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Abstract

The choice of the data domain partitioning scheme is

an important factor in determining the available par-

allelism and hence the performance of an application

on a distributed memory multiprocessor. In this pa-

per, we present a performance estimator for statically

evaluating the relative efficiency of different data par-

titioning schemes for any given program on any given

distributed memory multiprocessor. Our methlod is

not based on a theoretical machine model, but ixnstead

uses a set of kernel routinea to “train” the estimator

for each target machine. We also describe a proto-

type implementation of this technique and discuss an

experimental evaluation of its accuracy.

1 Introduction

Perhaps the most important intellectual step in

preparing a program for execution on a distributed-

memory parallel computer is to choose a data parti-

tioning scheme for the fundamental data structures

used in the program. Once decided, this parl,ition-

ing often completely determines the parallelism in the

resulting program. Unfortunately, there are no ex-

isting tools to help the programmer make this import-

ant step correctly. As of today, the programmer must

guess a partitioning, implement it, and run the result-

ing program to determine its effectiveness. Comparing

two data partitioning schemes requires implementing
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and running both versions of the program, a tedious
task at best,

Several research groups have proposed “distributed

memory compilers)’ that can automatically determine

the parallelism in a sequential program, based on a

specified data partitioning scheme [$, 21, 17, 18, 15,

12, 6, 14, 11, 19]. At Rice, the Fortran D implemen-

tation group is building a similar system to compile a

Fortran 77 program, augmented with specifications of

data decompositions, to generate efficient code for a

distributed-memory parallel computer [8, 10]. In such

a system, the choice of the decomposition is critical

in achieving high efficiency, The project is faced with

two important problems: (1) how can the compiler

be designed to work well for a variety of target ma-

chines, when different target machines are differently

balanced with respect to computation and communi-

cation, and (2) how can we provide the user with a
way to predict the performance implications of a par-

ticular data partitioning scheme? Clearly, it is im-

practical to use dynamic performance information to

solve these problems, We need an accurate static per-

formance estimation scheme. If efficient enough, such

a scheme could be used by the compiler to make de-

cisions between code alternativea and by a program-

ming environment to predict the implications of data

partitioning decisions [3]. To be effective, the perfor-

mance estimator needs to accurately predict the trade-

off points where the performance of one partitioning

strategy crosses the performance of an alternative.

In this paper, we describe an experimental per-

formance estimator that is aimed at the first of the

problems above — prediction of the performance of

a program with given communication calls under a

given data partitioning scheme. This system is not

based on a general theoretical model of distributed
memory computers. Instead, it employs the notion

of a ‘(training set” of kernel routines that test vari-
ous primitive computational “operations and commu-

nication patterns on the target machine, and uses
the results to “train” the performance estimator for

that machine. The experience with our prototype, de-

scribed later in the paper, indicates that this approach
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Figure 1: The performance estimation process,

is able to deliver surprising accuracy.

We believe that the training set approach can also

be used to address the second problem—that of pre-

dicting the performance of code generated by a dis-

tributed memory compiler (such as the Fortran D com-

piler) on a particular target machine-once the com-

piler has been developed. A second “trahhgset”,
consisting of a collection of kernel computations can

be used to gather information about the compiler it-

self, such as transformations performed and communi-
cation primitives selected for each kernel computation.

Used in this context, the training set method pro-
vides a natural way to respond to changes in the com-

piler as well as the machine — simply rerun the train-

ing sets with the new compiler to initialize a new per-

formance estimator.

2 The distributed memory

programming model

We assume that the distributed memory program is
written using the loosely synchronous model as de-

fined by Fox, et al. [9]. The salient features of this

programming model are outlined below.

All processor nodes execute the same node program.

The programmer therefore only writes a single generic

node program (and perhaps a host program that exe-

cutes on some front-end machine).
All computation within a processor’s node program

can only involve data items contained in the proces-

sor’s local memory. Non-local data items must be ac-

cessed through inter-processor communication, which

is assumed to be implemented via message-passing.

Thus, the writing of the node program implicitly de.

fines the partitioning of the data domain.

Communication between a group of processors im-

poses a synchronizing condition among all the proes-

sors. This implies that all the processors operate in a

loose lockstep, consisting of alternating phases of par.

allel asynchronous computation and synchronous com-

munication.

