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ABSTRACT
Entity disambiguation is an important step in many infor-
mation retrieval applications. This paper proposes new re-
search for entity disambiguation with the focus of name dis-
ambiguation in digital libraries. In particular, pairwise sim-
ilarity is first learned for publications that share the same
author name string (ANS) and then a novel Hierarchical
Agglomerative Clustering approach with Adaptive Stopping
Criterion (HACASC) is proposed to adaptively cluster a set
of publications that share a same ANS to individual clus-
ters of publications with different author identities. The
HACASC approach utilizes a mixture of kernel ridge regres-
sions to intelligently determine the threshold in clustering.
This obtains more appropriate clustering granularity than
non-adaptive stopping criterion. We conduct a large scale
empirical study with a dataset of more than 2 million pub-
lication record pairs to demonstrate the advantage of the
proposed HACASC approach.

Categories and Subject Descriptors
H.3.7 [Information Storage and Retrieval]: Digital Li-
braries; H.3.3 [Information Storage and Retrieval]: In-
formation Search and Retrieval—Clustering
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Author Disambiguation, Clustering

1. INTRODUCTION
The entity resolution problem consists of two subprob-

lems: disambiguation and reference identification. In the
former problem the task is to distinguish references that
share the same author name string (ANS) and yet refer to
different author identities. For example, there are 13 differ-
ent author identities sharing the ANS Ashish Garg in DBLP
(the Nov. 2012 version) and 7 different authors with the
ANS Stefan Richter. The reference identification task de-
termines the set of different ANSs that may be used to refer
to the same author identity. For example, Fernando Casade-
vall, Fernando Casadevall Palacio, Fernando J. Casadevall
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refer to the same author identity in DBLP. This paper fo-
cuses on the disambiguation problem.

Author name disambiguation is an important research
problem for bibliographic (Web) databases (e.g., DBLP, Cite-
Seer, MEDLINE). While substantial efforts are made to
clean these repositories by semi-automatic means (which of-
tentimes goes unrecognized: for instance, DBLP support
group utilizes sophisticated heuristic rules to identify am-
biguous author names, which are then manually validated
[11]), their efforts cannot keep pace with the volume of
data ingested in these repositories: These databases are
largely constructed by periodically crawling the online pro-
ceedings of conferences, workshops and journals. Case in
point, DBLP version March 2012 has 671 distinct ambiguous
ANSs which are (confidently) disambiguated by the DBLP
support group to refer to 2,013 different author identities.
A total of 29,103 publications belong to these authors in
DBLP. The Nov. 2012 version of DBLP has 143 new am-
biguous ANSs that are (confidently) disambiguated, i.e., a
21.3% increase from the previous version. Notice that 88,916
new ANSs and 178,806 new publication records were added
to DBLP in Nov. 2012, which were not in DBLP in March
2012. This problem is not unique to DBLP. In MEDLINE,
on average 8 different author identities are associated with
each ambiguous ANS and 2/3 of the author identities are
associated with an ambiguous ANS [13]. This clearly points
out that, at such a data ingestion rate, the (admirable) ef-
forts of the curators of DBLP, as well as those of its sister
bibliographic repositories, cannot keep pace unless assisted
by reliable automated tools.

This paper proposes a novel solution for the author dis-
ambiguation problem. Our solution consists of two steps.
First, we estimate pairwise similarity between publications
sharing the same ANS using Logistic Regression. Second,
we use a Hierarchical Agglomerative Clustering (HAC) al-
gorithm to cluster the publications to real author identities.
The stopping criterion in HAC is adaptively learned from
supervised information.

Our contributions in this paper are:
• Propose a novel method for author disambiguation based

on learning adaptive stopping criteria for individual am-
biguous ANSs in clustering.

• Conduct a comprehensive large scale empirical study us-
ing DBLP, showing that HACASC outperforms HAC
with a single fixed threshold as the stopping criterion.

The paper is organized as follows. Section 2 gives a brief
overview of the related work. Section 3 describes our pro-
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posed solution and Section 4 shows the experimental results.
The paper concludes with Section 5.

