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Abstract
Almost all of today’s microprocessors contain memory con-
trollers and directly attach to memory. Modern multiproces-
sor systems support non-uniform memory access (NUMA):
it is faster for a microprocessor to access memory that is
directly attached than it is to access memory attached to an-
other processor. Without careful distribution of computation
and data, a multithreaded program running on such a sys-
tem may have high average memory access latency. To use
multiprocessor systems efficiently, programmers need per-
formance tools to guide the design of NUMA-aware codes.
To address this need, we enhanced the HPCToolkit perfor-
mance tools to support measurement and analysis of per-
formance problems on multiprocessor systems with mul-
tiple NUMA domains. With these extensions, HPCToolkit
helps pinpoint, quantify, and analyze NUMA bottlenecks in
executions of multithreaded programs. It computes derived
metrics to assess the severity of bottlenecks, analyzes mem-
ory accesses, and provides a wealth of information to guide
NUMA optimization, including information about how to
distribute data to reduce access latency and minimize con-
tention. This paper describes the design and implementation
of our extensions to HPCToolkit. We demonstrate their util-
ity by describing case studies in which we use these capabil-
ities to diagnose NUMA bottlenecks in four multithreaded
applications.

Categories and Subject Descriptors C.4 [Performance of
systems]: Measurement techniques, Performance attributes;
D.2.8 [Metrics]: Performance measures.
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1. Introduction
As microprocessors have become faster and multiple cores
per chip have become the norm, memory bandwidth has be-
come an increasingly critical rate-limiting factor for system
performance. For multiprocessor systems, scaling memory
bandwidth proportional to processing power has led to de-
signs in which microprocessors include memory controllers
on chip. As a result, the aggregate memory bandwidth of
systems scales with the number of microprocessors.

Multiprocessor systems in which some memory is
locally-attached to each processor are known as Non-
Uniform Memory Access (NUMA) architectures because it
is faster for a microprocessor to access memory that is lo-
cally attached rather than memory attached to another pro-
cessor. Some microprocessors, e.g., IBM’s POWER7 [29],
have NUMA organizations on-chip as well, with some cores
having lower latency access to some directly-attached cache
and/or memory banks than others. To simplify discussion of
systems where NUMA effects may exist within and/or be-
tween microprocessors, we simply refer to cache/memory
along with all CPU cores that can access it with uniform
latency as a NUMA domain. There is not only a difference
in latency when accessing data in local vs. remote NUMA
domains, there is also a difference in bandwidth: cores typ-
ically have significantly higher bandwidth access to local
cache/memory than remote.

Systems with multiple NUMA domains are challeng-
ing to program efficiently. Without careful design, multi-
threaded programs may experience significant performance
losses when running on systems with multiple NUMA do-
mains if they access remote data too frequently. On such
systems, multithreaded programs achieve best performance
when threads are bound to specific cores and each thread
mostly processes data co-located in the same NUMA do-
main as the core in which it executes. In addition to latency,
contention can also hurt the performance of multithreaded
programs. If many of the data accesses performed by a mul-
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tithreaded program are remote, contention for limited band-
width between NUMA domains can be a bottleneck. This
problem can be particularly acute if a large data array is
mapped to a single NUMA domain and many threads com-
pete for the limited bandwidth in and out of that domain.
This situation is more common than one might think. By de-
fault, today’s Linux systems employ a “first-touch” policy to
bind pages of memory newly-allocated from the operating
system to memory banks directly attached to the NUMA do-
main where the thread that first accesses the page resides. As
a result, if a single thread initializes a data array, but multiple
threads process the data later, severe contention can arise.

Tailoring a program for efficient execution on systems
with multiple NUMA domains requires identifying and ad-
justing data and computation layouts to minimize each
thread’s use of remote data and avoid contention for band-
width between NUMA domains. Due to the myriad of op-
portunities for mis-steps, tools that can provide insight into
NUMA-related performance losses are essential for guiding
optimization of multithreaded programs.

There are two broad classes of techniques for identifying
NUMA bottlenecks in a program: simulation and measure-
ment. Tools such as MACPO [25] and NUMAgrind [32] use
simulation to identify NUMA bottlenecks in a program. A
drawback of tools that simulate all memory accesses is that
they are slow, which makes them of limited use for programs
with significant running time. To address this shortcoming, a
new class of tools, e.g., ThreadSpotter [26], apply simulation
sparingly to selected memory accesses to reduce execution
overhead.

In contrast, measurement-based tools, such as TAU [27],
Intel Vtune Amplifier [11], IBM Visual Performance Ana-
lyzer (VPA) [10], AMD CodeAnalyst [2], and CrayPat [8]
can gather data to provide insight into NUMA performance
at much lower cost. On today’s microprocessor-based sys-
tems, such tools can monitor NUMA-related events using
a microprocessor’s on-chip Performance Monitoring Unit
(PMU). These tools measure and aggregate NUMA-related
events and associate them with source code contexts, such as
functions and statements. We call this approach code-centric
analysis. A shortcoming of code-centric measurement and
analysis is that it often fails to provide enough guidance
for NUMA optimization [24]. Data-centric analysis tools,
which can provide deeper insight into NUMA bottlenecks,
use advanced PMU capabilities to gather instruction and
data address pairs to associate instructions that access mem-
ory with the variables that they touch. Existing data-centric
tools, such as HPCToolkit [19–21], Memphis [24] and Mem-
Prof [15] can identify both instructions and variables that
suffer from NUMA problems.

There are three principal shortcomings of existing tools
for measurement-based data-centric analysis. First, since
PMU support for data-centric analysis differs significantly
across microprocessors from different vendors and even pro-

cessor generations, most data-centric tools only support only
a single family of PMU designs. Second, these tools do not
assess the impact of NUMA bottlenecks on overall program
performance. Without such information, one may invest sig-
nificant effort to improve the design of a code for NUMA
systems to address measured inefficiencies and net only a
small performance gain. Finally, while existing tools can
identify NUMA-related bottlenecks, they fail to provide in-
formation to guide NUMA-aware code optimization.

