + li) among all nodes as the objective function
of the optimization process (see section 3.5).

ob j = maxi∈V (si + li) (5)

3.4 Memory
As the target architecture employs a special memory structure for

the vector data, we dedicate this section to briefly present our mem-
ory layout abstraction (depicted in figure 7), the rules that regulate
the access to it, and our constraints that implement these rules. Note
that, because of its special structure, our focus is the vector memory
and for scalar data, we assume optimal allocation and access.

The memory consists of 16 banks to enable parallel access. Four
banks construct a memory page. Each page employs an access
configuration, to program the access to the banks in that page. The
smallest addressable memory unit in this abstraction is the slot,
which holds a vector. If we were to address slots with the (bankNo,
slotNo) pair, all the slots with the same slotNo build a line.

Each bank can be accessed once for reading and once for writing
in each clock cycle, with a maximum of eight vectors (two matri-
ces) read and four vectors (one matrix) written to the entire mem-
ory. This means that several slots can be accessed simultaneously
only if they are in different banks. Also, since memory access re-
configuration is very costly in the target architecture, to limit and
regulate access, simultaneous access to slots in a page is only al-
lowed when the slots reside in the same line.

To explain with an example, we consider three matrices, whose
vectors are allocated in different ways, in a small memory with
three slots per bank as in figure 8. Matrix A can not be accessed in
one cycle, since vectors A1 and A3 reside in the same bank, as well
as A2 and A4. Matrix B can not be accessed in one cycle either,
because of its vectors B3 and B4 that reside in the same page but
not in the same line. To access them, the access to page 3 (banks
8-11) has to be reconfigured at least once. Matrix C, on the other
hand complies with all the constraints, and can be accessed in one
cycle.

To implement the access restriction constraints, we introduce the
FDVs sloti, linei and pagei for each vector data node i. These
variables actually represent different views of the same informa-
tion: the placement of vector i in memory. sloti would be enough
to represent this. linei and pagei are defined mainly for modeling
convenience. Slots are enumerated in a linear fashion i.e. the first
slot in the first bank is labeled 0, the first slot in the second bank is
labeled 1, etc. Correspondingly, the second slot in the first bank is
labeled 16 while the second slot in the second bank is labeled 17,
and so on.

The connections between sloti, linei and pagei for node i are
given in the constraint group (6) where nO f Banks = 16 and

pageSize = 4 in our particular architecture.
∀i | cat(i) = vector_data :

linei = sloti/nO f Banks

pagei = (sloti mod nO f Banks)/pageSize (6)
By their inputs and outputs, vector operations define the accesses

to the vector memory. Therefore, to constrain the simultaneous
access patterns, we need a two-fold control. First, we have to con-
strain the allocation of the inputs of each vector core operation,
since the inputs are accessed simultaneously. Second, any vector
core operations that are scheduled to run simultaneously will ac-
cess the memory simultaneously as well, both for their inputs and
their outputs. So, the allocation of those inputs and outputs should
be constrained as well. The first part is captured in constraint (7).

∀i | cat(i) =vector_op ∨ cat(i) = matrix_op :

∀(d,e) | d,e ∈ pred(i) ∧
cat(d) = cat(e) = vector_data :

paged = pagee =⇒ lined = linee (7)
The second part is achieved with checking accesses of vector op-

eration pairs that are of the same type and are scheduled at the same
time (see constraints (8) and (9)).

∀i, j | cat(i) = cat(j) =vector_op ∧ si = s j :

∀(d,e) | d ∈ pred(i) ∧ e ∈ pred(j) ∧
cat(d) = cat(e) =vector_data :

paged = pagee =⇒ lined = linee (8)

∀i, j | cat(i) = cat(j) =vector_op ∧ si = s j :

∀(d,e) | d ∈ succ(i) ∧ e ∈ succ(j) ∧
cat(d) = cat(e) =vector_data :

paged = pagee =⇒ lined = linee (9)
To use the memory space economically, we need to reuse the slots

when their data is no longer needed. To decide on when a slot can
be used, we define lifetimes for each data node. The lifetime of a
data node (li f ei) is defined as the interval between the start time of
the node itself and the start time of the latest operation that uses it.
This relation is captured in constraint (10) where succ(i) denotes
the successors of node i.