The previous feature is an important property of the

loosely synchronous distributed memory programming

model: any data transfer among processors occurs si-

mult aneously in concert, with all processors partici-

pating within a well-defined phase. This allows any

inherent regularity in the communication pattern to
be exploited for maximum efficiency on the target ma-

chine. Experiments conducted on a wide variety of
real applications has shown that a. large class of reg-

ular problems and some spatially irregular problems

are very well suited for the loosely synchronous model

[9].

One disadvantage of this model is that it may

not be well suited for temporally irregular problems.

However, in this paper we restrict ourselves to prob-

lems with regular geometries whose data dependency

graphs can be computed statically (i.e., spatially and
temporally regular problems), so that the loosely syn-

chronous model is well suited to our needs.

3 Choosing the data partitioning

scheme

Let us consider the problem of deriving a distributed

memory node program (specified according to the
loosely synchronous model) from a sequential pro-

gram. This requires three steps: (1) identify opportu-

nities for data parallelism in the sequential program,

(2) partition the data domain across the processors,

and (3) generate the node program (with loosely syn-

chronous communication), which, when executed in

parallel by all the processors, exploits the available

data parallelism.

Step (3) involves the specification of the program

that operates on a generic data partition, and also the
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Figure2: Twopossible data IJartitioning schemes forprogram REDBLACK.

specificationof the loosely synchronous inter-processor

communication. This canbe done automaticall;y bya

“distributed memory compiler” as mentioned earlier.

Such acompiler would typically use the data depen-

dencegraph of the sequential program, along with the

data partitioning information, to derive the node pro-

gramand the communication. Forthepurposes ofthis

paper, we will assume that steps (1) and (2) are the

programmer’s responsibility, and step (3) is performed
by a distributed memory compiler.

Experiments with preliminary implementations of

such compilers have indicated that the choice of the

data partitioning strategy strongly influences the per-

formance of the parallel programon the distributed

memory machine. This is not surprising, since it is

the data partitioning scheme that ultimately deter-

mines how much of the available data parallelism in

the application can be effectively exploited on the tar-

get machine.

In an attempt to better understand how the data

partitioning strategy affects the performance of the
generated node program, we decided to build an in-

teractive data partitioning tool. Our idea was to use

this data partitioning tool to statically explore differ-

ent data partitioning schemes without having to run

the node program each timeon the machine. Details

of this tool are described in an earlier work [3].

The techniques discussed in -that earlier wcxk fo-

cussed on the derivation of the node program and

the inter-processor communication in response to the

user’s choice of a particular data partitioning scheme.

We wanted to add to the tool the ability to statically

determine which choice of data partitioning was best

for a given target machine. In order to do this, we

needed a scheme for comparing several different data

partitioning schemes statically. Providing a measure

for comparing different data partitioning schemes stat-

icall y would be very useful in a data partitioning tool,

as well as in sophisticated distributed memory com-

pilers that attempt to derive the data partitioning

scheme automatically. Clearly, any relative evalua-

tion of data partitioning schemes will depend not only

on the nature of data dependence in the program,

but also on several target machine specific parame-

ters. To make our job easier, we will restrict ourselves

to data partitions that are rectangular, and also as-

sume that the data domain is partitioned uniformly

(i.e., all partitions are of the same shape). Extend-

ing our techniques for more general cases is a topic of

future research.

4 An example

To better motivate the relationship between the data

partitioning scheme and factors such as communica-

tion overhead, data domain size, execution time and

number of processors used, let us consider an exam-

ple. Program REDBLACK, listed below, is a segment

of the node program for a pointwise relaxation using
the “red-black” checkerboard algorithm.

The original data domain for this problem is a 2

dimensional grid, which must be appropriately parti-
tioned across the processors. In the following node

program segment, (idim x jdim) is the size of each
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processor’s data partition. This local data is stored

within each processor’s local memory as an array

val(O:idim+l, O:jdim+l). The interior of the array

val(l:idim, l:jdim) contains the actual elements of

the processor’s local partition of the data domain,

while the borders val(O, l:jdim), val(idim+l, l:jdim),

val(l:idim, O) and val(l:idim, jdim+l) are used to store

boundary data elements that are received from the

neighboring processors.

program RED BLACK

do k = 1, ncycles

//Compute the RED points in my partition.
doj = l,jdim, 2

do i = 1, idim, 2

val(ij) = a*(val(ij-1) + val(i-lj)

