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ABSTRACT 

A file structure designed to provide rapid, 
random access with minimum storage overhead is 
presented. Storage and retrieval are achieved by 
direct attribute combination-to-address transfor- 
mation thereby negating the necessity for large 
file dictionaries or list-pointer structures. The 
attribute combination-to-address transformation is 
conceptually similar to key-to-address transfor- 
mation techniques, but the transformation is not 
limited to operations on a single key but operates 
on the combination of several independent keys (or 
any subset of the combination) describing an item 
or request. 

A storage and retrieval system utilizing the 
combinatorial file structure is developed. Stor- 
age and retrieval results derived from a simulated 
document library of 4000 items are presented. The 
new file organization is shown to have marked val- 
ue with respect to minimum storage overhead and 
high retrieval speed. 
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I. Introduction 

cy and retrieval speed are normally at odds with 
one another. 

Multiple-key file structures, presently in 
use with mechanized systems, range from simple un- 
ordered, linear files to sophisticated list and 
inverted files (4, 8, 9, 18, 23, 27). These files 
can be said to be typical and illustrate the di- 
versity of storage requirements and retrieval 
speeds of the various contemporary file structures. 
On one hand is the linear file requiring storage 
only for the items and descriptor keys but neces- 
sitating a linear search of the entire file for 
any retrieval; while, on the other hand, are the 
inverted and threaded list files achieving rapid 
retrieval but requiring the storage overhead of 
indexes to the files in the form of dictionaries 
or pointers. This storage overhead can, in fact, 
become as large or larger, storage-wise, than the 
item file itself (8, 14). 

The retrieval speed of the inverted and list 
files can, under certain conditions, also be dis- 
appointing (12, 14, 25). This Is a result of the 
"term at a time" search of the inverted and list 
files which does not fully utilize the combina- 
torial properties of a multiple-key file. Ghosh 
and Lum (12, 25) have proposed file organizations 
designed to exploit key-comblnation retrieval but 
they require additional key-combination indexes 
and duplicate item pointer entries to accommodate 
all key combinations. 

The nucleus of any information handling sys- 
tem is the file structure. All data in an infor- 
mation handling system flow from information 
sources into a structured file (collection of 
items of information) and ultimately to the infor- 
mation user. Effective management of this infor- 
mation flow has led to the application of mecha- 
nized, and in particular computer based, systems 
to alleviate the problems of information storage 
and retrieval. This application of automated in- 
formation handling systems has placed a premium on 
the utilization of effective and efficient file 
structures. File effectiveness and efficiency may 
be measured with respect to the amount of storage 
required to store an information file and the 
speed with which information may be retrieved from 
the file. As one might suspect, storage efficien- 
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It would be ideal if the index, as a search 
mechanism, could be replaced by an algorithm (i.e., 
a short series of computation steps) which would 
operate on a request and produce the accession 
numbers of the items in the file relevant to the 
request. Such a search mechanism would be re- 
quired to accept multiple-key requests (i.e., mul- 
tiple index terms) and produce retrievals based 
upon any combination of terms. The remaining sec- 
tions of this paper develop and present a search 
mechanism and file structure possessing these 
properties. 

II. A Combinatorial Structure 

The combinatorial properties of the storage 
and retrieval mechanisms can be easily illustrated 
graphically. With the assumption that each item 
can be described by three unique attributes taken 
from a descriptor set of five attributes, the num- 
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ber of possible attribute combinations can be cal- 
culated from the binomial coefficient: 

= = 3~(5-3) ~ = i0 

It can therefore be concluded that, in this exam- 
ple, any set of attributes describing an item must 
be one of ten possible combinations. 

Representing the five possible attributes in 
the descriptor set by the numbers i through 5 
yields the ten possible combinations illustrated 
in the following diagram. 

Reques~ Set or Attribute Set 

89 

Total Possible Combinations 

From inspection of the above diagram it is 
seen that any possible set of three unique des- 
criptors must map into one and only one of the pos- 
sible combination "buckets". 

g: Idl,d2,d31 ,a: a C Ii,2,3,4...i01 

The term "bucket" is used as it is possible that 
two or more items could have the same attribute 
set; hence the word "bucket" is used to indicate 
the possibility of more than one item in a unique 
combination. The mapping, g, must produce an ad- 
dress, a, which is an element of the set 

I 1,2 .... i0 I . 