2. RELATED WORK
There is a rich body of work on the disambiguation prob-

lem in general and on the author name disambiguation prob-
lem in particular. These problems are part of the more gen-
eral problem of entity resolution (also referred to as record
linkage, reference reconciliation, etc.). Several surveys [6, 8]
give a thorough presentation on the work on the entity reso-
lution problem. Due to the space limitation, we only review
some research work most related to the paper.
A number of solutions have been proposed for the dis-

ambiguation problem: unsupervised clustering solutions [13,
14], supervised clustering methods based on naive Bayes and
support vector machines [9], graph-based mining, such as,
co-authorship graph [7, 12, 2] and entity-relationship graph
mining [10], hidden Markov fields [16], and link analysis be-
tween publication records using random walks [15].
Our work distinguishes from previous researches on disam-

biguation problem as we focus on learning adaptive stopping
criterion during the clustering process for identifying indi-
vidual author identities. [2] proposed blocking and boost-
rapping approach with HAC, but did not elaborate the stop-
ping criterion in clustering. The novel HACASC approach
intelligently learns adaptive stopping criterion in clustering,
which substantially improves the performance of author dis-
ambiguation.

3. METHOD DESCRIPTION
This section first presents a formal definition to the author

disambiguation task, and then describes the new method for
author disambiguation. The method consists of two main
phases. The first phase models the probability that a pub-
lication pair sharing an ANS is written by the same author
identity. This probability is used as a similarity metric be-
tween publications in the second phase, where HACASC is
utilized to generate clusters of individual author identities.

3.1 Task Formulation
The mathematical definition of the author disambigua-

tion task is as follows. Let N = {n1, n2, · · · , nN} be the
set of ambiguous ANSs, and E = {e1, e2, · · · , eM} be the
set of real author identities. Each ambiguous ANS ni ∈ N
is associated with a set of publications Pni . For a paper
p, denote Au(p) = {r1, r2, · · · } as the set of author refer-
ences in the author list of p, En(r) denotes the real au-
thor identity of r, and Nm(r) denotes the ANS of r appear-
ing in the author list. For each author identity e ∈ E, let
Nm(e) be its ANS. The disambiguation problem thus be-
comes: for each ambiguous ANS ni, find a partition Cni =

{c1ni
, c2ni

, · · · , ckni
ni }, where

∪kni
j=1 c

j
ni

= Pni and cjni
∩ ckni

= ∅
if j ̸= k, such that, ∀j ∈ {1, · · · , kni}, ∃e ∈ E, Nm(e) =
ni,∀p ∈ cjni

,∃r ∈ Au(p), En(r) = e. For example, let
n ∈ N be an ambiguous ANS and Pn = {p1, p2, p3} the
set of publications where n appears. Hence, we have au-
thor references r1 ∈ Au(p1), r2 ∈ Au(p2), and r3 ∈ Au(p3)
such that Nm(r1) = Nm(r2) = Nm(r3) = n. Suppose that
En(r1) = En(r2) and En(r3) ̸= En(r1), En(r2), i.e., r1 and
r2 refer to the same author identity, which is different from
the author identity referred to by r3. The author disam-
biguation task is to cluster Pn into two clusters {p1, p2} and

{p3} so that the sets of publications in each cluster correctly
indicate the identity of author references r1, r2 and r3.

3.2 Pairwise Similarity Modeling
Let p1 and p2 be two publications such that r1 ∈ Au(p1), r2 ∈

Au(p2), Nm(r1) = Nm(r2) = n. To provide a similarity
metric for the clustering, the pairwise probability Pr(En(r1) =
En(r2) | p1, p2) is modeled as a Logistic Regression(LR), i.e.

Pr(En(r1) = En(r2) |p1, p2) = σ(wTϕ(n, p1, p2))

where σ(x) = (1 + exp(−x))−1 is the sigmod function and
ϕ(n, p1, p2) is the feature vector extracted from p1 and p2
w.r.t n, which reflects the “similarity” between the two pa-
pers for sharing the same real author identity with the ANS
n. w is the weight vector indicating the importance of each
feature. We will discuss the features used here later in Sec-
tion 4.2. The learning process of the LR problem is through
gradient decent. In particular, the BFGS pseudo Newton
method [4] is used to solve this optimization problem.