+ val(ij+l) + val(i+lj)) + b*val(i,j)

enddo

enddo

do j = 2, jdim, 2

do i = 2, idim, 2

val(ij) = a*(val(ij-1) + val(i-lj)

+ val(ij+l) + val(i+lj)) + b*val(ij)

enddo

enddo

//Communicate RED points on ray partition
//boundary to the neighboring procs.
call communicate (val, RED, neighbors)

//Compute the BLACK points in my part it ion.
doj = l,jdim, 2

do i = 2, idim, 2

val(ij) = a*(val(iJ-1) + val(i-lj)

+ vat(i~+l) + val(i+lj)) + b*val(ij)

enddo

enddo

do j = 2, jdim, 2

doi= 1, idim, 2

val(ij) = a*(val(ij-1) + val(i-lj)

+ val(ij+l) + val(i+lj)) + b*val(ij)

enddo

enddo

//Communicate BLACK points on my partition
//boundary to the neighboring procs.
call communicate (val, BLACK, neighbors)

enddo

The node program given above is the code that is
executed by each processor, on its local partition of
the data domain. Depending on the values of idim

and jdim, the size of the partition can be varied.

This lets us change the data partitioning scheme by

merely changing the loop bounds, and without hav-

ing to make any extensive modifications to the node

program.

For example, Figure 2 shows two possible partition-

ing schemes of a 2 dimensional data domain of size

8 x 8. The two data partitioning schemes shown in the

figure are block-partitioning and column-partitioning.

When idim = 4, jdim = 4 each partition is a 4 x 4

block, and we get the block-partitioned case. When

idim = 8, jdim = 2, each partition is an 8 x 2 strip,

and we get the column-partitioned case. In both cases,

four partitions of equal size are created, which are

assigned to four processors of the target distributed

memory machine.

Figure 2 also illustrates the compute-communicate

sequence for the block-partitionined and column-

partitioned schemes. There are several methods for

performing the communication between neighboring

processors (indicated in the figure by arrows that cross

partition boundaries). In most existing distributed

memory machines, message startup cost is usually an

important factor in determining the particular com-

munication strategy to employ. A useful rule of thumb

is: communicating a small number of large messages is

more efficient than communicating a large number of

small messages. Program REDBLACK achieves larger

size messages by performing the communication out-

side the do j loop, so that all the boundary elements

can be communicated together as a vector, instead of

individually.

We wrote the REDBLACK node program in For-

tran, using the EXPRESS1 programming environ-

ment. EXPRESS is a commercially available package,

that extends Fortran77 with a portable communica-
tion library, and is based on the loosely synchronous

programming model [7]. The program was executed

on the NCUBE, and execution times were determined

for increasing data domain sizes and number of pro-

cessors. Figure 3 shows the graph of data domain size

(i.e., size of the original 2 dimensional problem grid)

versus average execution time for a single iteration

of the do k loop. For a data domain of size N x N,

and P processors, the logical processor interconnection

topology for the block-partitioned case is assumed to

be a W x @ 2 dimensional grid, with each proces-

sor getting a block partition of size N/fl x N/@

data elements, and for the column-partitioned case it

is assumed to be a linear array of size P with each

processor getting a column partition of size N x N/P

data elements,

For example, when P = 16 and N = 32, block-

partitioning assigns to each processor a partition of

size 8 x 8, while column-partitioning assigns to each

processor a partition of size 32 x 2.

It is interesting to note the crossover point of
the curves for the block-partitioned and column-

partitioned cases. It indicates that the efficiency of

a data partitioning scheme is dependent on the data

domain size as well as number of processors used. For

16 processors, column partitioning is more efficient

than block partitioning for data domain sizes less than

180 x 180, whereas for 64 processors, the critical do-

1EXPRESS is a copyright of ParaSoft Corporation.
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Figure 3: Graphs of data domain size vs. averaLge execution time of the main loop for program REDBLACK on
the NCUBE.

main size is 128 x 128.

The steps in the curves are caused by load imbal-

ance effects. When the data domain size N is not

exactly divisible by the number of processors P, some

processors are assigned an extra data partition to work

on. The load imbalance created due to this is greater

for the column-partitioned scheme compared to the

block-partitioned scheme, resulting in larger step sizes

for the column-partitioned case.