The Possible Combinations diagram allows the 
consideration of both storage and retrieval oper- 
ations. The storage mechanism may be illustrated 
by means of the following example. 

Item Storage 

Item Attribute Set Mapped to Bucket 

i dl,d2,d3 a 

i 2,3,5 8 

2 2,3,4 7 

3 1,2,3 I 

4 1,3,4 4 

5 1,3,5 5 

6 3,4,5 i0 

The retrieval mechanism operates in a similar 
manner; however, all combinations containing the 
request attribute set must be addressed. The fol- 
lowing Item(s) Retrieval example illustrates an 
obvious but important property of a combinatorial 
file structure. A particular request need only 
address some fraction of the combination buckets. 
The number of addressed buckets is a function of 
the number of specified attributes, L, where L 
must be greater than or equal to i, and less than 
or equal to the number of attributes used to des- 
cribe an item, M. M in this case is three. 

Item(s) Retrieval 

Number of 
Attributes Request 
in Request Set 

L dl'''dL 

3 1,3,4 

2 1,3 

I 3 

Possible Mapped to 
Combinations Bucket 

dl,d2,d3 s 

1,3,4 4 

1,2,3 i 
1,3,4 4 
1,3,5 5 

1,2,3 i 
1,3,4 4 
1,3,5 5 
2,3,4 7 
2,3,5 8 
3,4,5 i0 

The number of addressed buckets may be de- 
termlned from the binomial coefficient: 

(N-L) (N-L) .' (N-L)M_ L 
(I) QN,M,L = M-L = (M-L) : (N-M) : = (M-L) .' 

Where : 

M - number of attributes/item 
N - number of possible attributes 
L - number of specified request attributes 

( 1 ~  ) 

(N-L)M.L = (N-L) . (N-L-l) ... (N-M+I) 

QN,M,L - number of possible combinations for 
L specified attributes with fixed 
N and M 

The fraction of combination buckets addressed 
by a request set consisting of L attributes will 
be termed the selection ratio. The selection 
ratio is defined by: 

Number of possible combinations 
= for L specified attributes. 

(2) S.R.N,M, L Number of possible combinations 

for M attributes. 
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Where: 

(M)L = M . (M-l) ... (M-L+I) 

(N)L = N . (N-I) ... (N-L+I) 

Equation (2) yields the simple but interest- 
ing result that the worse case selection ratio, 
L = I, is: 

_ M 

S'R'N,M, 1 N 

Application of equations (i) and (2) to the 
case of five possible attributes with three attri- 
butes per item with requests of one, two, and 
three attributes yields respectively: 

L Q5,3,L SR5,3,L 

I 6 3/5 

2 3 3/10 

3 i i/i0 

which is in complete agreement with the figures 
deduced from the possible combinations diagram for 
the same case. 

Combinatorial Mapping 

It would appear that the combinatorial struc- 
ture offers the ideal mechanism of storage and re- 
trieval. That is to say, a request defines a vol- 
ume of the address space within which all stored 
items are pertinent to the specified request snd 
outside of which the items are irrelevant to the 
request. The combinatorial structure does, how- 
ever, present an addressing or mapping problem. 

The required mapping is identical to the de- 
sired mapping for the combinatorial space as pre- 
sented in conjunction with the Possible Combina- 
tions diagram. 

(3) g: {dl,d2...dM} la: a C {I,2...P 1 

Where: 

p = {N~ (Number of possible combina- 
\M/ tions in the combinatorial 

address space) 

The combinatorial mapping g, must collapse M in- 
dices or attributes into a single index, the buck- 
et address. 