To address these shortcomings, we developed a
lightweight tool for measurement and analysis of perfor-
mance problems on multicore and multiprocessor systems
with multiple NUMA domains. Our profiler outperforms ex-
isting tools in three ways. First, our tool is widely appli-
cable to nearly all modern microprocessor-based architec-
tures. Second, we define several derived metrics that can
be computed by tools to assess the severity of NUMA
bottlenecks. These metrics can effectively identify whether
NUMA-related performance losses in a program are signif-
icant enough to warrant optimization. Third, our tool ana-
lyzes memory accesses and provides a wealth of information
to guide NUMA optimization, including information about
how and where to distribute data to maximize local accesses
and reduce memory bandwidth contention.

We describe case studies using four well-known multi-
threaded codes that highlight the capabilities of our tool and
demonstrate their utility. For three of the programs, our tool
provided unique insights unavailable with other tools. These
guided us to code changes that yielded non-trivial perfor-
mance improvements. In the course of our studies, we found,
somewhat surprisingly, that stack variables sometimes play
a significant role in NUMA bottlenecks. Another case study
demonstrates the utility of our novel metrics for assessing
the severity of NUMA bottlenecks.

The rest of the paper is organized as follows. Section 2
describes NUMA problems and introduces NUMA opti-
mization strategies. Section 3 describes hardware support
for data-centric measurement in modern microprocessors,
which provides the foundation for our tool. Section 4 de-
scribes derived metrics our tool computes to quantify the im-
pact of NUMA-related performance losses. Section 5 shows
how we attribute metrics with different views for NUMA
analysis. Section 6 describes how we efficiently pinpoint
locations in the source code that need modification to ef-
fect NUMA-aware data distributions. Section 7 describes the
implementation of our tool. Section 8 presents case stud-
ies that illustrate the use of our tool to identify and fix
NUMA-related bottlenecks in four multithreaded programs.
Section 9 discusses previous work on tools for NUMA per-
formance analysis and distinguishes our work. Finally, Sec-
tion 10 summarizes our conclusions and plans for future
work.

260



Figure 1. Three common data distributions in a program
on a NUMA architecture. The first distribution allocates all
data in NUMA domain 1. It suffers from both locality and
bandwidth problems. The second distribution maps data to
each of the NUMA domains and avoids centralized con-
tention. The third distribution co-locates data with computa-
tion, which both maximizes low-latency local accesses and
reduces bandwidth contention.

2. NUMA-aware program design
There are two causes of NUMA bottlenecks: excessive re-
mote accesses and uneven distribution of requests to differ-
ent NUMA domains. In modern processors, remote accesses
have more than 30% higher latency than local accesses [28].
If one co-locates data in the same NUMA domain with a
thread that manipulates it most frequently, the program can
benefit from the fast local accesses. We use the term co-
location to refer to the process of mapping part or all of a
data object and the thread that accesses it most frequently to
the same NUMA domain.

On the other hand, uneven distribution of memory ac-
cesses to NUMA domains can lead to contention and un-
necessary bandwidth saturation in both on-chip and off-chip
interconnects, caches, and memory controllers. Contention
for interconnect and memory controller bandwidth has been
observed to increase memory access latency by as much as
a factor of five [7]. Instead of mapping large data objects to
a single NUMA domain, in many cases one can reduce con-
tention and associated bandwidth saturation by distributing
large data objects across all NUMA domains. We call this
optimization contention reduction.

Figure 1 illustrates various strategies for mapping data
to NUMA domains and discusses the latency, contention,
and performance issues associated with alternative distribu-
tions. One can identify excessive remote accesses to program
data objects by measuring NUMA-related events using tech-
niques described in the next section. One can identify con-
tention by counting requests to different NUMA domains.
Co-locating data and computation is the most powerful opti-
mization as it reduces the need for bandwidth to remote do-
mains, reduces bandwidth contention, and reduces latency
by exploiting the lower latency and higher bandwidth access
to local data. In cases where there is not a fixed binding be-

tween threads and data and/or concurrent computations may
focus on only parts of a data object at a time, then using
memory interleaving to avoid contention for a single NUMA
domain may be beneficial. However, in some cases, using
interleaving to balance memory requests to NUMA domains
may hurt locality and performance [15, 21].

When data objects are not allocated using interleaved
memory pages, the Linux “first touch” policy binds a new
memory page obtained from the OS to a physical page frame
managed by a memory controller when the page is first
read or written. To ensure that data will be mapped to the
proper NUMA domain, one must carefully design code that
first touches each of the principal data structures in a multi-
threaded program. To control allocation without completely
refactoring an application, one can introduce an initializa-
tion pass right after a variable is allocated to control its page
distribution.

To help application developers tailor a program for
NUMA systems, application developers need tools that

• pinpoint the variables suffering from uneven memory re-
quests, so one can use different allocation methods (e.g.,
interleaved allocation) to balance the memory requests,

• analyze the access patterns across threads to guide
NUMA locality optimization, and

• identify where data pages are bounded to NUMA do-
mains.

To our knowledge, no prior profiling tool provides all of
these capabilities. In the next section, we describe address
samplng—a key technique needed to build tools with these
desired capabilities.

3. Address sampling
Address sampling, which involves collecting instruction and
data address pairs to associate memory references with the
data that they touch, is essential for profiling NUMA access
patterns. PMUs on most recent processors from AMD, Intel,
and IBM support address sampling. A processor can support
efficient NUMA profiling iff it has the following three capa-
bilities.

• It can record the effective address touched by a sampled
instruction that accesses memory. It is important for this
support to guarantee that memory accesses are uniformly
sampled.

• It can sample memory-related events, such as load/store
instructions and cache accesses/misses, as well as mea-
sure memory access latency. Such information is useful
for quantifying NUMA-related bottlenecks.