5 The Training Set Method of

performance estimation

The REDBLACK example illustrates some of the sub-

tleties involved in trying to compare different data

partitioning schemes. We experimented with different

partitioning strategies on several distributed memory

machines, including the NCUBE, Symult S2010 and

the Meiko transputer array2, and attempted to derive

a theoretical performance model based on our obser-

vations. Our attempts were bssed on published tech-

niques for developing performance evaluation nmodels,

such as [20, 1] for example. We found that it was dif-

ficult to derive a single theoretical model that could

predict the experimentally observed behavior of the

node program on different data partitioning sclhemes.

Although the theoretical model could predict overall

DroEram execution time with a fair degree of accuracy,
.V

it failed to predict the crossover point

2All programs were written in EXPRESS.

(see Figure 3)

of the curves with consistent accuracy. Several other

effects such as the undulations (or change in slope) of

the curve were also difficult to predict. The accuracy

of estimating the overall execution time did not mat-

ter so much to us s-s the accuracy of estimating the

crossover point at which one data partitioning scheme

is preferable over another.

Note that it in general it maybe impossible to spec-

ify the “crossover point” in terms of data domain size
alone, as suggested by the graphs in Figure 3. The

crossover point may shift depending on the particu-

lar communication routines used for message-passing,

hardware and operating system peculiarities of the

target machine and on the implementation of the low-

level software layer. It could also be affected by minor

algorithmic changes to the program.

We were eventually convinced that a purely theo-

retical model was too general for our purposes, and

attempting to refine the theoretical prediction tech-

niques would only result in increasingly complex mod-
els with little improvement in accuracy. We be-

gan experimenting with alternative methods of perfor-

mance estimation that are more directed to our spe-

cific needs. The resulting technique, called the Train-

ing Set Method, will now be described.

The Training Set Method consists of two initializa-

tion steps that must be performed once for each target

machine (see Figure 1), and an estimation algorithm
that can be invoked by an interactive tool or a dis-

tributed memory compiler on any node program to be

run on the specified target machine.
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In the first initialization step, a set of routines called

the training set is run on the target machine. The

training set is a node program that performs a se-

quence of basic arithmetic and control flow operations,

followed by a sequence of communication calls. The

average execution time of the arithmetic and control

flow operations are meaeured on the target machine,

and the data is written out to a raw. dat a file. The

communication calls are designed to test several data

movement patterns using all possible combinations of

the various message-passing utilities supported on the

target machine. The average times taken for each com-

munication is measured for increasing data sizes and

processor numbers, as well as for unit and non-unit

data strides (e.g., communicating a column of data vs.

communicating a row of data in Fortran). This data

is also written out to the raw. data file as a set of (x,
y) points, where x is the message size in bytes and y

is the average time that one processor spends in par-

ticipating in the loosely synchronous communication.

In the present version of this system, the training set

is written in EXPRESS, and the communication calls

use the loosely synchronous message-passing utilities

provided by EXPRESS.

In the second initialization step, the performance

data in the raw. data file is analyzed and the raw

performance data is converted into a more campact

and usable form. Functions are fitted to the com-

munication performance data and average values are

computed for the execution times of the arithmetic

and control operations. The functions and the average

values are then written out to a perf. data file. The

perf. dat a file is a compressed form of the raw. data

file. On the NCUBE for example, our preliminary

implementation resulted in a raw. data file that was

several tens of Mbytes in size, while the size of the

perf. dat a file was around a Kbyte. The functions

in perf. data will be used by the performance esti-

mation algorithm to reconstruct the communication

performance data in the raw. data file.

A variant of the chi-squared fit method [16] is used

to fit functions to the communication data in the

raw. data file. The communication data however, are

piecewise linear functions, and the chi-squared fit can

only be applied to continuous linear functions (see Fig-

ure 4). The discontinuities arise due to packetization

costs incurred by the need to pad the message so that

it can be sent as a whole number of packets. To get

around this caveat, we use the chi-squared fit to fit a
function of the form y = a + bx only to the continu-

ous linear segments of the piecewise linear curve. In

addition, the step size between the adjacent linear line

segments is also determined. Knowing the function y
= a + bx for a continuous line segment, the step size
between adjacent line segments and the packet size on

the machine, we can reconstruct a close approximation

to the original piecewise linear curve of the communi-

cation performance data as specified in the raw. dat a

file. Further details on the construction of the training

set are given in [2].