The mapping g, may be developed in a fairly 
straightforward manner by first considering how 
all possible combinations of N objects taken M at 
a time without replications and with unordered 
samples may be formed. There are, of course, 
(N)M/MI possible combinations. These combinations, 
each consisting of M indices (attributes), may be 
generated by varying the indices in the following 
manner: 

(4) Idildi2 di.l il:. L N 
i2:"lM .... <i11) 

i N : 1,2...(iM.l-1 ) 

Where dj is the jth element of the object set or, 
in this case, the jth attribute or index in the 
descriptor set. If the M th index in the attribute 

set, {dil'di2"''diMl ' is varied most rapidly, 

and the (M-I) tN varied next, through the first in- 
dex varying least rapidly, all possible combina- 
tions will be produced in a fixed order (thereby 
effectively deleting permutations in any combina- 
tion) and no replications in any combination will 
occur. 

Since all possible attribute sets can be 
generated in a fixed and mathematically predict- 
able manner, it would appear that the location or 
position of a particular attribute set in the ar- 
ray of possible attribute sets could be determin- 
ed. Indeed, this is the case (14, 24). 

To determine the location of a specified at- 
tribute set in the array of possible attribute 
sets as produced by the possible-combinations 
generator, one may answer either of two questions. 
How many combinations are below the specified set; 
or alternately, how many are above? The former 
question will be answered as the development is 
straightforward. 

Given an attribute set consisting of M ele- 
ments ranked from highest to lowest by numeric 
value, {di,d~...d~l , it is certainly true that 
all attribute combinations formed by taking M at- 
tributes at a time from a set of (d~-l) attributes 
(note that d~ is the largest value in the attri- 
bute set) must be below the given set. Likewise, 
it may be stated that all combinations formed by 
fixing d i in each combination and taking (M-l) 

I 
attributes from a set of (d2-1) attributes to com- 
plete the combinations must also be below the 
given attribute set in the array of possible- 
combination sets. This argument may be extended 

! I I  I to the d M element where dl,d2...d ~ i are all fix- 
ed in each combination and the combinations are 
completed by taking M-(M-I) or I attribute from a 
possible set of (~-i) attributes. 

The number of ways M attributes may be taken 
from a set of (d{-l) attributes without replica- 
tion and ignoring order is simply: 

{d~-ll , a binomial coefficient. 

It may therefore be concluded that the number of 
possible combinations below a specified attribute 
set is: 

+ + 
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where: ' ' ' ' dl> d^> d .... > dr.. Adding one to the num- z 5 M 
ber of combinations below a specified attribute 
set yields the location of that attribute set in 
the array of possible combinations as produced by 
the possible-combinations generator. This loca- 
tion is the "bucket address" in the address space. 
The mapping, g, is therefore: 

(5) g: {d{d~...d~} ~ a: a C {1,2,3...P} 

g(d{,d~...d~) : a : + \M-i / 

+ .. + i 

where the primes on the d's simply indicate 
ordering from highest to lowest. 

Although the preceding development of the 
mapping, g, might appear overly restrictive, it is 
in fact quite general. With the stipulation that 
the descriptor set of possible attributes is re- 
duced to the subscripts of the actual attributes 
ranging from 1 to N, the mapping as defined by (5) 
is perfectly correct. 

Retrieval Operation 

While the preceding development of the attri- 
bute set to address mapping defines the storage 
mechanism, a retrieval operation does not neces- 
sarily involve a single mapping between the re- 
quest attribute set and the address space. This 
property of the retrieval mechanism was discussed 
earlier and was illustrated by equation (I) which 
states that Q mappings are required where: 

Q : (N-L)M-L 

(M-L) : 

It is to be recalled that N and M are, respective- 
ly, the number of possible attributes and the num- 
ber of attributes per item. L is the number of 
attributes in a request (i~ L~ M ). 

As a request must search the Q buckets con- 
tained in the fraction of the volume of the ad- 
dress space as defined by the request, one method 
of mapping to these buckets would be to generate 
all possible combinations of attribute sets con- 
taining the request attributes and map to the ad- 
dress space one to one for each possible combina- 
tion. As this technique offers conceptual simpli- 
city, it will be pursued. 

An obvious starting point in the development 
of a retrieval possible-combinations generator is 
the total possible-combinatlons generator as pre- 
viously presented in (4). With the consideration 
of (4), the retrieval-combinations problem reduces 
to the generation of all possible combinations of 
(N-L) things taken (M-L) at a time. This may be 
accomplished by defining a modified descriptor set 
for each request consisting of the original des- 
criptor set with the L request attributes deleted. 