• It can capture the precise instruction pointer for each
sample. Special hardware support is required for correct
attribution of access behavior to instructions on proces-
sors with out-of-order cores [9].
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We know of five hardware-based address sampling tech-
niques used in modern processors: instruction-based sam-
pling (IBS) [9] in AMD Opteron and its successors, marked
event sampling (MRK) [30] in IBM POWER5 and its suc-
cessors, precise event-based sampling (PEBS) [12] in Intel
Pentium 4 and its successors, data event address sampling
(DEAR) [13] in Intel Itanium, and precise event-based sam-
pling with load latency extension (PEBS-LL) [12] in Intel
Nehalem and its successors.

Since support for address sampling is not univer-
sally available, e.g., on ARM processors. we developed a
software-based strategy for address sampling that we call
Soft-IBS. Soft-IBS can simulate address sampling with
memory access instrumentation. Using an instrumentation
engine based on LLVM [22], we instrument every memory
access instruction using a function that captures the effective
address and instruction pointer of the sampled instruction.
The engine invokes an instrumentation stub function that our
profiler overloads to monitor memory accesses. Rather than
recording information for each memory access, our profiler
records information for every nth memory access, where the
value of n can be selected when the profiler is launched.

These six address sampling mechanisms are the founda-
tion for our NUMA profiling tool. The aforementioned hard-
ware and software mechanisms for address sampling each
have their own strengths and weaknesses for NUMA pro-
filing. Naturally, the hardware mechanisms are much more
efficient than Soft-IBS. In Section 8, we compare the over-
head of address sampling with these various mechanisms.

4. NUMA metrics
Using information we gather with address sampling, we
compute several metrics to gain insight into NUMA bottle-
necks. In the next section, we describe metrics to identify
remote accesses and imbalanced memory requests. These
metrics can be computed with information gathered using
any mechanism for address sampling. In Section 4.2, we de-
scribe some additional metrics that can be derived using in-
formation available from only some PMU implementations.

4.1 Identifying remote accesses and imbalanced
requests

To understand remote accesses, our profiler computes two
derived metrics: Ml and Mr. Ml is the number of sam-
pled memory accesses touching the data in the local NUMA
domain, while Mr is the number of sampled memory ac-
cesses touching the data in a remote NUMA domain. Unless
Mr � Ml for a code region, the code region may suffer
from NUMA problems. To compute Ml and Mr, our tool
needs two pieces of information for each address sample:
the NUMA domain that is the target of an effective address
and the NUMA domain of the thread performing the access.
Our profiler uses the move pages API from libnuma [14]
to query the NUMA domain for the effective address. To

identify the NUMA domain for a thread, we have two mech-
anisms. With PMU support for address sampling, a sample
includes the CPU ID performing the access. For Soft-IBS,
we bind each thread to a core and maintain a static mapping
between thread and CPU ID that we query at runtime. Our
tool uses libnuma’s numa node of cpu to map the CPU ID
to its NUMA domain. For each address sample, if the effec-
tive address and thread are in the same NUMA domain, we
increment Ml; otherwise, we increment Mr.

To evaluate memory request balance, our tool counts the
number of sampled memory accesses to each NUMA do-
main by each thread. As before, we identify the NUMA do-
main for an access using the libnuma move pages API. If
the aggregate number of accesses to some NUMA domains
is much larger than others, the access pattern may cause
memory bandwidth congestion.

By themselves, the aforementioned metrics can be mis-
leading. For example, if a thread loads a variable allocated
into its private cache and touches it frequently, though no
further remote accesses occur, the Mr caused by this thread
is high, because the variable is deemed in the remote NUMA
domain by move pages. Therefore, one needs to use other
metrics to eliminate this bias. In the next section, we describe
a latency-per-instruction metric, which can be computed on
some architectures, that addresses this shortcoming.

4.2 NUMA latency per instruction
IBS and PEBS-LL support measuring the latency of re-
mote accesses. When this information is available, our tool
computes the NUMA latency per instruction to provide
additional insight into NUMA bottlenecks. We compute
the NUMA latency per instruction, lpiNUMA, to quantify
a NUMA bottleneck’s impact on overall program perfor-
mance. If a NUMA bottleneck’s lpiNUMA is small, even if
Mr is large, NUMA optimization of the program can’t im-
prove performance much. Equation 1 defines lpiNUMA.

lpiNUMA =
lNUMA

I
(1)

=
lNUMA

INUMA
× INUMA

IMEM
× IMEM

I

In the equation, lNUMA is the total latency of all remote
accesses (including remote caches and memory); INUMA,
IMEM , and I represent the number of remote accesses,
memory accesses, and instructions executed, respectively.
This metric can be computed for the whole program or any
code region. The equation can be computed as the product
of three terms: the average latency per remote access, the
fraction of memory accesses that are remote, and the ratio
of memory accesses per instruction executed. The resulting
quantity indicates whether NUMA performance losses are
significant for a code region.
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Equation 2 shows how we approximate lpiNUMA using
address sampling with IBS.

lpiNUMA ≈
lsNUMA

Is
(2)

lsNUMA is the accumulated latency for sampled remote ac-
cesses; Is is the number of sampled instructions. Calculat-
ing lpiNUMA this way yields an approximate value because
lsNUMA and Is are representative subsets of lNUMA and I .
Equation 3 shows how we approximate lpiNUMA using ad-
dress sampling with PEBS-LL.

lpiNUMA ≈
lsNUMA

Es
NUMA

× ENUMA

I
(3)

As PEBS-LL samples memory access events, we can obtain
an absolute event number ENUMA and an average latency
per sampled remote access event lsNUMA

Es
NUMA

for the whole pro-
gram or any code region. With a conventional PMU counter,
we can collect the absolute number of instructions I exe-
cuted by the monitored program or any code region. Exper-
imentally, we have found that if lpiNUMA is larger than 0.1
cycle per instruction, the NUMA losses for a program or im-
portant code region are significant enough to warrant opti-
mization.

5. Metric attribution
To help a user understand NUMA performance losses, our
tool attributes metrics using three different approaches.

• Code-centric attribution correlates performance metrics
to instructions, loops, and functions that have high access
latency.

• Data-centric attribution associates performance metrics
with variables that have high access latency.

