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ABSTRACT
Modeling and predicting user attention is crucial for inter-
preting search behavior. Current applications include quan-
tifying web search satisfaction, estimating search quality,
and measuring and predicting online user engagement. The
most direct way to measure attention is through eye gaze
tracking, which is not yet widely available. While prior re-
search has demonstrated the value of mouse cursor data and
other interactions as a rough proxy of user attention, accu-
rately predicting where a user is looking on a page remains
a challenge. This problem is exacerbated when moving be-
yond the traditional search result pages to other domains,
where high diversity of content and visual presentation often
affect how users examine a page. We posit that in order to
accurately model user attention online, interaction signals
should be grounded to the underlying content. To this end,
we introduce a principled model to connect interaction sig-
nals with page content features, which we call Mixture of
Interactions and Content Salience (MICS). To our knowl-
edge, our model is the first to effectively combine user in-
teraction data with visual prominence, or salience, of the
page content elements. Extensive experiments on multiple
popular types of Web content demonstrate that our model
significantly outperforms previous approaches to searcher
gaze prediction, which use only the interaction information.
Grounding the observed interactions to the underlying page
content provides a general and robust approach to user at-
tention modeling, which could enable more powerful tools for
search behavior interpretation, and ultimately search qual-
ity improvements.
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1. INTRODUCTION
Inferring searcher attention in Web search, and more gen-

eral online settings, has been recognized as a key aspect of
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Figure 1: User attention on a Web search result page (a)
vs. on a social network Web site (b). The color indicates
the time spent viewing a region of the page, ranging from
red (high concentration of attention) to blue (low attention).
The marginal distributions are projected onto the horizontal
and vertical axes.

relevance evaluation, search quality, and user interface de-
sign. More generally, inferring and measuring user attention
is key for diverse areas such as online advertising, education,
and crowdsourcing. The availability of accurate user atten-
tion data at scale could potentially enable vast opportunities
for search quality evaluation and richer models of user inter-
action with generic Web page content. The challenge is how
to infer attention robustly and for diverse kinds of content -
the problem we aim to address in this paper.

Inferred attention has already been used in a variety of ap-
plications ranging from improvements of web site usability
[24, 28], to search relevance estimation[15, 16], and auto-
matic generation of attention-biased summaries [1]. User
attention data gains even greater importance as Web search
shifts towards addressing user information needs directly on
the search result page, which does not require a click on the
result, making click-based evaluation of search quality more
challenging (e.g., [13, 19, 32, 26]).

Previous work on attention modeling from cursor inter-
actions on the Web has mostly focused on Web search and
E-learning settings, where a user’s eye gaze, and mouse cur-
sor positions, are somewhat coordinated[34, 14, 18].

When extending the attention prediction task to other
Web page types, prediction becomes more challenging. For
example, as search over social media gains popularity, atten-
tion models must be adapted to take into account more com-
plicated page layouts, with some content static (not query-
specific), whereas other, related content in fact might answer
the search intent directly. Figure 1 (b), based on the data
reported by [25], illustrates searcher attention heatmap for
a popular social media site. Note that attention is shifted to
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the right and towards the bottom of the page – contrasting it
with the more well known“golden triangle”examination pat-
tern for a traditional Web search result page, illustrated in
Figure 1 (a). As search spans increasingly diverse domains,
such differences abound. Furthermore, as search engines in-
creasingly incorporate images and other visually attractive
elements into the search result, models of searcher attention
have to be revisited accordingly.

Our aim is to develop a robust, yet principled model of
searcher attention that combines both content and inter-
action signals. For this, we adapt techniques and ideas
from computational neuroscience of visual saliency to de-
velop a Mixture of Interaction and Content Salience (MICS )
model, that is able to integrate content-based static signals,
together with the user’s interaction data, in order to pre-
dict where on a page a searcher is paying attention. We
show that our model achieves significantly lower error com-
pared to previously reported state-of-the-art techniques us-
ing interaction-only signals. Specifically, our contributions
are:

• A novel model of combining content and behavioral
signals to predict searcher attention (Section 3).

• Significant accuracy improvements in predicting eye
gaze position for a given user, in multiple popular
search domains (Section 6).

Next, we review previous work on predicting searcher at-
tention. Then, in Section 3 we present out general MICS model
for inferring user attention on Web pages, and describe the
specific reference implementation for popular search domains
(Section 4). In Sections 5 and 6 we present empirical results
on using our MICS model to predict user attention. Finally,
we outline the implications and directions for future work in
Section 7, which concludes the paper.

2. BACKGROUND AND RELATED WORK
Our work bridges three main areas of research: computa-

tional modeling of visual attention, primarily developed in
the fields of computational neuroscience and computer vi-
sion, user engagement and attention modeling on the Web,
and searcher interaction modeling, primarily focused on the
web search domain, from the fields of human computer in-
teraction and information retrieval.

2.1 Computational Visual Salience
There has been extensive research on automatically iden-

tifying the most important, or salient regions in a given im-
age, where a person examining the image is likely to attend.
As we build on the ideas explored in computational visual
salience research for Web search tasks, we briefly introduce
the underlying ideas and techniques.