The Q combinations then formed by the combinations 
generator yield all possible combinations of M at- 
tributes relevant to the request when the L origi- 
nal request attributes are included in each com- 
bination. These attribute combinations may then 
be mapped to the Q buckets by the mapping, g. 
This mapping operation is: 

(6) g: I d i l , d i 2 . . . d ~ } - - a i :  a i C I i , 2 . . .P I  

E x a m i n a t i o n  and  r e t r i e v a l  o f  t h e  b u c k e t  i t e m s  com-  
p l e t e  t h e  r e t r i e v a l  o p e r a t i o n .  

I n  t h a t  t h e  c o m b i n a t o r i a l  f i l e  s t r u c t u r e  
s t o r e s  and  r e t r i e v e s  e a c h  i t e m  as  a f u n c t i o n  o f  
i t s  s e v e r a l  a t t r i b u t e s  w i t h o u t  r e s o r t i n g . t o  com-  
p l e x  I i s t  s t r u c t u r e s ,  t h e  c o m b i n a t o r i a l  s t r u c t u r e  
c l o s e l y  a p p r o x i m a t e s  a s s o c i a t i v e  memory p r o c e s s i n g  
by " s o f t w a r e "  a d d r e s s  d e c o d i n g  ( 7 ,  2 1 ) .  T h i s  
characteristic is basic to all information storage 
and retrieval systems but in this case, is exhib- 
ited on the file structuring level. 

III. A Randomized Combinatorial Structure 

Although the combinatorial file structure may 
be pleasing from the standpoint of a storage and 
retrieval mathematical model, it has limited ap- 
plication in its present form. In order to pre- 
serve associations among items and to assign each 
item in the file a unique address, all possible 
combinations of descriptors, subject to a priori 
constraints, could be required to map into unique 
addresses. Should this requirement be levied, the 
preceding development of the combinatorial file 
structure is of little use; as, for any moderately 
large number of possible descriptors with more 
than a few attributes per item, the number of pos- 
sible combinations becomes far too large for any 
practical application. This conclusion is sub- 
stantiated by consideration of the number of com- 
binations, 7.5 x 107 , of only one-hundred des- 
criptors taken five at a time. 

The "possible combinations" problem is not 
unique to the combinatorial structure, but is en- 
countered in most information storage systems. 
The classical example is that of using names for 
record (the basic information unit, e.g., payroll 
entry, account entry, etc.) identification. As 
the number of possible names is far greater than 
the normal record file, techniques for mapping the 
names to unique locations in the storage media 
have been developed (16, 22, 28, 31, 34, 35). One 
of the more popular and efficient methods of ac- 
complishing this mapping is to randomize the rec- 
ord "names" and normalize the random codes to the 
file length. Each record may then be stored in 
its randomized location. The "name" randomiza- 
tion may be accomplished by performing arithmetic 
operations on the internal machine code used to 
represent the name, i.e., hash-coding. 

Although the techniques of randomized file 
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addressing are varied and the associated problems 
interesting, of principle interest is the applica- 
tion of the randomizing concept to the combina- 
torial file structure. Whereas randomized file 
addressing is concerned with the one to one map- 
ping of s record identification name to a storage 
address, the combinatorial structure requires not 
only that a combination of attributes, which forms 
a record identification, map to a storage address 
but, additionally, that any subset of the attri- 
butes forming the identification maps one to Q 
where Q defines the number of mapped addresses. 
It is therefore required that any technique of 
randomizing aimed at reducing the number of pos- 
sible combinations retain the combinatorial map- 
ping properties of the combinatorial structure 
(i.e., attribute subset mappings of one to Q must 
not be sacrificed by randomization). 

Examination of the binomial coefficient defin- 
ing the number of possible combinations which may 
be formed from N attributes taken M at a time 
yields an insight into possible techniques to al- 
leviate the "possible combinations" problem. It 
is readily apparent that the reduction of either 
N, the number of possible attributes, or M, the 
number of attributes per sample, will reduce the 
number of possible combinations (this is true with 
the restriction that N> 2M). The randomization of 
the M attributes forming an item description, how- 
ever, would annul the independence of the M attri- 
butes and would therefore invalidate a combina- 
torial mapping scheme when retrieval based upon a 
partial description (L out of M attributes) is in- 
dicated. Although the randomization of attributes 
on an item description level must be ruled out as 
combinatorial properties are destroyed, the ran- 
domization of the descriptor universe consisting 
of all N possible attributes is possible while 
still retaining the combinatorial structure. 