• Address-centric attribution summarizes a thread’s mem-
ory accesses, which is useful for understanding data ac-
cess patterns.

Each attribution technique highlights different aspects of
NUMA performance losses. Together, they provide deep in-
sight into NUMA bottlenecks. We describe these attribution
methods in the next two sections.

5.1 Code- and data-centric attribution
Using hardware or software support for address sampling,
our tool can accurately attribute costs to both code and data.
Our approach for code- and data-centric attribution leverages
existing support in HPCToolkit [21].

For code-centric attribution, we determine the call path
for each address sample by unwinding the call stack. We
then associate NUMA metrics with the call path.

For data-centric attribution, we directly associate met-
rics with variables, including static variables and dynami-
cally allocated heap data. Our tool identifies address ranges

associated with static variables by reading symbols in the
executable and dynamically loaded libraries. We identify
address ranges associated with heap-allocated variables by
tracking memory allocations and frees. Our tool attributes
each sampled heap variable accesse to the full calling con-
text where the heap variable was allocated.

5.2 Address-centric attribution
Address-centric attribution provides insight into memory ac-
cess patterns of each thread. Such information is needed
by application developers to help them adjust data distribu-
tions to minimize NUMA overhead. Prior data-centric tools,
e.g., [15, 21, 24], identify problematic code regions and data
objects, but don’t provide insight into data access patterns to
guide optimization. Below, we first describe a naive address-
centric attribution strategy and then introduce refinements to
make this approach useful.

For each memory access m to a variable x, e.g., an ar-
ray, we compute the addresses that form the lower and
upper bounds of the range accessed by m and update
the lower and upper bounds of x accessed for each
procedure along the call path to m. At analysis time,
we plot the upper and lower bounds of the data range
accessed by each thread for any variable in any call-
ing context to gain insight into the data access patterns
across threads for code executed in that context.

This approach is too simplistic to be useful. Often data
ranges are accessed non-uniformly because of loops, condi-
tionals, and indirect references. For some program regions,
a hot variable segment may account for 90% of a thread’s
accesses, while other segments of this variable only account
for 10%. Therefore, instead of computing the minimum and
maximum effective addresses for the whole memory range
allocated for the variable, we represent a variable’s address
range with a sequence of bins, each bin representing a sub-
range. We treat each bin as a separate synthetic variable that
gets its own data- and address-centric attributions. As per-
formance measurements are associated with individual bins,
one can easily identify the hot bins of a variable. We only use
the access patterns of the hot bins to represent the access pat-
terns of the whole variable. It is worth noting that selecting
the number of bins for variables is important. A large number
of bins for a variable can show fine-grained hot ranges but
may ignore some important patterns. Currently, our tool di-
vides a variable with an address range larger than five pages
into five bins by default; one can change this number via an
environment variable.

The aforementioned approach for maintaining address
ranges merges them online to keep profiles compact. How-
ever, different memory accesses experience different laten-
cies. For that reason, when analyzing access ranges for vari-
ables at different levels of abstraction (statement, loop, pro-
cedure, and various levels in the call path), one should not
give equal weight to access ranges in all contexts. One can
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Figure 2. Identifying the first touch context for each heap
variable. Our NUMA profiler applies both code-centric and
data-centric attribution for first touches.

use aggregate latency measurements attributed to a context
as a guide to identify what program contexts are important
to consider for NUMA locality optimization, and then use
address range information for those contexts as a guide to
understand what changes to data and/or code mappings will
be needed to improve NUMA performance.

6. Pinpointing first touches
As discussed in Section 2, identifying the source code
first touching variables associated with NUMA performance
losses is essential for optimization. However, manually iden-
tifying code performing first touches to variables is often dif-
ficult for complex programs. To automatically identify first
touches, our tool uses a novel approach that employs page
protection in Linux. Our strategy does not require any instru-
mentation of memory accesses, so it has low runtime over-
head.

Figure 2 shows how we trap a first touch access to a large
variable, e.g., an array. Our tool first installs a SIGSEGV
handler before a monitored program begins execution. Then,
our tool monitors memory allocations in the program using
wrappers for allocation functions. Inside the wrapper, our
tool masks off the read and write permission of the allocated
memory range between the first and last page boundaries
within the variable’s extent. When the monitored executable
accesses the protected pages, the OS delivers a SIGSEGV
signal. Our tool’s SIGSEGV handler catches the signal and
does three things. First, it uses the signal context to perform
code-centric attribution. Second, it uses the data address that
caused the fault (available in the signal info structure) to
perform data-centric attribution. With both code- and data-
centric attribution of the SIGSEGV signal, one knows the

location of first touches to every monitored variable. Finally,
it restores read and write permissions for the variable’s mon-
itored pages. It is worth noting that multiple threads may ini-
tialize a variable concurrently in a parallel loop, so more than
one thread may enter the SIGSEGV handler. Thus, multiple
threads may concurrently identify first touches and record
code- and data-centric attributions. Call paths of first touches
to the same variable from different threads are merged post-
mortemly.

7. Tool implementation
Our tool is implemented as extensions to HPCToolkit [1]—
an open-source performance tool for call path profiling of
parallel programs. HPCToolkit accepts a compiled binary
executable as its input. The binary can be compiled by
any compiler with any level of optimization. HPCToolkit
launches an executable and then collects per-thread call path
profiles, which it attributes to both code and data addresses.
HPCToolkit uses an offline analyzer to merge profiles from
multiple threads and attribute performance metrics to source
code, static variables, and call paths of heap allocated data.
Finally, HPCToolkit provides a graphical user interface for
exploring performance data. In the rest of this section, we
describe how we extended HPCToolkit’s measurement, anal-
ysis, and presentation tools to support analysis of NUMA
performance problems. We refer to our modified version of
HPCToolkit for pinpointing and analyzing NUMA bottle-
necks as HPCToolkit-NUMA.