The graph in Figure 4 shows the actual communica-

tion performance data for some data movement pat-

terns on a 64 processor NCUBE. Although this is only

a small sample of the data obtained using the training

set, it is illustrative of the unusual behavior of differ-

ent communication patterns. The curves in the graph

correspond to the following communication patterns,

all written using EXPRESS:

●

●

●

●

●

6

i.SR: circular shift using individual element

sendlreceive. All processors send data to their

right neighbor and then receive data from their

left neighbor.

vSR: same as above, except that the data is com-
municated as a vector instead of element by ele-

ment.

EXCH: synchronous circular shift (also called “ex-

change” ). The communication is done in two
stages. During the first stage, all even numbered

processors send data to the right, while all odd

numbered processors receive data from the left.

In the second stage, all odd processors send to

the right while the even processors receive from
the left. Contrary to vSR, the EXCH mechanism of

pairing of sends and receives between neighboring

processors ensures that the receiving processor is

always prepared to receive the message, regard-

less of its size.

BCAST: one to all broadcast. Note that it is incor-

rect to conclude from the graph that “broadcast

is faster than circular shift”. This is because the

graph shows the time that each processor con-

tributes (measured as an average across all the

processors) towards the overall data movement,

and not the time for the completion of the com-

munication call itself.

COMBN: the “combine” operation, where a global

reduction is performed using some associative and

commutative operator, after which the results of

the reduction are communicated to all the pro-

cessors. This is equivalent to performing a tree
reduction over the processors while applying the

reduction operator at each node, and then broad-

casting the resu,lt computed at the root of the tree
to all the processors.

The performance estimation

algorithm

Procedure ESTIMATE shown in Figure 5 implements

the performance estimation algorithm. The algorithm
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uses the arithmeticlcontrol and communicaticm per-

formance data stored in the perf. data file to deter-

mine an execution and communication time estimate.

The procedure takes as input a node program state-

ment, which can be either a simple statement or a

compound statement. A compound statement is one

which consists of other compound and simple state-

ments, while a simple statement does not, An assign-

ment is an example of a simple statement; do loops,

subroutine calls, if-then, etc., are examples of com-

pound statements. The program statement in Fortran

is a special case of a compound statement: it consists

of the entire body of the program. The execution time

estimate et ime and the communicant ion time estimate

ctime are assumed to be initialized to zero.

Procedure ESTIMATE allows us to estimate the ex-

ecution time and communication time of any selected

node program segment, regardless of its size. The

branch probability is assumed to be 0.5 by default,

but the user is allowed to override it. Note that this

algorithm is best used for comparing two different data

partitioning schemes (i.e., two different node prc~grams

for the same application). The etime and ctime val-

ues for the different partitioning schemes can tlhen be

compared to get a fairly good estimate of what their

relative performance on the target machine would be.

7 A prototype implementation

We implemented a prototype version of the estimator
in the ParaScope interactive parallel programming en-

vironment [4]. Figure i’ shows a screen snapshot dur-

ing a typical performance estimation session.

The user can edit the distributed memory node

program within ParaScope, and make appropriate
changes to it to reflect a particular data partition-

ing scheme. A statement such as a do loop can then

be- selected, and the erformance estimator invoked

hby clicking on the estimate button. ParaScope re-

sponds with an execution time estimate of the selected

segment on the target machine, and also the commu-

nication time estimate given as a percentage of the ex-

ecution time. In this way, the effect of different data

partitioning strategies can be evaluated on any part

of the node program.

If the selected program segment contains symbolic

variables, for instance in the upper and lower bounds

of a do loop, the user is prompted for the values or

value ranges of these variables, since they are nec-

essary for applying procedure ESTIMATE. Once the

value of a symbolic variable is supplied, some limited

constant propagation is automatically done so that all

other occurances of that variable within the selected
program segment also get the value. In addition, the

user is also prompted for a branch probability when

an if-then statement is encountered by procedure ES-

TIMATE. The user can optionally accept the default

banch probability which is assumed to be between 0.25

and 0.75. The current implementation only handles

structured control flow in the node program, and ar-

bitary branching using goto is prohibited.