Randomization Technique 

The randomization technique consists of map- 
ping a subset of the elements of a set D onto the 
elements of a set C such that the number of ele- 
ments in set C is less than and normally much less 
than the number of elements in set D. Or in set 
notation 

,  l-Io  , 

where {dl,d2...dM~ is a subset of length M of set 
D being mapped into M elements, ~Cl,C2...CM~ , of 
set C. Normally, the descriptor set, D, of all 
possible attributes consists of word descriptions 
in English while the randomized descriptor set, C, 
may be of any arbitrary representation. It may 
therefore be concluded that with an a priori know- 
ledge of the representation of set D, a mapping, 
f, may be devised which, as a result of its opera- 
tion on an element of set D, produces an element 
of set C in a convenient representation. The 
statement "in a convenient representation" is 
stressed as the combinatorial mapping as developed 
in the previous chapter operates on the subscripts 
of the attributes. Naturally, it would be very 
"convenient" to require that the randomized des- 

criptor set, C, consist of subscripts (integers 
ranging from i to N). 

The mapping necessary to achieve randomiza- 
tion of M attributes describing an item is, there- 
fore, in set notation: 

(7) f: ~dld2...dM} --ICl,C2...CM} : ciCIl, 2...N 1 

The randomized code set, C, may be of any length, 
N, necessary to reduce the possible combinations 
to manageable levels and the mapping is determined 
by the digital storage device characteristics. 

Duplicate Code Probability 

Some inmnediate consequences of the randomiza- 
tion mapping are apparent. In that any possible 
descriptor must map to one of the integer elements 
of the randomized code set and all storage and re- 
trieval operations use these mapped integers, the 
randomized combinatorial structure is functionally 
independent of the file descriptor universe. An- 
other, perhaps detrimental, aspect of the randomi- 
zation of the descriptors is the possibility of 
two or more descriptors mapping to the same ran- 
domized code. This possibility of duplicate codes 
requires s modification to the combinatorial 
structure, 

The previous section developed the combina- 
torial mapping structure based upon the assumption 
of M unique attributes describing an item. This 
assumption appeared valid in that the duplication 
of an attribute does not add additional informa- 
tion to an item description. The randomization 
mapping, however, negates the unique attribute 
assumption. 

In order to better evaluate the impact of 
possible duplicate randomized codes on the com- 
binatorial structure, it is necessary to form a 
more definitive measure of this duplication than 
simply the word "possible". With the assumption 
that the randomization function produces a truly 
random mapping of the attribute set of length M, 
resulting in a randomized code set of length M, a 
measure of the "degree" of code duplication re- 
duces to finding the probability of obtaining J 
unique codes in a sample of M codes formed by 
drawing M codes from a universe of N distinguish- 
able codes with replacement. This probability 
determination is similar to the classical "birth- 
day problem"; however, it is necessary not only to 
determine the probability that no two codes in the 
sample are the same (M unique codes), but also to 
determine the probability of M-l, M-2...i unique 
codes in s sample of M codes. This information is 
necessary in that each duplication of a code ef- 
fectively reduces the number of attributes des- 
cribing an item by one. The degree of this infor- 
mation loss is determined by the following (i0, 
14). 

The probability that in a sample formed by 
drawing M items from N items with replacement, any 
of the N items may appear K I times while the re- 
maining N-i items appear K2,K3...KN times is: 
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M: NI 

= ..KN: , , ~: (8) P KIIK2:" 11"12" "" 

NM 

where: 

M - number of items in sample 

N - total number of items 

K i - total number of times that the i th item 
appears in the sample 

(K I + K2...K N = M) 

i i - total number of times that the i th digit 
appears in the set of K's. 

(OK i th digit~ M:i th digit is integer) 

(i I + 12... ~ = N). 