7.1 Online profiler
Our extensions to HPCToolkit for NUMA performance anal-
ysis perform three tasks. First, they configure PMU hardware
for address sampling. We extended HPCToolkit to leverage
Perfmon [5] to control PMUs that employ IBS, PEBS and
DEAR. Our extensions use Linux Perf events [31] to con-
figure PMUs for architectures that support MRK and PEBS-
LL. For software-based sampling, we extended HPCToolkit
to override callbacks for instrumentation hooks inserted for
loads and stores by LLVM; these instrumentation callbacks
record information each time a predefined threshold of ac-
cesses occurs.

Second, HPCToolkit’s hpcrun utility captures these ad-
dress samples and attributes them to code and data, recording
them in augmented calling context trees (CCTs) [21]. The
augmented CCT our NUMA extensions record is a mixture
of variable allocation paths, memory access call paths, and
first touch call paths. Dummy nodes in the augmented CCT
separate segments of calling context sequences recorded for
different purposes.

Third, the profiler collects NUMA metrics including Ml,
Mr, metrics that show the number of sampled accesses
touching each NUMA domain, latency metrics, and address-
centric metrics that summarize each thread’s variable ac-
cesses in each subtree of the CCT.
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Sampling mechanisms Processors Threads Events Sampling periods
Instruction-based sampling (IBS) AMD Magny-Cours 48 IBS op 64K instructions
Marked event sampling (MRK) IBM POWER 7 128 PM MRK FROM L3MISS 1

Precise event-based sampling (PEBS) Intel Xeon Harpertown 8 INST RETIRED:ANY P 1000000
Data event address registers (DEAR) Intel Itanium 2 8 DATA EAR CACHE LAT4 20000
PEBS with load latency (PEBS-LL) Intel Ivy Bridge 8 LATENCY ABOVE THRESHOLD 500000
Software-supported IBS (Soft-IBS) AMD Magny-Cours1 48 memory accesses 10000000

Table 1. Configurations of different sampling mechanism on different architectures.

7.2 Offline analyzer and viewer
Adapting HPCToolkit’s hpcprof offline profile analyzer for
NUMA measurement was trivial. The only enhancement
needed was the ability to perform [min, max] range com-
putations when merging different thread profiles. Instead of
accumulating metric values associated with the same con-
text, [min, max] merging requires a customized reduction
function.

We added an address-centric view to HPCToolkit’s
hpcviewer interface to display address-centric measure-
ments for all threads. The view plots the minimum and max-
imum address accessed for a variable vs. the thread index.
The address range for a variable is normalized to the inter-
val [0, 1]. The upper right pane in Figure 3 shows an ex-
ample of this view for a heap-allocated variable. In the next
section, we show how this novel view provides insight that
helps guide optimization for NUMA platforms.

8. Experiments
We tested HPCToolkit-NUMA on five different architectures
to evaluate its functionality using different hardware and
software support for address sampling. Table 1 shows our
choices for events and sampling periods for evaluating each
of the address sampling mechanisms. The criteria for choos-
ing events is based on (1) sampling every memory access
(not only NUMA-related events or instructions) to avoid bi-
ased results for access patterns and (2) sampling all instruc-
tions (if possible) to support computing NUMA latency per
instruction. For the tests we ran, the sampling period we
chose for each event except MRK gives 100–1000 samples
per second per thread.2 To evaluate the tool, we used four
multi-threaded benchmarks:

• LULESH [16] is a shock hydrodynamics application
benchmark from Lawrence Livermore National Labo-
ratory (LLNL) written in C++ and parallelized with
OpenMP.

• AMG2006 is an algebraic multi grid benchmark from
LLNL’s Sequoia benchmark suite [18]. AMG2006 is

1 Soft-IBS works on all of listed platforms; we choose AMD Magny-Cours
for testing.
2 Marked event sampling on POWER7 with the fastest sampling rate under
user control generates less than 100 samples/second per thread.

Methods LULESH AMG2006 Blacksholes
IBS 295s (+24%) 89s (+37%) 192s (+6%)

MRK 93s (+5%) 27s (+7%) 132s (+4%)
PEBS 65s (+45%) 96s (+52%) 82s(+25%)
DEAR 90s (+7%) 120s (+12%) 73s (+4%)

PEBS-LL 35(+6%) 57s (+8%) 67s (+3%)
Soft-IBS 604s (+200%) 220s (+180%) 270s (+30%)

Table 2. Runtime overhead measurement of HPCToolkit-
NUMA. The number outside the parenthesis is the execution
time without monitoring and the percentage in the parenthe-
sis is the monitoring overhead. The absolute execution time
on different architectures is incomparable because we adjust
the benchmark inputs according to the number of cores in
the system.

written in C and parallelized with MPI and/or OpenMP.
In this study, we used OpenMP but not MPI.

• Blacksholes is a benchmark from PARSEC benchmark
suite [3]. It performs option pricing with Black-Scholes
Partial Differential Equation (PDE). It is coded in C and
parallelized using OpenMP.

• UMT2013 is a benchmark from LLNL Coral benchmark
suite [17]. It performs three-dimensional, non-linear, ra-
diation transport calculations using deterministic meth-
ods. UMT2013 is coded in hybrid C, C++, Fortran and
parallelized with MPI and OpenMP. Like AMG2006, we
only used OpenMP but not MPI in this study.

Some NUMA optimization of LULESH and AMG2006 has
previously been described in the literature [21]. Guided
by insights from HPCToolkit-NUMA, we were able to de-
velop significantly better NUMA-aware optimizations for
both LULESH and AMG2006, advancing the state of the
art.

Table 2 shows the measurement overhead when running
HPCToolkit-NUMA with different architectures with differ-
ent sampling methods. From the table, we can see that the
overhead of HPCToolkit-NUMA differs using different sam-
pling methods. Soft-IBS incurs the highest runtime overhead
because it is based on software instrumentation; PEBS in-
curs the second highest overhead because we compensate
for for off-by-1 attribution by the PMU using online binary
analysis to identify the previous instruction, which is diffi-
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Figure 3. Identifying NUMA bottlenecks in LULESH using code-centric, data-centric and address-centric attributions.

cult for x86 code;3 IBS has the third highest overhead be-
cause it samples all kinds of instructions and its sampling
rate is high; and other sampling methods incur very low run-
time overhead. At runtime, the aggregate runtime footprint
of HPCToolkit-NUMA’s data structures was less than 40MB
for any sampling method on any of the architectures.