Different formulations of salience have been proposed, e.g.,
focusing on identifying the image regions which initially at-
tracts attention, or the aggregate attention distribution after
a longer period of examination. In order to model salience
computationally, three major factors were identified that af-
fect human attention during visual examination of an im-
age (or a Web page): (i) the visual importance, or salience
of areas in the scene, (ii) memory and expectations about
where to find the information, and (iii) the task and infor-
mation need at hand. Depending on the modeling choices,
the resulting models can be either task-agnostic (i.e., only
consider the salience of the image regions based on content
alone) or task-driven (i.e., that consider salient regions for a

given task). These models are typically categorized as either
bottom-up models or top-down models.

In bottom-up models the salience of image areas is typi-
cally computed based on low-level image characteristics, par-
ticularly contrast, color, intensity, edge density, and edge
orientation (see [20]). One well known (bottom-up) salience
model was introduced by Itti [20]. As do other bottom-up
approaches, this framework attempts to simulate human at-
tention as a feed-forward neural network. That is, it takes
various features of the stimulus, such as the color contrast,
gradient and motion maps, as input, and produces a single
salience map that highlights the locations where the human
gaze is mostly likely to attend. According to at least some
neuroscience theories[20], a representation similar to the de-
scribed salience map may be used by the human brain to
control the human oculomotor system and to direct eye gaze
to explore the stimulus, such as an image or a web page.

While it is thought that the human eye is initially at-
tracted by the most salient regions of the image, theories
about subsequent examination differ. For example, some
have argued that the subsequent examination points are
planned in order to maximize the resulting information gain
[20, 21, 39]. While low level visual salience may direct the
first gaze position, or fixation, it is believed that ultimately
memory and expectations (e.g., about what is shown in the
image and where to find specific objects) begin to also play
important roles in subsequent examination positions. To
take advantage of this insight, top-down (task specific) mod-
els which account for these effects were introduced [20, 30,
31].

2.2 User Attention and Engagement on the Web
Modeling searcher attention on the Web introduces addi-

tional challenges as content can be more varied semantically
(e.g., combining both images and text), dynamic, and inter-
active. Stone and Dennis [38] used latent semantic analy-
sis of topics to predict eye movement fixations on a generic
Web page given position of text elements and hyperlinks.
Our work is different in that we incorporate much richer in-
formation about elements semantics. In addition, we aim
to combine Web page content salience with user interac-
tions on the page. More recently, reference[35] predicted
aggregated salience of Web pages based on visual content
alone. As in most visual salience approaches, the authors
used pixel based information to construct variety of salience
maps (based on pixel level contrast, color, orientation) that
are combined to produce a single map that approximates dis-
tribution of eye gaze fixations on a Web page. Our method
builds on some of the ideas in these papers, but takes a
different approach by modeling user attention with a para-
metric distribution derived on a relatively small number of
prominent Web page elements. It allows us to avoid dealing
with pixel level salience (and high computational complex-
ity associated with it) and develop a unified model of user
attention on Web pages that takes advantage of Web page
element importance and user interaction with the page.

More closely related to our work, Buscher el al. [4] ana-
lyzed the factors determining fixation time, i.e., the time a
user spends carefully examining, or fixating on, individual
elements of a Web page. They found that the size of an
HTML element and its proximity to the top left corner of
the Web page play a major role in amount of attention this
element receives. Instead of implicitly modeling scrolling ac-
tivity like in [4], our work focuses on modeling user attention
on a visible portion of the page (i.e., viewport).
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In the Web search domain, studies of user attention using
eye tracking provided numerous insights about typical con-
tent examination strategies, such as top to bottom scanning
of Web search results [11, 29]. Other studies have investi-
gated the effect of caption length and quality on searcher
attention, identifying relevant page regions, and for many
other tasks. Perhaps the most well known outcome of this
line of work is the “golden triangle” of attention on Web
search results, often present in the traditional search result
layouts. A more comprehensive overview of classical models
of searcher attention is available in [17]. More recently, a
line of research on user engagement with online content has
emerged[27]. For example, the users’ engagement with news
examination is often influenced by affect, sentiment, and vi-
sual clues[2] – which in turn can be used to better predict
attention.

2.3 Searcher Attention Prediction
Perhaps the most practical application of attention model-

ing is to predict searcher attention – which could be applied
for tasks such as search evaluation, improving search quality,
and search advertising. Due to the high cost and the nec-
essarily small scale of eye tracking studies (due to requiring
specialized eye tracking equipment), a considerable amount
of research has been devoted to finding more scalable meth-
ods of attention measurement. In particular, mouse cursor
tracking was proposed as a cheap alternative to eye tracking
by inferring searcher gaze position from mouse cursor po-
sition. The relationship between cursor and gaze has been
studied empirically[8, 34, 14, 18, 32]. Chen et al. [8] was one
of the first to study coordination patterns between mouse
cursor and gaze. They classified mouse cursor movement
into five classes: “Stay Nowhere”, “Go Nowhere”, “Stay the
Same Region” and “Go to New Region”. They found that
the distance between mouse cursor and gaze position was
smallest when the user moved mouse cursor in order to per-
form an action, e.g., pointing or clicking. However, when the
cursor remained inactive, the reported accuracy of attention
measurement degraded.