∀i | cat(i) = vector_data :

li f ei = maxUi− si

where :

Ui = [so | o ∈ succ(i)] (10)
In a correct memory allocation, lifetimes associated with slots do

not overlap. Using the fact that slots are enumerated linearly, we
can model the memory allocation with reuse, as the non-overlapping
rectangles problem. si and sloti become the horizontal and vertical
origins, respectively, while li f ei denotes the length of the rectan-
gle i. Height is set as 1 since each vector occupies one slot only.
This way, we can use the highly efficient Diff2 global constraint
which is described in detail in section 1.2 as seen in constraint
(11).

Diff2(S, SL, L, ones)

where :

S = [si | cat(i) = vector_data],

SL = [sloti | cat(i) = vector_data],

L = [li f ei | cat(i) = vector_data] (11)

54

Bank 0 Bank 3 Bank 4 Bank 7 Bank 8 Bank 11 Bank 12 Bank 15

Figure 7: Memory layout abstraction. Memory is organized in pages, lines and slots.

. . .
0 3
A1
A3

A2
A4 . . .

4 7

8 11 12 15

B1 B2

C1 C2

. . .
B3

B4 . . .C3 C4

0
1
2

Figure 8: Memory access examples. Only C can be accessed in 1
cycle

3.5 Search space heuristics
The optimization goal is finding the shortest schedule (or one

such schedule in case several shortest schedules exist). The com-
pletion of node i is defined as si + li and minimizing the maximum
of this completion for all nodes gives the shortest schedule.

As most consistency techniques are not complete (see section
1.2), the constraint solver needs to search for possible solutions,
commonly by picking a variable that has not been assigned to a
value yet, and setting it to a value in its domain. As long as the con-
straints are correct, any variable selection method (called heuristic
in CP terminology) leads to a valid solution, eventually. However,
depending on the problem size, the search space may grow expo-
nentially and lead to very long search times. In order to decrease
the search time, we need to devise a search strategy that defines
the variable and value selection heuristics. In a previous work [15],
we devised such a search strategy for a very similar problem. We
briefly describe it in the following.

Even though the constraint model is unified, we divide the search
into three sequential phases and every phase has a set of variables
to pick from:

1. Scheduling the operation nodes, searches on
Sops: operation node start times

2. Scheduling the data nodes, searches on
Sdata: data node start times

3. Memory allocation, searches on
SL: slots

The general idea behind this division is to start with the most in-
fluential decisions and end with the most trivial ones. This way,
each time the solver needs to make a decision (i.e. pick a variable
and a valid value for it) for triggering constraints to prune values

Application schedule #slots #slots opt. time
properties length (cc) available used (ms)
|V | = 143, |E| = 194 173 64 33 1854
|Cr.P| = 169 , 173 32 28 1844
v_data = 49 173 16 16 1813

173 10 10 1835

Table 1: Scheduling QR decomposition on the EIT architecture

in variable domains, it will pick the decisions that propagate more
information. The first two phases are tasked with the optimization,
namely to minimize the schedule length. The last phase takes the
schedule result from the previous phases and searches for a valid
assignment to the slot variables only. At the end of third stage we
have a schedule with a valid memory allocation. All three phases
are bundled together as a branch-and-bound search with backtrack-
ing, for finding the schedule with the minimum length.

4. EXPERIMENTS
To evaluate our method, we implemented and scheduled a ker-

nel, which is a part of a larger DSP application, and experimented
with different ways of overlapping iterations of this kernel, to in-
crease utilization and throughput. In the following, we first in-
troduce the target application, QR decomposition (QRD), that is
used in most of our experiments. After this we report our experi-
ments on scheduling one instance of QRD, and discuss the results
which displayed poor processor utilization. The rest of the section
briefly introduces several methods to overlap several iterations of
the same application to alleviate poor utilization, and presents our
experiments using these methods on QRD and a pair of other ap-
plications.

4.1 Target application
As the main target application, we focused on the Modified Gram-

Schmidt (MGS) based minimum mean squared error (MMSE) QRD
algorithm, which is used as part of the pre-processing in data detec-
tion in multiple-input multiple-output (MIMO) systems [17]. The
implementation in DSL was carried out by one of the designers of
the target architecture, based on the MMSE-QRD algorithm given
in [1].