In the case studies that follow, we only show measure-
ments obtained using IBS and MRK because HPCToolkit-
NUMA can provide similar analysis results using any sam-
pling method. Moreover, IBS is one of the two PMU hard-
ware types that supports the lpiNUMA metric, while MRK
can show how we analyze NUMA bottlenecks using NUMA
metrics we derived without the help of latency information.
For experiments using IBS, we use a system with four 12-
core AMD Magny-Cours processors. Overall, the system has
48 cores and 128GB memory, which is evenly divided into
eight NUMA domains. For experiments using MRK, we use
a system with four eight-core POWER7 processors. Overall,
the system has 128 SMT hardware threads and 64GB mem-
ory. In this study, we consider each socket a NUMA domain.
We run LULESH, AMG2006 and Blacksholes on all hard-

3 It would be better to perform this correction during post-mortem analysis.

ware threads; we run UMT2013 with 32 threads because its
standard input size is limited to 32 threads.

8.1 LULESH
We first measure LULESH with IBS on the AMD machine.
Figure 3 shows the results of our NUMA performance anal-
ysis result displayed in a modified version of HPCToolkit’s
hpcviewer. The top left pane shows the source code of the
monitored program. The top right pane shows the address-
centric view, which represents memory ranges accessed by
individual threads. The bottom left pane shows the program
structure of synthetic CCTs. Annotations in this pane show
a mixture of call paths in the CCT. The bottom right pane
shows our NUMA metrics.

The overall program’s NUMA latency per instruction
(lpiNUMA) is 0.466. This is significantly larger than our
0.1 rule of thumb, which means the NUMA problems in
LULESH are significant enough to warrant optimization.
We first investigate the heap-allocated variables and then
other kinds of variables. The heap-allocated variables have
a lpiNUMA of 11.7 and 74.2% of the total latency is caused
by remote NUMA domain accesses. We drill down the call
path in the bottom left pane for the call sites (operator
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new[] in the figure) of variable allocations, discovering
three variables with more than 8% of total latency caused
by NUMA accesses. One can identify the variable names
from the source code pane by clicking their allocation sites
(marked as 2160, 2164 and 2159 respectively to the left
of operator new[]). Here, we study the variable z, which
causes the most significant NUMA losses.

Overall, z accounts for 11.3% of the total latency caused
by remote accesses. We observe two facts (1) Mr (labeled as
NUMA MISMATCH in the metric pane) is roughly seven
times of Ml (labeled as NUMA MATCH in the metric
pane); and (2) all accesses to z come from NUMA do-
main 0 (NUMA NODE0 equals to the sum of Ml and
Mr). Therefore, we infer that pages for z are all allocated in
NUMA domain 0 but accessed by threads in other domains.
The top right pane in Figure 3 plots the min and max ad-
dresses accessed in z by each thread. From the figure, we can
see that other than thread 0, each thread touches a subset of
z. Threads with higher ranks touch higher address intervals
in z. Visualizing the results of address sampling provides
the key insight about how to adjust the layout of heap data to
improve performance, namely by co-locating data and com-
putation upon it in the same NUMA domain.

Based on this address-centric view, it is clear that one
could improve the NUMA performance of LULESH by di-
viding the memory range allocated for z into eight continu-
ous regions, segmented by rectangles shown in the top right
pane of Figure 3. One should allocate each block to the ap-
propriate NUMA domain so it will be co-located with the
threads that access it. We implemented this strategy by ad-
justing the code that first touches z, identified by our tool,
and shown in the top left pane of Figure 3. This optimiza-
tion exploits the higher bandwidth and lower latency of lo-
cal memory. It also reduces the bandwidth consumed be-
tween NUMA domains. We similarly optimize other heap-
allocated variables, including x, y, xd, yd and zd.

LULESH also makes heavy use of a stack-allocated vari-
able nodelist. Since our tool does not currently provide de-
tailed NUMA analysis of stack data, we modified the source
code for the program to declare nodelist as a static vari-
able. HPCToolkit-NUMA’s data-centric analysis shows that
nodelist accounts for 20.3% of total latency caused by re-
mote accesses and 13.3% mismatching of memory accesses
(Mr). There is high lpiNUMA associated with nodelist,
meaning that it has high NUMA latency that warrants opti-
mization. The Mr metric associated with nodelist is about
seven times as large as Ml and all accesses come from
NUMA domain 0, which means that nodelist is initialized
by the master thread but accessed by worker threads of other
NUMA domains in parallel. Address-centric analysis identi-
fies that nodelist has the same access pattern per thread as
z does shown in Figure 3. Like optimization for z, such an
access pattern reveals that a block-wise distribution of pages

allocated for nodelist would be appropriate, as before for
z.

Guided by our tool, the block-wise data distribution we
implemented for both heap-allocated and stack variables,
we were able to speedup LULESH by 25% on our AMD
system. Using with the page interleaving strategy suggested
by our prior work [21] gave only a 13% improvement over
the original code not tuned for NUMA architectures.

Measuring LULESH with MRK on POWER7 showed
similar NUMA problems. 66% of L3 cache misses access re-
mote memory. Heap allocated arrays, such as x, y, z, xd, yd
and zd, account for 65% of remote accesses, while the stack
variable nodelist accounts for 31%. On our POWER7 sys-
tem, HPCToolkit-NUMA’s address-centric view showed that
these variables have access patterns similar to those we ob-
served on our AMD system. Using a block-wise page dis-
tribution for these variables improved execution time for
LULESH by 7.5% on our POWER7 system. In contrast,
using an interleaved page allocation (as suggested by prior
work [21]) degraded performance on POWER7 by 16.4%.