3.3 Hierarchical Agglomerative Clustering with
Adaptive Stopping Criterion

Here we describe the HACASC method for clustering the
publications Pn that share an ANS n. There are two is-
sues for this clustering task: first, the number of real author
identities that share this ANS is not given, hence the num-
ber of clusters is not pre-determined; second, given only the
similarity between publications, without a feature vector for
each publication, it is hard to compute cluster centers. To
overcome the first issue, the natural choice is to use HAC.
HAC starts by treating each node as a cluster by itself, and
then iteratively merges the closest pair of clusters until some
stopping criterion is met. To overcome the second issue, we
utilize the following similarity measure between clusters:

Sim(cpn, c
q
n) =

1

|cpn||cqn|
∑

p1∈cpn
p2∈cqn

Pr(En(r1) = En(r2) |p1, p2)

where Pr(En(r1) = En(r2) |p1, p2) is provided by the
pairwise similarity modeling (Section 3.2).

An important problem when using the HAC algorithm is
how to specify the stopping criterion. A simple choice may
be to find a single fixed threshold via training and apply it to
future data. Suppose N is partitioned into training set ANSs
NTr ⊂ N, and testing set ANSs NTe ⊂ N, NTr ∩ NTe = ∅.
With the ground truth of the training set, the best thresh-
old tn, for all n ∈ NTr can be found. Then a single fixed
threshold may be determined using these best thresholds
in training set(see Section 4.3.2). But using a single fixed
threshold for all different ANSs is not optimal. Therefore,
this paper proposes new research for adaptively finding the
desired thresholds for different ANSs in HAC as a regression
problem, i.e. tn = f(n, Pn). In this regression model, the
input sample is a HAC problem with ANS n and related pub-
lications Pn, and the target tn is the best threshold for this
HAC problem. With a regression model, the stopping crite-
rion of a HAC problem can be intelligently learned from the
optimal stopping thresholds of training samples with known
ground truth (i.e., real author identities).

In particular, the regression function f is defined as a
mixture of kernel ridge regressions:

tn =
∑
h

Pr(Z = h|n, Pn)

|NTr|∑
i=1

αi,hK(n, ni), ni ∈ NTr

742



dim. feature

ANS
2 IDFp(F ), IDFp(L)
2 IDFn(F ), IDFn(L)

publication title
1 Simcos tfidf (t1, t2)
4 Simcos LDA(t1, t2)

co-authorship
2 CA1(p1, p2), log(CA1(p1, p2))
2 CA2(p1, p2, n), log(CA2(p1, p2, n))

venue 1 Simcos tfidf (v1, v2)
year 1 |y1− y2|

Table 1: Features(ϕ(n, p1, p2)) for pairwise similarity
modeling. “dim.” stands for feature dimensions.

where Z indicates the hidden group, Pr(Z = h|n, Pn)
is the gate function for assigning a HAC task to a hidden

group, and
∑|NTr|

i=1 αi,hK(n, ni) is the kernel ridge regression
withK(·, ·) as the kernel function. Soft-max function is used
for Pr(Z = h|n, Pn) and Radial Basis Function (RBF) [5]
kernel for K(·, ·).
To learn the mixture of kernel ridge regressions model, the

Expectation-Maximization (EM) method is applied. In the
E-step, the posterior probability is estimated as follows:

Pr(Z = h|n, Pn) =
wT

hψ(n, Pn)N (
∑|NTr|

i=1 αi,hK(n, ni)|tn, βh)∑
l w

T
l ψ(n, Pn)N (

∑|NTr|
i=1 αi,lK(n, ni)|tn, βl)

where ψ(n, Pn) is the feature vector, which will be dis-
cussed later in Section 4.3.1. N (·|tn, βl) is the probability
density function of the normal distribution with the best
threshold tn as mean and variance βl. Here the error term
error = tn − f(n, Pn) is assumed to follow some zero-mean
normal distribution.
In the M-step, the parameters to be estimated are w =