In the context of Web search, the coordination between
mouse cursor and eye movements was first reported by Rod-
den et al. [34]. They reported the alignment between the
user’s eye movements and mouse movements when scanning
a web search results page, and identified three patterns of
active mouse usage: following the eye position vertically, fol-
lowing the eye position horizontally, and using the mouse to
mark a relevant result. Guo and Agichtein [14] proposed a
natural extension Rodden’s work - to predict eye-mouse co-
ordination (i.e., whether the mouse cursor is in close proxim-
ity to eye gaze at any given point in time). These works were
further extended by Huang et al. [18] to directly predict the
gaze position from mouse cursor movement, showing that
the cursor and eye gaze are best aligned when the user is per-
forming click action, and have the largest average distance
in periods of cursor inactivity. Navalpakkam et al. [32] stud-
ied the coordination of cursor and gaze on non linear search
result page layouts, e.g., in the presence of rich information
panel on the right side. They showed that a non-linear re-
gression model offers more accurate predictions of gaze posi-
tion, and outperforms previous approaches. Also related to
our work is the research of Diaz et al.[9], which proposed a
two-dimensional attention transition model based on mouse
cursor movement over grid layouts.

In this work, we build upon these ideas[18, 32, 9] and
instead of predicting gaze position in isolation (without spa-

tial constraints) we develop the first model that combines
the evidence provided by interaction data with the informa-
tion about Web page elements visible to the user through
the browser’s visible part of the page, or viewport. Further-
more, unlike in previous work in gaze prediction, we extend
our model to predict attention on pages in other domains,
moving beyond web search result pages.

3. MICS: COMBINING CONTENT AND IN-
TERACTION SIGNALS

In this section we present our MICS model that allows
us to more effectively infer user attention on Web pages by
combining content and interaction signals. This is an even
more challenging problem than predicting attention in im-
ages, as is done in computational visual salience research:
Web pages contain extensive layout structure and multiple
layers of meaning encoded in the text, layout, and metadata
about a page.

To address this challenge, we exploit the observation that
web pages, more so than image-only stimuli, can be effec-
tively annotated with areas of interests (i.e., potential tar-
gets in the top-down models terminology), that can enable
more accurate modeling of user gaze during web browsing
or information seeking activities. Such annotations can be
based on set of rules or rely on an automatic classifier to
segment page elements that take part in the model. While
the ultimate accuracy of the model is likely to depend on
the quality of the page segmentation, for now let us assume
that for popular types of Web pages (e.g., Search Engine
Result pages or social media news feeds) such segmentation
is available. The details of the particular page segmenta-
tion algorithm used in this work are provided in Section
4.1. Assuming a page segmentation is given to us, we can
now define our Mixture of Interactions and Content Salience
(MICS) model.

3.1 MICS: Definition
Our approach to modeling the allocation of user attention

on a page is derived from the general idea of the mixture
of experts model in machine learning [22]. Our goal is esti-
mating the task-specific (top-down) element importance on
the page, and then refine the prediction based on how long
each element on a page was displayed to the user, and where
it was in the viewport1 and what interactions the user per-
formed.

MICS operates by sub-dividing the visual space into re-
gions - each corresponding to a particular Web page ele-
ment. While the distribution of gaze positions within each
element is determined only by the features of the element,
the probability of attending a page element depends on rel-
ative attractiveness of all the elements displayed in the visi-
ble portion of the Web page. Intuitively, in our model each
element “competes” for user attention against other visible
elements on the page. Unlike previous approaches, which
mainly use the visual stimuli information on pixel level (i.e.,
visual salience) to predict attention, our model takes advan-
tage of the information about page element rendering (how
elements are displayed by an Web browser to a user) and
constructs compact, yet expressive, distribution of user at-
tention in the browser viewport.

More formally, our model defines a probability distribu-
tion of gaze position over the visual space (browser viewport)

1We use the term viewport to denote the portion of a Web
page visible to the user at given point of time.
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Figure 2: The MICS model for search attention modeling.

Variable Description
N number of gaze data points
ni number of Web page elements at i-th view-

port
xi ∈ R2 i-th gaze position
zi ∈ {1, .., ni} index of the Web page element being

viewed at i-th viewport
µij ∈ R2 mean of the j-th element Normal distribu-

tion
σij ∈ R2 variance of the j-th element Normal distri-

bution
dij ∈ R2 position of the j-th element
p dimensionality of element’s feature space
α ∈ Rp feature weights for the element importance

distribution (zi)

Λ ∈ R(p×2) feature weights for the element means µij

Σ ∈ R(p×2) feature weights for the element variances
(σij)

fj ∈ Rp feature vector of j-th page element.

Table 1: Summary of the notation used in the MICS model.

which is represented as a mixture of distributions - each cor-
responding to a particular web page element. This can be
viewed as a particular type of a mixture of experts model
(MoE, [22]), where each expert corresponds to a distribu-
tion representing the individual Web page elements. The
reason MoE formulation is particularly well-suited to this
setting is that it naturally manages uncertainty about the
“attractiveness” of each element, which can be refined using
additional features of the content element itself, or, later on,
with interaction data.