8.2 AMG2006
We ran AMG2006 with 48 threads on our AMD sys-
tem, measuring it using IBS. HPCToolkit-NUMA showed
that AMG2006 has a lpiNUMA of more than 0.92, which
means it has significant NUMA problems (more severe
than LULESH) and worthy of investigation. The heap-
allocated variables of AMG2006 account for 61.8% of the
total memory latency caused by remote accesses. By look-
ing at heap variable allocation call paths, we identified one
problematic variable RAP diag data. RAP diag data ac-
counts for 18.6% of total latency, with a lpiNUMA of 15.9
and 8.1% of total Mr. By examining the sampled accesses
and the first-touch access to RAP diag data, we found that
RAP diag data was allocated and initialized by the master
thread but accessed by all worker threads in other NUMA
domains.

The address-centric view in Figure 4 shows the ac-
cess patterns of RAP diag data across all 48 threads ag-
gregated over the whole program. However, these threads
do not show an obvious access pattern that can guide
page distribution for this variable. We further investi-
gate threads’ access patterns for RAP diag data in in-
dividual OpenMP parallel regions rather than the whole
program. The most interesting parallel region shown in
the call path is hypre boomerAMGRelax. omp, which
accounts for 74.2% (13.8/18.6) of NUMA access la-
tency caused by RAP diag data. Figure 5 shows the
access patterns of RAP diag data in this parallel re-
gion. Obviously, threads have a regular access pattern of
RAP diag data in this parallel region. Because accesses in
hypre boomerAMGRelax. omp dominate the costs of ac-
cessing RAP diag data, we can use this access pattern to
direct the data distribution. Like optimization for LULESH,
we apply block-wise distribution at the first touch place iden-
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Figure 4. Address-centric view showing the overall access
patterns of RAP diag data in AMG2006 across all threads.
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Figure 5. Address-centric view for the accesses to
RAP diag data in the most significant loop in AMG2006.
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Figure 6. Address-centric view showing the overall access
patterns of RAP diag j in AMG2006 across all threads
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Figure 7. Address-centric view for the accesses to
RAP diag j in the most significant loop in AMG2006.

tified by our tool to evenly allocate RAP diag data across
the NUMA domains.

If we analyze the source code through the code-centric
attribution, we find that accesses to RAP diag data in
hypre boomerAMGRelax. omp use the values of another ar-
ray as indices (i.e., RAP diag data[A diag i[i]]), lead-
ing to indirect memory accesses. Without our address-
centric analysis analysis, one cannot determine where data
layout changes are needed and how to refine them to im-
prove performance.

We examined other hot variables and found another
NUMA bottleneck: RAP diag j accounts for 10.6% of total
latency caused by NUMA accesses. Figure 6 and Figure 7
show its address-centric analysis results by considering all
accesses and accesses in the most significant parallel region
respectively. Obviously, the access patterns on the bottom
are much more regular than the one on the top. As memory
accesses in this parallel region account for 73.6% of total
latency for RAP diag j in the whole program, we use its
regular access pattern to allocate pages of RAP diag j in a
block-wise fashion at its first touch location.

Besides these two variables, there are other three heap-
allocated variables suffering from high remote access la-
tency. According to access patterns from address-centric
analysis, one of them can be optimized using block-wise
distribution as for RAP diag data and RAP diag j. The
other two show that each thread accesses the whole range
of the variable, leading to an optimization of using inter-
leaved page allocation. Our optimizations achieve a 51% re-

duction in the running time of the solver phase of AMG2006.
In production codes that employ this software, the running
time of the solver is most important. Without guidance from
our address-centric analysis, prior NUMA optimization of
AMG2006 used interleaved allocation for every problematic
variable [21] , which only improved the solver phase perfor-
mance of AMG2006 by 36%.

8.3 Blackscholes
We measured Blackscholes on our AMD system using IBS.
HPCToolkit-NUMA shows a much smaller lpiNUMA value
(0.035 cycle per instruction) than the threshold (0.1) over
the entire program, indicating that Blackscholes would not
benefit from NUMA optimization. To validate this assess-
ment, we eliminated NUMA bottlenecks in Blackscholes
and showed that this optimization barely improved the pro-
gram’s performance.

HPCToolkit-NUMA identified that heap-allocated vari-
ables account for 66.8% of total latency caused by NUMA
accesses and 51.6% of the latency associated with the vari-
able buffer. With the values of Ml and Mr, together with
the data source metrics, we identified that buffer is allo-
cated in only one NUMA domain by the master thread and
evenly accessed by all threads in the system.

HPCToolkit-NUMA’s address-centric analysis in Fig-
ure 8 shows a regular access pattern across all threads. Each
thread touches a sub-range of buffer in an ascending order,
with large overlaps. To understand why the program reveals
such pattern, we analyzed the source code. The top of Fig-
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Figure 8. Address-centric view showing the access patterns
of buffer across all threads.
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(a) Original access pattern.

thread1 thread1 thread1 thread2 thread2 thread2 thread3 thread3 thread3... ...
0x100 0x200 0x300 0x400 0x500 0x600 0x700 0x800 0x900

(b) Improved access pattern.

Figure 9. Memory access patterns across threads in
BlackScholes.

ure 9 shows the memory layout for buffer. The program
sets five pointers to point different sections of buffer. All
threads access to each section in parallel, leading to the ac-
cess pattern shown in Figure 9a. According to our address-
centric analysis, the three example threads in the figure touch
the address ranges of (0x100, 0x700), (0x200, 0x800) and
(0x300, 0x900) respectively, matching the pattern revealed
by address-centric results shown in Figure 8.

As threads show non-local accesses to buffer, we re-
group these sections into an array of structures as shown in
Figure 9b. With this optimization, the three example threads
touch (0x100, 0x300), (0x400, 0x600), (0x700, 0x900) re-
spectively, with no overlap.

To allocate data block-wise, we changed the buffer ini-
tialization loop that our tool identified as the first touch loca-
tion. Originally, only the master thread initializes buffer.
We parallelized the initialization loop using OpenMP to
make sure that each thread first touches its own data. With
this optimization, there is no longer any latency related to
buffer caused by remote accesses.