{w1, · · · , wH} for the gate functions, α = {α1, · · · , αH} for
the kernel ridge regression models in each hidden group and
the error term variance β = {β1, · · · , βH}. The statistics for
updating the parameters are:

w∗
h = argmaxwh

|NTr|∑
i=i

H∑
h=1

Pr(Z = h|n, Pn) ·

log(
1

Zni

exp(wT
hψ(ni, Pni))) + λ′|wh|2

α∗
h = Dh(λI|NTr| +KDh)

−1T

β∗
h =

∑|NTr|
i=1 Pr(Z = h|ni, Pni)(tni −

∑|NTr|
j=1 αj,hK(ni, nj))

2∑|NTr|
i=1 Pr(Z = h|ni, Pni)

where Zni =
∑H

h=1 exp(w
T
hψ(ni, Pni)) is the normalizer,

Dh is the diagonal matrix with Pr(Z = h|ni, Pni) as the i
th

diagonal element, K is the kernel matrix of training samples,
T is the vector of the best thresholds of all training samples,
and λ is the regularization parameter for kernel ridge re-
gression. All the estimations are in closed form except for
w∗

h. Again, the BFGS method is used for this optimization
problem and another regularization parameter λ′ is used to
avoid over-fitting. Both regularization parameters, λ for re-
gression model and λ′ for gate function are obtained by cross
validation in training set.

4. EXPERIMENTAL RESULTS
The goal of the experimental section is to show the ad-

vantage of learning adaptive thresholds in the proposed HA-
CASC method. We evaluate the proposed HACASC against
the baseline, which uses HAC with a single fixed threshold.

Precision Recall F1
0.746 0.843 0.792

Table 2: Performance of LR for the pairwise simi-
larity modeling

4.1 Dataset
We perform our experiments on a subset of DBLP called

DBLP Note dataset. It is compiled from DBLP March 2012.
It consists of all those ANSs in DBLP with the property that
each of them is shared by at least two distinct author identi-
ties and each of the author identities has an affiliation note.
We consider the presence of affiliation notes as a strong indi-
cator that the author identities are“unequivocally”identified
by the DBLP support group for those ANSs. DBLP Note
consists of 692 ambiguous ANSs, of which 354 ANSs are used
for training and 338 ANSs are used for testing. By pairing
up the publications of the authors in DBLP Note that share
the same ANS, there are 1,109,733 pairs from 15,394 publi-
cations in the training set and 1,027,641 pairs from 14,578
publications in the testing set.

4.2 Pairwise Similarity Model Experiments
We report here the experimental results for the first phase

of our approach. Recall that a LR model is built to model
the pairwise similarity between publications sharing an ANS.

4.2.1 Feature Extraction
Table 1 shows the features used for the LR model. Two

name-based features (IDFp(F ), IDFp(L)) calculate the In-
verse Document Frequency(IDF) of the first(last) names of
the given ANSs against all publications in the whole DBLP,
i.e. log( #pub.

#pub. w/ ANS w/ the first name
). Another two features

(IDFn(F ), IDFn(L)) compute IDF for the first(last) names
against all ANSs in DBLP , i.e. log( #ANS

#ANS with the first name
).

One title-based feature uses cosine similarity with TF-IDF
features (Simcos tfidf ) of publication titles and another four
use Latent Dirichlet Allocation (LDA) [3] features (Simcos LDA)
instead. To compute the LDA features, a LDA model is first
built using all the publication titles in the training set. It is
then applied to publication titles. The estimated topic as-
signment probabilities of the titles are denoted as the LDA
features of the titles. LDA models with hidden group sizes
10, 30, 50 and 80 are used to generate the four features.

For co-authorship features, the level-1 and level-2 co-
authorship similarity are defined as follows:

CAi(p1, p2, n) =
∑

n′∈Coi(p1,p2,n)

log(
#author name

#co-author name of n′ )

where i ∈ {1, 2}, and Co1(p1, p2, n) is the set of ANSs
appearing in both p1 and p2 besides n, Co2(p1, p2, n) is the
set of ANSs that appear in p1(p2) and has co-authorship
with some ANS in p2(p1) besides n. Here the co-authorship
is based on ambiguous ANSs, not real author identities, so
it is not the accurate co-authorship.

Finally, a venue feature is computed using cosine similar-
ity and TF-IDF features; the year feature is computed as
the absolute value of the difference of the publication years.