4.2 Scheduling one iteration
With the model explained so far, we have scheduled a QRD with

memory allocation.
In table 1, the results of scheduling QRD with different mem-

ory sizes (available number of slots) is shown. The leftmost col-
umn includes general properties of the IR graph and the resulting
constraint model. As seen in the third column, the memory size,

55

iterations = 12 Manual Automated

Schedule length (cc) 460 540
reconfigurations 18 24
reconfigs/# iter. 1.5 2
Throughput (iter./cc) 0.026 0.022

Table 2: Overlapping iterations with focus on limiting the number
of reconfigurations

i.e. the number of available slots, is parameterizable in our model.
The reason why the schedule length stays the same with changing
memory size is explained by examining the length of the critical
path (|Cr.P| in the table). As the |Cr.P| is almost identical to the
schedule length, it dominates the optimization process. This also
means that memory size is a secondary issue for this problem. For
fewer than 10 available slots, the solver timed out without finding
a solution when the size was 9, and failed when it was 8, denoting
that no solution exists for 8 slots.

The schedule length (which is the same for all experiments in
table 1) is minimal, based on the given memory size and the algo-
rithm implementation in the DSL. There are many different ways
to express the same algorithm in the DSL, and these different ex-
pressions may result in different graphs, which in turn may result
in different schedules.

Although getting an optimal schedule is valuable, this schedule
includes a lot of ”gaps”, mainly because of the data dependencies
between vector operations. Since each vector operation has a la-
tency of 7 clock cycles, a vector operation that takes the output of
another vector operation as its input has to wait for those 7 cycles.
If there are no other vector operations in the application that can
be run in this interval, the vector processor stays idle. If this re-
peats often, the processor becomes heavily under-utilized. Some
techniques to overcome this are presented in the next section.

4.3 Scheduling more iterations simultaneously
To increase utilization, it is a common practice to schedule sev-

eral iterations/copies of the same application. The idea is to sched-
ule an available operation from another iteration when the proces-
sor is idle because of a data dependency explained above, and in-
crease utilization and overall throughput (at the possible expense of
latency).

There are several possible ways to implement this kind of simul-
taneous execution of iterations, with varying results in throughput,
latency and reconfiguration complexity [18].

A simple ad-hoc technique, often employed by the architecture
designers when they manually program the vector processor is the
following two-phase process we refer to as overlapped execu-
tion. First the instructions for a single iteration are selected and
ordered, usually with the objective of minimizing the number of
effective (non-nop) instructions. Then the overlapped schedule is
obtained by executing in sequence the same corresponding instruc-
tion from a given number M of iterations. Once all kth instructions,
from all M iterations, have been scheduled, the execution advances
to executing all (k+ 1)th instructions, and so forth. Note that this
effectively masks the pipeline latency, when the number M of iter-
ations is larger than the number of stages.

Besides being a computationally simple solution, this approach
is also an efficient way of decreasing the number of reconfigura-
tions needed. A reconfiguration is needed when two different types
of instructions follow each other, which here only happens between
every kth instruction of the last iteration and every (k+ 1)th itera-
tion of the first iteration. This means that the number reconfigura-
tions needed is limited to the number of instructions.

We used this technique based on our initial schedule, and com-
pared the results to the manual implementation and scheduling, as
shown in table 2. The margin between the automated and the man-
ual scheduling is close to 20%. It is likely and reasonable that the
manual implementation is more efficient than the translation from
the DSL, especially considering the instruction selection. However,
note that the manual implementation does not include memory al-
location and involves tedious man-hours to complete. Especially,
creating a conflict-free pipeline schedule by hand is a capriciously
difficult and error-prone task.

The most important negative side effect of this pipelining ap-
proach is that it postpones all output to the last bit of the schedule,
where every last operation of every iteration is scheduled one after
the other. While the average throughput is not affected, this might
lower the quality in streaming applications because of its bursty
throughput instead of a stable one. Also, since all output is post-
poned to the end of the schedule, the sizes of the buffers needed to
store the intermediate results will be large.

Another way of executing several iterations simultaneously makes
use of modulo scheduling [13], which is a technique used very of-
ten in scheduling loops in VLIW-like architectures [19]. Modulo
scheduling revolves around finding a schedule that initiates iter-
ations as soon as possible, taking into account dependencies and
resource constraints, and also repeating regularly with a fixed in-
terval (also called initiation interval (II)). The net result of this
technique is a more efficient use of the resources, thus yielding a
better throughput, calculated as 1/II.