The probability of finding M unique items in a 
sample of M items is therefore: 

MI NI 

p = i:i~..i~0:..0~ M~(N-M)~O: 

N M 

= N'(N-I)...(N-M+I) = (N)M 

N M N M 

as: KI,K2...K M = i and KM+I,KM+2...K N = O, and 

i I = M, 12= N-M and 1314... ~ = 0, 

which reduces to the expected solution of the 
"birthday problem". 

In that the probability of J unique items ap- 
pearing in a sample of size M is not always deter- 
mined by a single combination of duplications (the 
K set), all possible combinations of duplications 
resulting in a specified number of unique items 
must be listed and their probabilities evaluated 
and surmned to yield the probability of J unique 
items in a random sample. The next section will 
contain an application of formula (8) which will 
further illustrate all "possible duplication com- 
binations". 

Duplicate Code Handling 

Because of the possibility of duplicate attri- 
bute codes arising due to the randomization map- 
ping of (7), it is necessary to devise some method 
capable of handling duplicate attribute codes in 
the context of combinatorial mapping. One possi- 
ble solution to this duplication problem would be 
to redevelop the combinatorial structure allowing 
the duplication of attributes. In view of the 
preceding development, this would not be particu- 
larly difficult; however, a simple fact illus- 
trates the futility of a combinatorial structure 
with the possibility of duplicate attributes: all 
combinations in a duplicate attribute combinatorial 
structure are not equally likely. 

Another, more attractive, solution to the du- 
plicate attributes problem would be to ignore du- 
plicate attributes and, for the purposes of the 
storage mapping, generate at random non-duplicate 
attribute codes to replace any duplicates. Al- 
though this obviously constitutes a loss of re- 
trieval efficiency, degradation occurs only at the 
search level as, although s set of requestors 
could possibly encompass a large area of the file, 
the requestors would, of course, define the area 
into which the original attribute set had mapped. 
It is to be again noted that the duplication of 
attributes is a probabilistic function as defined 
by (8) and the action of randomizing duplicates 
would be taken only on occasion. Elaboration on 
the probabilistic nature of randomized attribute 
duplication will be given in the next section. 

The random replacement of duplicate attribute 
codes as well as the normal randomization of the 
original attributes necessitates a search for 
original descriptor/requestor attribute matches 
subsequent to bucket address decoding during re- 
trieval operation. This search necessity is a 
result of the attribute randomization phase (en- 
coding) where mapping of original attributes is 
many to one. This simply means that a mapped 
bucket address may or may not contain the original 
requestor attributes, hence, the need for the 
search operation. It is hastened to indicate that 
all unmapped buckets will not contain the request 
attributes. The retrieval operation may therefore 
be perhaps best described as a "divide and con- 
quer" technique. 

IV. File Design and Application 

In order to demonstrate the feasibility of 
the Randomized Combinatorial File Structure and to 
illustrate the techniques and considerations of a 
system design utilizing this file structure, an 
information storage and retrieval simulator was 
designed. This simulator encompassed all of the 
randomized combinatorial file structuring concepts 
and the system design c~osely followed the item 
storage and retrieval block diagrams as presented 
on the following page. It is to be noted that the 
choice of the term "simulator" over the term "sys- 
tem" is made simply to indicate that no attempt 
was made to optimize instruction coding, an arti- 
ficial data base was used, and core storage was 
used as the information storage media. 

The first step in the design of a simulator 
is to select the combinatorial file structure pa- 
rameters. The basic parameters are those of the 
number of descriptor attributes per item, M, and 
the total number of possible attribute codes, N. 
The former is dictated by the item description re- 
quirements while the latter is selected by maximum 
retrieval efficiency versus required file size 
considerations. 

In order to illustrate the dependence of the 
selection ratio (retrieval efficiency) and the 
number of possible attribute code combinations (a 
consideration dependent on the required file size) 
on N, a computer program was devised to produce a 
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INPUT I 
l£em and M 
attributes 

If: Encode each of the M 
attributes into one 
of N possible states. 

{dl,d 2.-.dm}-~'{cl,c2...cml: c i CII,2-..N 1 

Order  t h e  a r r a y  o f  M 
encoded a t t r i b u t e s  to  
e l i m i n a t e  p e r m u t a t i o n s .  