MICS can also be viewed as a generative model. Fig-
ure 2 presents the MICS model diagram in plate notation.
Table 1 defines the notation used in Figure 2. In the di-
agram, i stands for each data point, which consists of the
set of elements and their locations on a page, visible at that
time on the page, and the corresponding gaze position co-
ordinates xi. MICS states that the i − th gaze position is
generated from the observed element positions dij with their
corresponding features fij. The element’s µij parameters are
defined as:

µ
(x)
ij = d

(x)
ij + widthij · sigmoid(Λ(x) · fij)

where µ
(x)
ij is the horizontal component of element’s Normal

distribution mean parameter, d
(x)
ij is the element’s top left

coordinate x, widthij is the width of the element, Λ is a

free parameter estimated during training, and fij is vector
of element’s features. The element’s variance parameter σij

is computed as:

σij = exp(Σ · fij)

where Σ is free parameter estimated during training. The
probabilities of viewing an element are parametrized using
the softmax function with the free parameter α:

P (zi = j|α, f) =
exp(α · fij)∑ni
j=1 exp(α · fij)

3.2 MICS Training
To make the model training more tractable, we make a

simplifying assumption that all gaze positions are generated
independently from each other. This allows us to derive
an efficient inference and learning algorithm. Our algorithm
learns the element importance weights α for the MICS model
as follows. Let the dataset D = {xi}Nk

i=1 collection of Nk

gaze positions for k-th page view. Note that depending on
the scroll position of the browser, there could be a different
number of elements visible in the viewport, we denote this
number as ni. We assume that information about position
of page elements (dij) and their features fij is available.

In order to find plausible values for model parameters Θ =
{α,Σ,Λ} we perform maximum likelihood estimation That
is we optimize log-likelihood of gaze observations given the
model parameters:

L(xi|Σ,∆, α) =

K∑
k=1

Nk∑
i=1

ni∑
j=1

P (zi = j) logN (xi|dij + µij , σ
2
ij)

In order to optimize the log-likelihood we use Stochastic
Gradient Ascent (SGA) method with learning rate anneal-
ing. The model is implemented using symbolic differenti-
ation tool Theano[3] that automatically generates code for
gradient computation.

3.3 MICS Inference
Once the MICS model is trained, gaze prediction distri-

bution is computed as:

P (xi|Σ,∆, α) =

ni∑
j=1

P (zi = j|α, fij)N (dij + µij , σ
2
ij)

Note that P (zij = j) gives us an importance weight (from
0 to 1) for each of page element dij . Thus, we could view
it as a mixture distribution of ni Normal distributions as-
sociated with the attractiveness and uncertainty predicted
for each element, respectively. Computing the density of
this distribution over a fixed grid of 2-dimensional points
is tractable, as we demonstrate in the experiments section.
Given the predicted density, the expected gaze position can
be obtained by computing the maximum likelihood estimate
of the x and y values under the predicted density distribu-
tion.

Since MICS is a generative model, for completeness we
describe the generative process of how gaze positions could
be generated by our trained model. The following generative
process can be used to generate an i-th sample from our
model:

1. Generate zi with probability P (zi = j|α, fij)

2. Generate gaze position xi ∼ N (dij + µij , σ
2
ij), where

dij is position of j-th element on the screen,
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In practice, in order to avoid computationally costly sam-
pling procedure, we could obtain estimates of gaze positions
by numerically computing expectation over the predictive
density:

x̄i =

L∑
l=1

M∑
m=1

xlmP (xlm|Σ,∆, α, fij,dij)

where L and M are number if integration points in xlm

are nodes in two dimensional grid used for computing the
expectation.

Having defined the general MICS model, we now turn to
the specific implementations of MICS to be validated on two
increasingly difficult tasks, as described next.

4. MODEL IMPLEMENTATION
We now describe the specific implementation of the MICS

model including Web page segmentation and content fea-
tures that were used in this work.

4.1 Extracting Prominent Web Page Elements
Identifying most prominent Web page elements is not al-

ways a trivial task. Often, Web pages contain thousands
of HTML elements, many of which are not even displayed
to the user. As our goal is to model attention in presence
of significant (visible and important) page elements, it is
desirable to eliminate page elements that are unlikely to at-
tract user attention, thus, considerably simplifying model-
ing complexity. To this end, our web page content analysis
consists of first segmenting a web page into HTML DOM el-
ements, then selecting a subset of the elements to consider,
and finally extracting content features just from that sub-
set. To take advantage of all Web pages in our dataset we
employ both rule based segmentation, applied for frequent
page types, and classifier based segmentation, applied for
less frequent page types in our dataset. We would like to
emphasize that this is just one of many ways to implement
content element segmentation and other variations could be
explored in future work to further improve performance.

For web pages that occur relatively frequently in our data,
such Google search result pages or Twitter pages, we imple-
ment manually engineered segmentation. This is a common
approach taken in previous work, and is applicable to a large
and important subset of web pages which tend to share the
same layout and page template.

For less frequent pages, we apply a supervised automatic
classifier that for each web page layout element outputs a
binary decision - whether this needs to be segmented or
not. This makes our approach potentially applicable to a
wider range of web pages. To perform this classification we
use Gradient Boosting Decision Tree classifier (GBDT) [10].
The classifier uses page element’s features to determine if
element needs to be included or not. In order to train the
this classifier we manually annotated page segmentation for
20 pages. Table 2 shows features used by our classifier. We
utilized several types of information including the element’s
DOM Tree features (e.g. amount of links), the element’s
position information and size (e.g., width and height), as
rendered by the browser at the time of page visit, and the
element’s style (e.g. visibility and text font size).

Figure 3 shows example of the page segmentation output
for a Google search result page. While the granularity of
the segmented elements varies for different page types, we
see that the elements carrying most important content in-
formation are captured. The fact that such segmentation

Figure 3: Example of page segmentation for a search result
page (bottom of screen shot is cropped to fit).

only eliminates page elements that are not displayed in the
browser or used only for layout or formatting, simplifies the
salience modeling in a sense that we do not need to account
for thousands of elements in our model.