We pipelined our initial schedule using modulo scheduling, mod-
elled as another constraint satisfaction problem (CSP). First, we
employed a model that finds a schedule with minimum possible
II without taking into account the reconfiguration overhead. The
reconfigurations are added and recorded only in a post processing
steps. To contrast, we also implemented a model that does include
the reconfigurations in the optimization process. Table 3 gathers
the results of these two techniques for QRD and two other, less
complex applications. For the sake of brevity, the details of the
constraint model are omitted.

In case of QRD, where there are many reconfigurations to con-
sider, the model excluding the reconfigurations proved to be an eas-
ier problem to solve. However the one that includes them provides
a better throughput since reconfigurations have to be added to the
minimum II found in the first model to get the actual II. The trade-
off is the optimization time required to find the modulo schedule
for the second method. The solver times out after searching for the
optimal solution for 10 minutes. For harder problems the execution
time of the solver can grow and degrade the solution quality. In
table 3, the cell for execution time for the QRD denotes the time
elapsed to find the solution with II = 46, before timeout.

Compared to ad hoc method mentioned previously (overlapped
execution), the model including the reconfigurations finds a sched-
ule that performs just as well (see the throughput for the automated
scheduling table 2), in terms of average throughput. Furthermore,
modulo scheduling provides a stable throughput while overlapping
iterations suffer from burstiness.

The two additional applications in our experiments are auto re-
gression filter (ARF), and matrix multiplication (MATMUL, im-
plemented as in listing 1). ARF was modified to work on vectors as
basic units instead of scalars, in order to exploit the vector capabil-
ities of the architecture. The model including the reconfigurations
displays a similar improvement in throughput as QRD. However,
this model results in a penalty in execution time. MATMUL uses
only one type of operation throughout the application, therefore no
reconfiguration is needed after the first instruction.

56

Application (|V |, |E|, |Cr.P|)
optimization excluding reconfigurations optimization including reconfigurations

initial II # rec. actual II throughput II throughput optimization time
(cc) (cc) (iter./cc) (cc) (iter./cc) (ms)

QRD (143, 194, 169) 32 23 55 0.018 46 0.022 3055
ARF (88, 128, 56) 16 16 32 0.031 24 0.042 80061
MATMUL (44, 68, 8) 4 1 4 0.250 4 0.250 2135

Table 3: Pipelining with focus on limiting the number of reconfigurations

Note that with the assumption that there is enough memory for
storing the data for all the iterations that are overlapped, memory
allocation boils down to repeating the allocation of the original
schedule for each iteration, with a certain offset.

5. CONCLUSIONS AND FUTURE WORK
In this work, we provided programming support for a custom re-

configurable architecture, that combines features similar to VLIW
and SIMD with a specialized memory layout. The programming
support consists of a DSL, an instruction scheduler and memory
allocator that makes efficient use of the custom nature and features
of the architecture. Our results show that our method can be useful
for programming similar architectures, providing ease of program-
ming and performance close to hand-written machine code.

We plan to continue this work by targeting other vector archi-
tectures including commercial processors, and more complex ap-
plications. Including reconfigurations in the constraint model for
modulo scheduling proved to be a challenge that we also would
like to investigate further.

6. REFERENCES
[1] C. Zhang, “Dynamically Reconfigurable Architectures for

Real-time Baseband Processing,” Ph.D. dissertation, Lund
University, 2014. [Online]. Available:
http://lup.lub.lu.se/record/4406448/file/4406451.pdf

[2] C. Zhang, L. Liu, and V. Öwall, “Mapping Channel
Estimation and MIMO Detection in LTE-Advanced on a
Reconfigurable Cell Array,” in IEEE International
Symposium on Circuits and Systems (ISCAS), 2012,
2012-05-20/2012-05-23. IEEE, 2012.

[3] K. Kuchcinski, “Constraints-driven scheduling and resource
assignment,” ACM Transactions on Design Automation
of Electronic Systems (TODAES), vol. 8, no. 3, pp.
355–383, Jul. 2003.