I 
I f  d u p l i c a t e s  e x i s t  i n  
t h e  encoded a t t r i b u t e  
s e t ,  d e l e t e  and r e p l a c e  
the duplicates with 

randomly selected codes 
from the N possible states. 

g: 

f 
Calculate a bucket address from the 
ordered, encoded attribute set. 

Io~ ~} -~: ~I ~,~ .... ~I 
Where: 

Store the item with 1 

l 
associated attributes 

in bucket a. 

ITEM STORAGE BLOCK DIAGRAM 

I INPUT I 
L request attributes 

n o  true i 
i n t o  one o f  N p o s s i b l e  s t a t e s .  

: rl,r2...rLl--~ l,C2...CL : ciC 1,2...N 

encoded attributes to 
eliminate permutations. 

r 
Delete duplicates in the 
encoded attribute set. 

Subsequent retrieval is 
based on the L' unique 

codes. 

I 
Generate the Q possible code sets 
of length M which contain the L' 

unique, encoded request attributes. 

Where: 

/N-L '~ 
Q = \M-L'] 

Calculate the bucket address of 
each of the Q ordered code sets. 

g: ~ ~ ~;ml--~ ~ ~ I ~'~ ~I 
Where: 

I 
S e a r c h  e a c h  o f  t he  Q a d d r e s s e d  b u c k e t s ,  

r e t r i e v i n g  a i 1  i t e ms  m a t c h i n g  t he  o r i g i n a l  
L r e q u e s t  a t t r i b u t e s .  

ITEM RETRIEVAL BLOCK DIAGRAM 
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table listing the number of possible attribute 
combinations (buckets) for N ranging from four to 
one hundred while M ranged from three to ten. In 
addition to the number of buckets, the table also 
listed the selection ratio and the number of ad- 
dressed buckets for one out of M to M out of M re- 
trieval attributes for each combination of N and 
M. Although this table is far too lengthy for in- 
clusion in this paper, a portion of these data is 
presented in g~aphical form on Graphs I and 2. 
Both graphs cover only the narrow range of N from 
6 to 20 and M from 4 to 6 which is of importance 
to the simulator design. 

Graph i presents a plot of the number of 
buckets against the number of possible attribute 
codes, N, for various values of M, the number of 
attributes per item. Graph 2, on the other hand, 
presents the worst case selection ratio plotted a- 
gainst N for various values of M. Inspection of 
Graph i yields the fairly obvious observation of 
the rapid rise of the number of buckets due to an 
increase in N for a fixed M. This rapid increase 
in the number of buckets places a limit on the se- 
lection of N for a fixed M as discussed in the 
previous section. Graph 2 illustrates the de- 
crease in the worst case selection ratio as N 
(possible codes) is increased for a fixed M. From 
the standpoint of retrieval efficiency, therefore, 
it is advantageou~ to select an N as close as pos- 
sible to the limit as dictated by Graph i. 

The choice of core storage as an information 
storage medium precluded the use of a very large 
data base. In view of this constraint, an artifi- 
cial data base of 4000 items with five descriptor 
attributes per item was formed. With the assump- 
tion of 4000 items with five descriptor attributes 
per item, the selection of N may be made. 

Reference to Graph i with M = 5 indicates 
that N must be below 15 to yield fewer than 4000 
buckets. In order to allow for the random distri- 
bution of items in the buckets, N = 14 is chosen. 
This choice yields 2002 buckets with a reasonable 
likelihood that any examined bucket will contain 
at least one item after a uniform random distribu- 
tion of the items among the buckets. 

The choice of N = 14 yields a worst case se- 
lection ratio of .357 as seen from inspection of 
Graph 2. The remaining selection ratios with the 
number of buckets addressed by each are presented 
in the table below. 

Known Selection Addressed 
Attributes Ratio Buckets 
(Requestors) 

i out of 5 .35714 715 out of 2002 

2 out of 5 .10989 202 out of 2002 
3 out of 5 .02747 55 out of 2002 
4 out of 5 .004995 i0 out of 2002 
5 out of 5 .004995 i out of 2002 

SELECTION RATIOS 

(14 Possible Attribute Codes with 5 Attributes 
per Item) 

Consideration of the preceding table illustrates 
the "divide and conquer" retrieval operation of 
the combinatorial file structure. 