4.2.2 Modeling Performance
Table 2 shows the precision, recall and F1 score of the

learned LR model. The metrics here are computed by taken
the pairwise similarity modeling as a classification problem.
A threshold is selected in training set to truncate the simi-
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Method F1 NMI
baseline 0.810 0.422
HACASC 0.832† 0.544†

UpperBound 0.927 0.739

Table 3: Clustering Performance Comparison

larity into a binary number which is then compared to the
ground truth of whether a pair shares the same author iden-
tity. Notice that this is only a pairwise result, and may
contain conflicts. E.g. the model may predict that both
{p1, p2} and {p2, p3} share the same author identity e, but
{p1, p3} does not.

4.3 Experimental Results for HACASC
In the experiments for HACASC, we first describe the

features used for the HACASC, then compare the perfor-
mance between usage of adaptive threshold and a single fixed
threshold.

4.3.1 Feature Extraction
Table 4 shows the features used for the HACASC, where

S = {Pr(En(r1) = En(r2) |p1, p2) |p1, p2 ∈ Pni} and V =

{
∑

p2̸=p1,p2∈Pni

Pr(En(r1) = En(r2) |p1, p2) |p1 ∈ Pni}. The

name features are the same as in LR. The pairwise similarity
features show the average of the pairwise similarity between
the publications sharing the same ANS. The node volume
features show the density of the complete graph consisting
of related publications and their similarities.

4.3.2 Clustering Performance
Here we evaluate the proposed HACASC method against

a baseline and a theoretical upper bound. The baseline uses
a single threshold as a weighted sum of the best thresholds
in the training set, with the sizes of HAC problems (|Pni |)
as weights. The theoretical upper bound is the performance
using the best threshold gained from ground truth for each
ANS. The evaluation metric includes F1 score and Normal-
ized Mutual Information (NMI) [1]. Unlike the result in
pairwise modeling, the F1 score is derived from the cluster-
ing result here, hence the transitive conflicts mentioned in
Section 4.2.2 do not apply here. The NMI is used to evaluate
the performance from the information-theoretic interpreta-
tion of clustering, while F1 score evaluates the performance
from the pairwise perspective of clustering, as series of de-
cisions. The NMI is computed as a weighted (with the sizes
of HAC as weights) sum of the NMIs of each of the HAC
problems w.r.t. the correct clustering results (given by the
ground truth). Table 3 shows the clustering performance.
The RBF kernel used in HACASC has one scale parameter,
tuned using cross-validation. The number of hidden groups
is 5, which in our experiments performs much better than
< 5 groups and similar to > 5 groups.
It can be seen from Table 3 that the HACASC generates

a better F1 and much better NMI score in testing set com-
pared to the baseline. To confirm this, a right-tailed t-test
is applied for both F1 and NMI with statistical significance
99.9% (α = 0.1%). The resulting p-value is 3.81× 10−19 for
F1 score and 1.97×10−32 for NMI, indicating substantial ad-
vantage of HACASC against the baseline. The upper bound
performances show very good pairwise results (over 90% F1
score), which mean that the pairwise modeling does a good
job in ranking the publication pairs, but the thresholds are
very different for different HAC problems.

dim. feature

ANS
2 IDFp(F ), IDFp(L)
2 IDFn(F ), IDFn(L)

pairwise similarity 2 mean(S), std(S)
node volume 2 mean(V ), std(V )

Table 4: Features (ψ(n, Pn)) for the regression in HA-
CASC

5. CONCLUSION AND FUTURE WORK
This paper proposes a HACASC method to intelligently

determine the threshold in a HAC process for the author
disambiguation problem. This method utilizes Logistic
Regression to model the pairwise publication similarity,
and the mixture of kernel ridge regressions to model the
adaptive thresholds for the stopping criteria of the HAC
problems. Our experiments in DBLP Note dataset show
substantial advantage of HACASC against the baseline, in
both classification and information-theoretic perspective.
There is still a large difference between the performance of
the upper bound and HACASC. One possible improvement
is to incorporate the supervised information with the
unsupervised information, such as within cluster distance
and between cluster distance, to determine the stopping
criterion, which may result in a more effective model.
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