We used this prototype implementation to test the
accuracy of the estimation technique for several prob-

lems. Figure 6 shows the results of the estimator when
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applied to the do k loop of program REDBLACK,

compared to actual measurements on the target ma-

chine. The error in the estimation of execution and

communication time is approximate y 5-10%, but the

“crossover point” of the block and column partition

procedure ESTIMATE (S, etime, ctime) curves is predicted quite accurately. Note that besides

indicating the crossover point at which one partition-

//Input: a node program statement S. ing is preferable over another, the estimator also gives

//Output: the execution time estimate (etime) and us a measure of the difference in performance between

//communication time estimate (ctime) for Son the the two strategies. This may be very useful to the user
//target machine. in making several tradeoff decisions.

if (S is a simple statement) {

for (each arithmetic operation a in S) {

let t(a) be its avg. execution time

specified in the perf.data file;

etime += t(a);

}
for (each load/store operation A in S) {

let t(~) be its avg. execution time

specified in the perf.data file;

etime += t(A);

}
}
else if (S is a compound statement) {

let B be the body of S;

etemp = 0.0; ctemp = 0.0;

for (each statement b c B) {

ESTIMATE (b, etemp, ctemp);

}
if (S is a do loop) {

etime += etemp * # of iterations of loop;

ctime += ctemp * # of iterations of loop;

}
if (S is an if-then branch) {

etime += etemp * probability of branch;

ctime += ctemp * probability of branch;

}
if (S is a subroutine call) {

let a be the cost of a subroutine call

specified in the perf.data file;

etime += etemp + a;

ctime += ctemp;

}
if (S is a communication call) {

let 6 be the message size in bytes;

compute the time estimate t(~) for this

message using the method outlined in Sec. 5;

etime += t(6):
etime += t(b);

}
}

Figure 5: The performance estimation algorithm.

8 Conclusion and future work

We have proposed a method for discriminating be-

tween different data partitioning choices in a dis-

tributed memory parallel program. Our technique, the

Training Set Method, is inspired by the observation

that it is very hard to build a parameterized model
that can help make a comparison of different data dis-

tribution strategies across a wide range of communi-

cation pat terns, problem sizes and target machines.

The Training Set Method bases its estimation not

on a “hard-wired” theoretical model, but rather on

a “training” mechanism that uses a carefully written

program (called the training set) to train the model for

a particular target machine. This training procedure

needs to be done only once for each target machine,

during the environment or compiler installation time.

Although the use of a training set simplifies the task

of performance estimation significantly, its complex-
ity now lies in the design of the training set program,

which must be able to generate a variety of compu-

tation and data movement patterns to extract the ef-

fect on performance of the hardware/software charac-

teristics of the target machine. Fortunately, real ap-

plications (especially the regular and spatially irregu-

lar ones) rarely show random data movment patterns;

there is often an inherent regularity in their behav-

ior. We would therefore conjecture that the training

set program that we designed will probably give fairly

accurate estimates for a large number of real applica-

tions, even though it tests only a small (regular) subset

of all the possible communication patterns. We are

planning to investigate how neural networks in con-
junction with a test suite of programs and the training

set can be used to identify computation or communi-
cation patterns where the performance estimation is

imprecise and help adapt the performance estimator

accordingly.

The estimator we have implemented works for node

programs in which calls to the communication library

have already been inserted. Hence, is not suitable for

estimating the performance of a complete sequential

program annotated with data partitioning information

as described in the introduction [8, 10]. However, we
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Figure 6: Measured and predicted execution times for column and block partitioned REDBLACK for the NCUBE,

believe the same basic strategy can be used for such

an estimator if knowledge of how the compiler works

is used. For this case, the algorithm of Figure 5 will

need to be modified so it can automatically discern

what communication is needed, instead of reading it

from the program. A communication analysis algo-

rithm (as described in our earlier work [3]) together

with the results gained by applying the compiler to a

set of kernel computations can accomplish this task.

An appealing feature of this approach is that changes

in the compiler will require only rerunning the train-

ing sets to initialize the tables for the new performance

estimator, in the same way that changing the target

machine requires rerunning the training set described

in this paper.

For the longer term, we are exploring the possibility

of automating the selection of good data partitioning

schemes using the performance estimator to evaluate

alternative strategies in a search through the sp;ace of

reasonable partitionings [13]. Using such a scheme, we

may be able to significantly reduce the effort rec~uired
to implement scientific programs on distributed mem-

ory multiprocessors.
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