4.2 Content and Interaction Features
We re-use content features employed by page segmenta-

tion algorithm (shown in Table 2, Content feature group).
Our features encode information about element size, posi-
tion on the page, style and font size, and simple information
content measures such as number of words normalized by
area. As discussed, additional more sophisticated content
representation features could be invented, but in this refer-
ence implementation we opted for simplicity and generality.
Despite the simplistic representation, the MICS model is
able to use these features effectively, as shown in the exper-
iments below.

MICS naturally allows to enrich the previously proposed
regression models by allowing the features to be element-
specific. For example, how MICS can exploit the information
on how close is the mouse cursor to the particular element
or whether a mouse cursor will hover over the element in
the next few seconds. Such features allow the MICS model
to learn cursor gaze coordination patterns not only on the
overall behavior level, but on the element level as well. For
example, if the mouse cursor hovers over the search box el-
ement, it is very likely that the user is going to reformulate
the query terms, which implies the attention is focused on
the search box. In contrast, if the cursor hovers over the
elements located on the right side the search result page, it
is less likely that the user’s attention is following the cursor.
Thus, to capture user interaction with the given element
we include features that encode relative position of the cur-
sor the element, cursor velocity, binary features indicating
whether cursor is currently hovering the element or user is
clicking on the element. Table 2 lists both Content and
Interaction features used in our model. To account for a po-
tential lag between interaction and eye gaze movement we
concatenate features in the Interaction group at adjacent
time d steps. The offsets for the adjacent time steps are
{±1,±2,±4,±8,±16}.

We train the MICS model using Stochastic Gradient As-
cent algorithm with minibatch size = 100 and learning rate
0.001. To improve convergence speed we randomly shuffle
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training examples before start of the training.
To obtain the predicted gaze position using the MICS model

the we use expected x̄ under the predicted attention distri-
bution as described in Section 3.3 with number of integration
steps L = M = 100.

5. EXPERIMENTAL SETUP
In order to compare the effectiveness of different approaches

for attention modeling, we performed a realistic user study,
with eye tracking to collect the eye gaze data as ground
truth. In the rest of the section we provide the details on
data collection, the baseline models that were proposed in
prior work, and the evaluation metrics used for the experi-
ments in the next section.

5.1 User Study
In order to investigate the effects of domain and task on

searcher attention, we systematically varied the scope of the
search task, and the search domain. The tasks were mod-
eled on the studies in [12, 33] to be representative of the
common search tasks in common search domains. Specifi-
cally, the task (scope) was designated as either Focused or
Broad. The Focused information need required the users to
find specific information, e.g., “How many megapixels does
Nexus 5 camera have?” in Web Search domain, while Broad
information tasks had no specific answer, but rather asked
the users to learn about a particular topic, e.g., “Learn what
people on Twitter are saying about gay marriage” in the So-
cial Network domain. Two focused and two broad tasks were
performed by each user in each of the five common search
domains: Web Search (Google), Shopping (Amazon), Social
Network (Twitter), News (CNN) and Wikipedia, for a total
of 20 tasks per user. We randomized the presentation order
of the tasks to eliminate possible learning effects. To reduce
the biases in the training data, we balanced the study design
by ensuring that the same amount of data was collected for
each (domain, scope) pair.

For the user study, we recruited 20 undergraduate and
graduate students (11 of them males) from a major univer-
sity. Each user was asked to perform four “warm-up” prac-
tice tasks to become familiar with the study flow, followed
by the 20 tasks that we use in our analysis. All user actions,
including query input, page navigation, clicks and mouse
cursor movements were recorded using a custom extension
to the Firefox internet browser. To capture the user’s eye
movements we used the Tobii T60 eye tracker system built
into a 17”monitor with 1280×1024 screen resolution, record-
ing eye gaze positions with frequency of 60 Hz. The To-
bii system is head-free, where the participant could sit and
interact with the computer naturally without being locked
into a specific head position or body posture, making the
collected interaction data more realistic. The eye movement
data was pre-processed using Tobii Studio software to seg-
ment the data points into eye fixations (i.e., times of slow
and detailed examination) and saccades (i.e., times of fast
movement when the eye jumps to examine a new position).

5.2 Data
Overall, the data includes eye movement and interactions

data for 2,890 page views, with 673 page views correspond-
ing to the search pages. The eye gaze data contains 93,290
fixations. As in prior work [18, 32] we interpolated the gaze
and cursor data every 100ms using nearest neighbor inter-
polation method, which resulted in 233,225 aligned eye gaze
and cursor data points. Discretizing gaze data with fixed

sample rate greatly simplifies prediction task by eliminating
need to infer fixation duration [18, 32]. The dataset size is
comparable to previously reported studies, and was primar-
ily limited by the effort required to recruit and supervise the
user study participants.