Effect of Duplicate Codes 

Although the preceding table presents a true 
picture of the retrieval efficiency from the at- 
tribute code level, the effect of possible dupli- 
cate codes must be treated. A table presenting 
the probabilities of no duplicates of requestor 
attributes is shown below. The detail of possible 
duplications may be derived from Equation 8 and is 
not presented. 

Request Attributes 
Probability of 

No Duplications 

5 .44669 
4 .62536 
3 .79592 
2 .92857 
i 1.00000 

PROBABILITY OF NO DUPLICATE CODES 
(Drawn from 14 Codes) 

It comes as no surprise that the probability 
of duplicate codes increases as the number of 
specified request attributes increases. This in- 
crease, however, may be considered as a fairly 
small perturbation to retrieval efficiency in view 
of the far more rapid decrease in the selection 
ratio as the number of specified attributes in- 
creases (see Selection Ratios Table previously 

presented). 

Implementation and Results 

The combinatorial file structure simulator, 
comprised for the most part of Fortran IV rou- 
tines, was implemented on an IBM 7040 computer and 
storage and retrieval tests made. These test runs 
were performed by first utilizing a storage mode 
programming package to read a prepared tape of 
4000 descriptor described items which were then 
stored in a manner consistent with the combina- 
torial file structure; and secondly, by utilizing 
a retrieval mode package to read card input re- 
quests consisting of various numbers of requestors 
and to retrieve all items in the combinatorial 
file which were fully or partially described by 
each request. 

The retrieval times for a typical retrieval 
test are presented in the following table. This 
test consisted of five requests with the requests 
ranging from five to one requestor attributes re- 
spectively. Each request is listed with the num- 
ber of request terms, time per bucket addressed, 
and the total time used to satisfy the request. 

Although the time used to satisfy each re- 
quest should not be considered as an evaluation of 
retrieval efficiency (e.g.,no attempt was made to 
isolate input/output operations from the total 
time), the times are of interest when considered 
from a "relative time" standpoint. If the opera- 
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tlon of retrieval mode simulator was as predicted, 
the "time to retrieve" should have been in direct 
proportion to the predicted number of buckets each 
request should address. This simply indicates 
that "time per bucket" should be relatively con- 
stant. This is indeed the case, and is illustrat- 
ed in the table. 

Request Time to Addressed Time Per 
Terms Retrieve Buckets Bucket 

(Seconds) (Predicted) (Milliseconds) 

5 .07 i 70 
4 .28 I0 28 
3 1.42 55 26 
2 5.50 202 27 
i 17.85 715 25 

As can be seen, all of the requests (with the ex- 
ception of the first) exhibited an average "time 
per bucket" of 25 to 28 milliseconds. The dis- 
crepancy in the time of the first request may be 
attributed to input/output overhead as only one 
bucket is addressed and the time presented is near 
the resolution of the computer interval timer 
(16.67 milliseconds). 

V. Conclusion 

The randomized combinatorial file structure 
achieves storage and retrieval mapping by direct 
combinatorial address decoding. This direct map- 
ping property negates the necessity for the stor- 
age of large file directories or list structures 
(e.g., an inverted file directory) while retaining 
the random access, rapid retrieval characteristics 
of list structured files (4, 8, 9, 18, 23, 27). 
The combinatorial mapping is conceptually similar 
to key-to-address transformation techniques (16, 
22, 28, 31, 34, 35) but the transformation maps 
not as a function of a single key but as a func- 
tion of a combination of keys. 

Although the application of the file struc- 
ture presented in this paper was made on a limited 
scale, implementation of the structure at a signi- 
ficantly greater level can be envisioned. In or- 
der to accommodate a large library of data, auxil- 
iary random access storage such as disk files or 
auxiliary large capacity core storage could be u- 
tilized for the storage of items of information. 
The system design techniques presented in the ap- 
plication section are applicable to a large-scale 
system and should be easily integrated in an in- 
formation storage and retrieval system. 
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