[4] W.-J. van Hoeve and I. Katriel, Handbook of Constraint
Programming, ser. Foundations of Artificial Intelligence.
Elsevier Science, 2006, ch. Global Constraints.

[5] A. Aggoun and N. Beldiceanu, “Extending chip in order to
solve complex scheduling and placement problems,”
Mathematical and Computer Modelling, vol. 17, no. 7,
pp. 57 – 73, 1993.

[6] N. Beldiceanu and E. Contejean, “Introducing global
constraints in CHIP,” Journal of Mathematical and
Computer Modelling, vol. 20, no. 12, pp. 97–123, 1994.

[7] C. Lattner and V. Adve, “LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation,” in
Proceedings of the 2004 International Symposium on
Code Generation and Optimization (CGO’04), Palo
Alto, California, Mar 2004.

[8] G. S. Hjort Blindell, “Survey on instruction selection: An
extensive and modern literature study,” KTH Royal Institute
of Technology, Stockholm, Sweden, Tech. Rep., October 4
2013, ISBN: 978-91-7501-898-0.

[9] A. Bednarski and C. Kessler, “Integer Linear Programming
versus Dynamic Programming for Optimal Integrated VLIW
Code Generation,” in 12th Int. Workshop on Compilers
for Parallel Computers, 2006.

[10] R. Castañeda Lozano, M. Carlsson, G. Hjort Blindell, and
C. Schulte, “Combinatorial spill code optimization and
ultimate coalescing,” in ACM SIGPLAN conference on
Languages, Compilers, and Tools for Embedded
Systems, ser. LCTES’ 14, June 12–13 2014.

[11] P. v. B. Abid M. Malik, Jim McInnes, “Optimal basic block
instruction scheduling for multiple-issue processors using
constraint programming,” in Proceedings of the 18th
IEEE International Conference on Tools with Artificial
Intelligence, 2005.

[12] M. Eriksson and C. Kessler, “Integrated modulo scheduling
for clustered vliw architectures,” in High Performance
Embedded Architectures and Compilers, ser. Lecture
Notes in Computer Science, A. Seznec, J. Emer,
M. O’Boyle, M. Martonosi, and T. Ungerer, Eds. Springer
Berlin Heidelberg, 2009, vol. 5409, pp. 65–79.

[13] M. Lam, “Software pipelining: An effective scheduling
technique for vliw machines,” in Proceedings of the ACM
SIGPLAN 1988 Conference on Programming
Language Design and Implementation, ser. PLDI ’88.
New York, NY, USA: ACM, 1988, pp. 318–328.

[14] G. Dimitroulakos, S. Georgiopoulos, M. D. Galanis, and
C. E. Goutis, “Resource aware mapping on coarse grained
reconfigurable arrays,” Microprocess. Microsyst., vol. 33,
no. 2, pp. 91–105, Mar. 2009.

[15] M. A. Arslan and K. Kuchcinski, “Instruction selection and
scheduling for DSP kernels,” Microprocessors and
Microsystems, vol. 38, no. 8, Part A, pp. 803 – 813, 2014.
[Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0141933114000520

[16] M. Odersky, L. Spoon, and B. Venners, Programming in
Scala: A Comprehensive Step-by-step Guide, 1st ed.
USA: Artima Incorporation, 2008.

[17] P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and
W. Fichtner, “VLSI Implementation of a High-Speed
Iterative Sorted MMSE QR Decomposition,” in Circuits
and Systems, 2007. ISCAS 2007. IEEE International
Symposium on, May 2007, pp. 1421–1424.

[18] M. A. Arslan, F. Gruian, and K. Kuchcinski, “A comparative
study of scheduling techniques for multimedia applications
on SIMD pipelines,” submitted for publication.

[19] J. Ruttenberg, G. R. Gao, A. Stoutchinin, and
W. Lichtenstein, “Software pipelining showdown: Optimal
vs. heuristic methods in a production compiler,” in
Proceedings of the ACM SIGPLAN 1996 Conference
on Programming Language Design and
Implementation, ser. PLDI ’96. New York, NY, USA:
ACM, 1996, pp. 1–11.

57

http://lup.lub.lu.se/record/4406448/file/4406451.pdf
http://www.sciencedirect.com/science/article/pii/S0141933114000520
http://www.sciencedirect.com/science/article/pii/S0141933114000520