5.3 Baseline Models
Several works have attempted to infer the user’s gaze po-

sition from cursor interactions. Most of the prior approaches
trained a regression model to estimate the gaze position from
cursor interaction features. We describe the two recent well
known models that we use as state-of-the-art baselines for
the subsequent experiments.
Linear Regression (LR). Huang et al. [18] proposed to
directly predict a searcher’s eye gaze position from mouse
cursor movements on search result pages. They used a lin-
ear regression model to learn the relationship between eye
gaze and cursor movement features. Their model can be
formulated as:

xi = 〈w,vi〉

where w is the vector of feature weights, vi is vector of fea-
tures for the i-th data point. During training the model
computes an optimal vector of weights w, such that the
discrepancy between model predictions and the actual gaze
positions is minimized. Specifically, the optimization min-
imizes the squared error between the actual eye gaze posi-
tions and the predicted positions.

Non-Linear Regression with Kernels (KR). Recently,
a more sophisticated model of attention prediction from was
introduced by Navalpakkam et al. [32]. Unlike the LR model,
which assumes a linear relationship between cursor features
and gaze position, the KR model is able to capture non-
linearities of the data, but adding an additional transforma-
tion φ over the feature vector. The KR model is defined
as:

f(vi) = 〈w, φ(vi)〉

where w is the vector of feature weights, vi is vector of fea-
tures for the i-th datapoint, and φ(vi) is the Nystrom ap-
proximation of the Gaussian Radial Basis Function kernel
matrix [36] with n = 500 basis vectors. This transformation
is known as a “kernel trick” that helps capture non-linear
dependencies between cursor features and gaze, while main-
taining relatively easy training procedure. During model
training we find the optimal set of vectors w so that it min-
imizes the discrepancy between the model predictions and
gaze positions in the training data.
Baseline Interaction Features In our experiments we use
the same basic cursor movement features for all models for a
fair comparison. This set of features include and extend the
published features used in prior work [18, 32]. These feature
vectors are computed to represent each data point (mouse
cursor position):

• Mouse cursor x and y positions

• The time since the page load

• The absolute values of cursor speed (vertical and hor-
izontal), and movement direction (angle)

• The cursor distance traveled in the page up to this
point

• The time and position of the most recent click on the
page, if any
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Group Feature Name Description

Content

Num{Links, Images,P } Number of {a, img, p} tags in the given element
IsTagName Collection of binary features which equal 1 if the element’s tag matches par-

ticular type (otherwise feature value is zero). The tags are 〈a〉, 〈img〉, 〈p〉,
〈div〉, 〈span〉, 〈h1− h3〉, 〈em〉, 〈b〉, 〈li〉, 〈ol〉, 〈ul〉

Left, Top, Width, Height Position and size information (in pixels)
TimeOnPage Time since the page load
NumChildren Number of child elements

{Text, Image}Area Total area of all {Text, Image} elements inside of the given element
FontSize Font size of the element’s text

TextToAreaRatio Number of words (tokenized by white spaces) in the element divided by the
element’s area

Interaction

Cursor{X, Y} Cursor position in pixels
Speed{X, Y, Abs} Horizontal, vertical and absolute speed of cursor movement

Cursor{On, L, R, T, B} Binary features indicating cursor position with respect to the element position
(OnElement, Left, Right, Top, Bottom)

CursorSame{Vert, Horiz} Binary features indicating whether cursor position overlaps with the element
vertically or horizontally

DistX, DistY, DistEuclidean Distance from the cursor to the element’s center
ClickOn Non-zero if cursor click occurs on the element at given time step

ClickDistX, ClickDistY,
ClickDistEuclidean

Distance from the click position to the element center (zero if there is no click)

TimeToScroll, TimeSinceScroll Time since last scroll and time to the next scroll.
OffsetFromScreenCenter{X, Y} Vertical and horizontal offset of the element with respect to center of the

viewport

Table 2: Content and interaction features used by MICS.

• The vertical scroll position, in pixels

• The time since the last scroll event, if any.

To account for longer range dependencies between the gaze
and cursor movement for each time step we include features
from previous time steps, logarithmically spaced, following
the approach of [32]. The time step offsets were chosen as
{±1,±2,±4,±8,±16}, capturing the 100ms to 1.6 second
“history” of the mouse movements. While this is a minor
extension compared to previously proposed approaches, all
the compared methods benefited from this additional con-
textual information.

5.4 Evaluation Metrics
For comparing the performance of the MICS model against

the baseline LR and KR models, we use the root mean
squared error (RMSE) and mean absolute error (MAE) met-
rics, used in prior work for this task.

More formally, given a sequence of true and predicted gaze

positions x
(i)
gaze and x

(i)
pred, RMSE is computed as:

RMSE =

√√√√ 1

N

N∑
i=1

|x(i)
gaze − x

(i)
pred|2

where N is the number of gaze data points, x
(i)
gaze is the

actual gaze position at step i, and x
(i)
pred is the predicted

position, and the difference is the square of the Eucledian
distance between the two. While RMSE is convenient from
the optimization perspective (both LR and KR minimize
the mean squared error, or MSE, on the training data), it
dis-proportionally weights large errors. Therefore, we also
consider mean absolute error, also used in prior work, which
does not introduce this bias. The MAE is computed as:

MAE =
1

N

N∑
i=1

|x(i)
gaze − x

(i)
pred|

where the sum is over the Euclidean distance between the
actual and the predicted gaze positions.

To achieve more robust estimates of models’ performance,
all the experiments were performed with 3-fold cross valida-
tion (CV). Each of the metrics is computed as the average
across the hold-out (test) folds.