Although we largely eliminated the NUMA latency in the
program by co-locating data and computation, the execution
time of Blackscholes improves less than 0.1%. The trivial
improvement proves that our derived metric lpiNUMA re-
flects the severity of NUMA problems. One can estimate
potential gains from NUMA optimization by examining
lpiNUMA.

8.4 UMT2013
We ran UMT2013 on our POWER7 system with 32 threads,
sampling instructions that cause L3 data cache misses. We

do c=1,nCorner
do ig=1,Groups
source=Z%STotal(ig,c)+Z%STime(ig,c,Angle)

enddo
enddo

Figure 10. A loop kernel in UMT2013 that has many re-
mote accesses to STime.

bounded each thread to each hardware core in each of four
NUMA domains. According to Ml and Mr, HPCToolkit-
NUMA showed that 86% L3 cache misses lead to remote
memory accesses and 47% of remote accesses due to the
references of heap allocated variables.

Using HPCToolkit-NUMA, we identified the allocation
call path of a hot variable – STime, which is a three-
dimensional array that accounts for 18.2% of total remote
accesses. Code-centric analysis in HPCToolkit-NUMA as-
sociates all remote accesses to STime with the reference
shown in Figure 10. The reason for the high remote access
ratio is that STime is allocated in one NUMA domain but
accessed by threads in all NUMA domains. With address-
centric analysis, HPCToolkit-NUMA identifies that STime
has a staggered access pattern across threads, similar to the
variable buffer in BlackScholes, shown in Figure 8. A deep
analysis of the source code showed that the nested loop iter-
ating over STime shown in Figure 10 is in an OpenMP par-
allel region. Two-dimensional planes of STime indexed by
Angle are assigned to threads in a round-robin fashion. To
ensure the data is co-located with its computation, we par-
allelized the initialization loop of STime identified by first
touch analysis. This strategy has each thread initialize the
part of STime that it accesses in the computation stage. This
optimization eliminates most remote accesses to STime and
yielded a 7% speedup for the program as a whole.

9. Related work
Several performance tools provide support for analyzing
NUMA performance issues with multi-threaded programs.
These tools mainly use two kinds of methods: simulation and
measurement. The simulation tools such as MACPO [25]
and NUMAgrind [32] collect memory traces and feed into
a cache simulator. The simulator simulates an architecture
with NUMA memory hierarchies to analyze the memory
traces. However, such simulation-based tools incur high
runtime overhead to the monitored program. For example,
MACPO slows the program by 2x–5x and NUMAgrind has
more than 100x runtime overhead.

On the other hand, measurement-based tools can provide
insights with low overhead. For example, Memphis [24] uses
AMD instruction-based sampling (IBS) to capture remote
accesses and associates them with static variables. It com-
pares IBS with the traditional hardware counters, showing
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that address sampling gives deeper insights into a program’s
NUMA bottlenecks.

MemProf [15], another measurement-based tool also uses
AMD IBS to measure a program’s NUMA bottlenecks.
MemProf associates NUMA metrics with heap-allocated
variables and partially supports attribution to static variables
by coarsely aggregating metrics incurred by static variables
in the same load module (executable or shared libraries).

Prior work on data-centric analysis in HPCToolkit used
both IBS and MRK hardware support to attribute NUMA
latency to both code and data [21]. Here, we extended that
work with support for both address-centric and first-touch
analysis. While our prior work enabled us to identify vari-
ables with the most remote accesses, it didn’t provide insight
into access patterns, which a code developer needs to reor-
ganize data layout to co-locate it with computation.

Besides NUMA profilers, some previous work improves
NUMA locality and performance using support from li-
braries [4], compilers [23] and operating systems [6, 7]. Un-
like our approach, which is designed to help programmers
fix NUMA problems in their code, these approaches aim to
ameliorate NUMA problems to the greatest extent possible
without source code changes. While these approaches re-
quire developers to use specific libraries, compilers, or OS
kernels, our tool guides offline optimization of the source
code which yields better code that can be run anywhere with-
out any restrictions.

10. Conclusions and future work
In this paper, we present a profiling tool that identifies and
analyzes NUMA bottlenecks in multi-threaded programs
and helps guide program performance tuning by providing
new metrics and insights into data access patterns. Using
PMU support in modern microprocessors, our measurement-
based tool can gather the information it needs with low run-
time overhead. We demonstrate the utility of our tool and the
information it provides to optimize four well-known bench-
marks. While one code didn’t warrant NUMA optimization
(according to our metrics) or benefit significantly when it
was applied anyway, our tool delivered insight and guidance
that enabled us to significantly improve the performance of
the other three codes.

In our experiments using different hardware for address
sampling, we observed that not all mechanisms are equally-
suited for our analysis. Although both IBS and MRK sam-
ple instructions, IBS samples all kinds of instructions, so one
needs to filter out samples not of interest in software, which
adds extra overhead. With IBS it is trivial to compute the
load/store fraction in the whole instruction stream to assess
the performance impact of memory instructions. In contrast,
MRK can only sample instructions causing specific events
(such as L3 cache misses or remote accesses). Consequently,
MRK can highlight problematic memory instruction with
low overhead. DEAR, PEBS and PEBS-LL sample events.

PEBS and PEBS-LL can directly sample NUMA events,
while DEAR does not support NUMA events. Both instruc-
tion sampling and event sampling can effectively identify
problematic memory accesses. Finally, IBS and PEBS-LL
can measure latency for sampled load instructions. This in-
formation can be used to derive the metrics described in Sec-
tion 4.

Our future work is five-fold. First, we plan to add full
support for monitoring stack variables instead of requiring
them to be changed to static or heap allocated ones for
detailed measurements. Second, we plan to extend our tool
to analyze more complex access patterns. Third, we plan
to collect trace-based measurements to study time-varying
NUMA patterns in addition to profiles. Fourth, we plan
to augment hpcviewer with a new view to better present
code-and data-centric measurements. Finally, our strategy
for pinpointing first touches is only implemented at present
for heap-allocated variables. We plan to extend it for static
variables by protecting their pages when the executable or
libraries are loaded before execution begins.
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