6. RESULTS AND DISCUSSION
Table 3 summarizes prediction performance for the base-

line models LR and KR and our MICS model, averaged
across the hold-out samples, in the cross validation setting.
MICS performs significantly better than LR and KR in all
of the domains (p < 0.001, two tailed t-test). Reduction
in error varies from 7% in Shopping domain to 35% in So-
cial Network domain RMSE=237.8 px. The lowest pre-
diction error was obtained in the Social Network domain
(RMSE=237.8px, MAE=206.3px), while the Shopping do-
main appeared to be the most difficult to predict resulting in
the highest error (RMSE=335.7 px, MAE=298.6px). We
believe that the reason for the large performance improve-
ments lie in the additional power available to the MICS model.
Both LR and KR models make strong assumptions about the
relationship between gaze and cursor interactions, relying
on a constant bias term independent of the actual content
shown to the user. Since user attention distribution heav-
ily depends on what is shown the screen (e.g, see Figure 1),
a constant bias that works for different types of pages may
not exist. In contrast, MICS , by design, follows the content,
and is able to supply a multi-modal predictive distribution
dictated by the Web page elements visible to the user.

Interestingly, on the Web search domain, MICS also ex-
hibits substantial reduction in error on the horizontal dimen-
sion (RMSEx and MAEx), making it even more appealing
for evaluation – when search results may be shown to the
right of the organic search results [32]. Such results attempt
to provide users with direct answers to their information
needs without requiring users to click. Previously, it has
been proposed [32, 26] to utilize user attention for evalua-
tion, providing a natural application of MICS for this task.

Our results demonstrate that it is possible to learn Web
page element salience or attractiveness that is generalizable
across different page types. This is even more encouraging
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Web Page Domain Method RMSEx RMSEy RMSE MAEx MAEy MAE

Web Search
LR 234.0 236.6 332.7 (N/A) 181.9 194.1 294.8 (N/A)
KR 207.4 220.6 302.8 (-8%) 172.3 181.3 273.4 (-7%)

MICS 156.1 202.6 255.8 (-23%) 128.8 160.1 225.7 (-23%)

News
LR 262.2 279.1 383.0 (N/A) 209.7 229.5 340.6 (N/A)
KR 176.4 247.8 304.2 (-21%) 144.5 204.7 272.4 (-20%)

MICS 174.5 208.3 271.7 (-29%) 138.1 167.0 237.3 (-30%)

Wikipedia
LR 219.7 242.0 326.8 (N/A) 173.6 195.5 288.1 (N/A)
KR 290.0 272.5 398.0 (+22%) 242.5 223.9 360.8 (25%)

MICS 87.2 277.4 290.8 (-11%) 70.2 210.9 235.7 (-18%)

Shopping
LR 249.1 259.2 359.5 (N/A) 196.3 211.2 319.5 (N/A)
KR 281.5 285.9 401.2 (+12%) 225.6 231.1 359.3 (+12%)

MICS 257.6 215.3 335.7 (-7%) 201.4 179.6 298.6 (-7%)

Social Network
LR 260.4 256.2 365.3 (N/A) 206.5 207.0 322.1 (N/A)
KR 205.6 263.0 333.9 (-9%) 162.2 210.0 293.3 (-9%)

MICS 146.9 187.0 237.8 (-35%) 113.3 146.7 206.3 (-36%)

Table 3: Predictions results for LR, KR and MICS , for different Web page domains. The MICS model consistently outperforms
prior methods in all domains (differences in RMSE and MAE are significant p<0.001 with two tailed t-test).

since the Web search engines are constantly experimenting
with various ways to improve user interface of search results
and maintaining an attention model that can only work for
a certain page configuration would severely impact its use
cases. While MICS outperforms prior approaches in the
gaze prediction task, it provides a general and principled
way to integrate page content information into the attention
model. The behavioral features allow MICS to make more
sensible, time dependent predictions and capturing cursor-
gaze coordination patterns.

6.1 Discussion
We have shown that MICS is able MICS to learn salience

of Web page elements and to combine it with information
about user interaction. In this section we highlight implica-
tions of this work, provide more intuition on why MICS is
able to outperform previous models and discuss potential
limitations of our approach.

We first analyze the contributions of the content-based
vs. interaction-based signals to better understand the per-
formance improvements of the MICS model. To this end,
we performed a feature ablation experiment, where we com-
pare the model variants while removing the corresponding
feature groups (Table 4). We find that certain page types
benefit from Content and Interaction to different extent.
In Web Search and Wikipedia domains we find that both
Content and Interaction feature groups are not particularly
helpful independently of each other. Interaction features ap-
pear to be more important for News, Shopping and Social
Network domains, where model performance drops substan-
tially, compared to the model with ablated Content features.
In all cases, the combination of both content and interaction
features performs better than either signal alone.

To further understand which Web page elements MICS finds
important we examined element importance weights given
by P (zi). Figure 4a shows an example prediction for a part
of a Social Network Web page. Red boxes boxes indicate the
segmented Web page elements. Line width of the bounding
boxes reflects the element’s relative importance weight given
by the MICS model. Hence, only a few elements stand out
as important in Figure 4a. We see that the Twitter mes-
sage displayed in the center of the page draws most of the
attention. The next most prominent element on the page is
another message, displayed towards the bottom of the page.
In contrast, the “recommended users” feature elements re-

Weight Feature
-0.821 DistEuclidean(dt=+16)
0.763 Height
0.720 CursorOn(dt=+8)
0.615 IsH3
0.483 NumP
-0.414 SpeedAbs(dt=0)
0.405 CursorSameVert(dt=+2)
0.402 CursorOn(dt=0)
0.383 SpeedY(dt=-4)
0.372 IsP

Table 5: Features with largest weights learned by the
MICS model.

ceive much smaller weights - an indication that MICS is
able to find elements which are likely to attract user atten-
tion. Another example is shown on Figure 4b. It visualizes
the relative importance weights for a Wikipedia page. We
see that text paragraphs near the center of the screen (on
the right column) are the most prominent. Menu items and
contents navigation blocks receive smaller weights. This is
in agreement with prior work of Buscher et al. [5] that an-
alyzed aggregated pattern of user attention on the screen.
These examples illustrate that MICS identifies task-specific,
salient page elements across different page layouts. These el-
ements (as described in Section 3) are then used to construct
a mixture distribution that helps predict user attention on
any given viewport.

To further understand which element and interaction fea-
tures MICS considers important with respect to “attract-
ing” attention, we report the weights α assigned to the ele-
ment features (Table 5). For interaction features we include
the time step offset modifier. The DistEuclidean feature
has largest negative weight, which reduces element impor-
tance when cursor moves further away (DistEuclidean in-
creases) from the element in next 16 time steps which in our
data translates to 1.6 seconds. Height is positively related
with element importance and has weight of 0.763. Interest-
ingly, CursorOn(dt+=8) has almost two times higher weight
than 0.402 CursorOn(dt=0) – which capture element hover
interaction. This is consistent with findings of Huang et
al. [18] who reported a positive lag of 700ms between gaze
and cursor positions. MICS assigns relatively high weights
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MICS Features Web Search News Wikipedia Shopping Social Network
RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

All 290.8 235.7 271.7 237.3 290.8 235.7 335.7 298.6 237.8 206.3
– ContentSalience 331.8 284.2 275.3 244.0 331.8 284.2 338.6 302.8 240.8 209.9

– Interactions 333.3 283.8 305.8 269.2 333.3 283.8 363.1 327.4 267.8 236.0

Table 4: Regression performance of the MICS model when ablating Content and Interaction feature groups in MICS.

to features related to the element’s tag (IsH3–header and
IsP–paragraph). Regardless of the element importance, the
weights decrease when the cursor starts moving (SpeedAbs
has negative weight -0.414), indicating the attention is no
longer on the element. Finally, MICS finds CursorSameVert
to be positively related with the element importance.

This work can be potentially improved or extended in an
number of ways. In particular, web page segmentation ap-
proaches (rule based and classifier based) used in the cur-
rent implementation can be improved. That is, rule-based
segmentation may only capture a limited set of pages with
pre-defined HTML template or layout. Alternatives include
other popular Web page segmentation approaches, such as
[7], or using semantic relationship between Web page blocks
[37], or a combination of visual, text and link information
[6]. These more powerful segmentation mechanisms can
be naturally incorporated into the MICS implementation
with operates over whatever page elements are provided by
the segmentation step. Another area of improvement is ef-
ficiency of the implementation. More accurate prediction
performance comes at a price of higher computational com-
plexity during training, compared to the baseline models.
While LR and KR models enjoy the benefits of convex opti-
mization and even allow closed form solutions (in a matrix
form), optimization problem that comes with MICS model is
inherently non-convex and requires application of iterative
methods. In our experiments, MICS converged in about
10-20 iterations, which translate to 1-2 hours of run time
using Theano [3] generated code on Tesla K20 GPU. At in-
ference time, MICS incurs the additional cost of computing
the expected gaze position through a numerical integration
described in Section 3.3. Our results demonstrate that our
optimization method (Stochastic Gradient Ascent) is able to
successfully train a model that performs well on the evalua-
tion metrics. As another promising future direction, Naval-
pakkam et al.[32] showed that gaze prediction error may
be further reduced by personalization – i.e., by additionally
tuning the set of vectors w for each user. While person-
alization is orthogonal to the ideas proposed in this paper,
further personalizing the MICS model can be explored in
future work.

7. CONCLUSIONS
We have introduced MICS , a robust and principled method

for connecting interaction data with the underlying page
content for predicting user attention. Results validated against
eye gaze tracking data show that MICS is more accurate
than previous state of the art models that consider inter-
actions alone. We have shown that the cursor interaction
features allow MICS to make more sensible predictions that
capture cursor-gaze coordination patterns on specific Web
page content. Importantly, MICS forces the most likely
gaze position to be within, or in close proximity to, the
prominent web page elements. This feature could poten-
tially offer better gaze prediction performance for users who
do not use the mouse pointer actively, or only to perform

necessary actions. This could be particularly important for
attention prediction in mobile phones and tablets [16, 26].
The MICS implementation as well as the user study data,
including the eye gaze ground truth, will be made available
to the research community2.

Our work can be expanded in multiple directions. First,
other complementary content features could be designed,
capturing visual attractiveness, semantic concepts embed-
ded in the text, or readability. Similarly, more complex
behavior or mouse cursor movement features could be in-
corporated into the model, including cursor patterns discov-
ered automatically, e.g., as in [23]. These richer features
can be naturally incorporated into the MICS model to fur-
ther improve prediction performance. In turn, accurately
inferring search attention prediction from observable user
behavior data, obtained at Web scale, could enable numer-
ous improvements to the user experience in search and other
online settings.
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