
ELEMENTS OF THE RANDOMIZED

COMBINATORIAL FILE STRUCTURE

Richard A. Gustafson*
University of South Carolina, Columbia, South Carolina

ABSTRACT

A file structure designed to provide rapid,
random access with minimum storage overhead is
presented. Storage and retrieval are achieved by
direct attribute combination-to-address transfor-
mation thereby negating the necessity for large
file dictionaries or list-pointer structures. The
attribute combination-to-address transformation is
conceptually similar to key-to-address transfor-
mation techniques, but the transformation is not
limited to operations on a single key but operates
on the combination of several independent keys (or
any subset of the combination) describing an item
or request.

A storage and retrieval system utilizing the
combinatorial file structure is developed. Stor-
age and retrieval results derived from a simulated
document library of 4000 items are presented. The
new file organization is shown to have marked val-
ue with respect to minimum storage overhead and
high retrieval speed.

KEY WORDS AND PHRASES

file structures, file organization, combina-
torial file, key-to-address transformation, multi-
ple attribute retrieval, file access method, data
structures, hash-coding, attribute combination-to-
address transformation, storage and retrieval sys-
tem

I. Introduction

cy and retrieval speed are normally at odds with
one another.

Multiple-key file structures, presently in
use with mechanized systems, range from simple un-
ordered, linear files to sophisticated list and
inverted files (4, 8, 9, 18, 23, 27). These files
can be said to be typical and illustrate the di-
versity of storage requirements and retrieval
speeds of the various contemporary file structures.
On one hand is the linear file requiring storage
only for the items and descriptor keys but neces-
sitating a linear search of the entire file for
any retrieval; while, on the other hand, are the
inverted and threaded list files achieving rapid
retrieval but requiring the storage overhead of
indexes to the files in the form of dictionaries
or pointers. This storage overhead can, in fact,
become as large or larger, storage-wise, than the
item file itself (8, 14).

The retrieval speed of the inverted and list
files can, under certain conditions, also be dis-
appointing (12, 14, 25). This Is a result of the
"term at a time" search of the inverted and list
files which does not fully utilize the combina-
torial properties of a multiple-key file. Ghosh
and Lum (12, 25) have proposed file organizations
designed to exploit key-comblnation retrieval but
they require additional key-combination indexes
and duplicate item pointer entries to accommodate
all key combinations.

The nucleus of any information handling sys-
tem is the file structure. All data in an infor-
mation handling system flow from information
sources into a structured file (collection of
items of information) and ultimately to the infor-
mation user. Effective management of this infor-
mation flow has led to the application of mecha-
nized, and in particular computer based, systems
to alleviate the problems of information storage
and retrieval. This application of automated in-
formation handling systems has placed a premium on
the utilization of effective and efficient file
structures. File effectiveness and efficiency may
be measured with respect to the amount of storage
required to store an information file and the
speed with which information may be retrieved from
the file. As one might suspect, storage efficien-

*Present Address: Air Force Technical Applica-
tions Center, Alexandria, Virginia

It would be ideal if the index, as a search
mechanism, could be replaced by an algorithm (i.e.,
a short series of computation steps) which would
operate on a request and produce the accession
numbers of the items in the file relevant to the
request. Such a search mechanism would be re-
quired to accept multiple-key requests (i.e., mul-
tiple index terms) and produce retrievals based
upon any combination of terms. The remaining sec-
tions of this paper develop and present a search
mechanism and file structure possessing these
properties.

II. A Combinatorial Structure

The combinatorial properties of the storage
and retrieval mechanisms can be easily illustrated
graphically. With the assumption that each item
can be described by three unique attributes taken
from a descriptor set of five attributes, the num-

163

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1971 ACM

ber of possible attribute combinations can be cal-
culated from the binomial coefficient:

= = 3~(5-3) ~ = i0

It can therefore be concluded that, in this exam-
ple, any set of attributes describing an item must
be one of ten possible combinations.

Representing the five possible attributes in
the descriptor set by the numbers i through 5
yields the ten possible combinations illustrated
in the following diagram.

Reques~ Set or Attribute Set

89

Total Possible Combinations

From inspection of the above diagram it is
seen that any possible set of three unique des-
criptors must map into one and only one of the pos-
sible combination "buckets".

g: Idl,d2,d31 ,a: a C Ii,2,3,4...i01

The term "bucket" is used as it is possible that
two or more items could have the same attribute
set; hence the word "bucket" is used to indicate
the possibility of more than one item in a unique
combination. The mapping, g, must produce an ad-
dress, a, which is an element of the set

I 1,2 i0 I .

The Possible Combinations diagram allows the
consideration of both storage and retrieval oper-
ations. The storage mechanism may be illustrated
by means of the following example.

Item Storage

Item Attribute Set Mapped to Bucket

i dl,d2,d3 a

i 2,3,5 8

2 2,3,4 7

3 1,2,3 I

4 1,3,4 4

5 1,3,5 5

6 3,4,5 i0

The retrieval mechanism operates in a similar
manner; however, all combinations containing the
request attribute set must be addressed. The fol-
lowing Item(s) Retrieval example illustrates an
obvious but important property of a combinatorial
file structure. A particular request need only
address some fraction of the combination buckets.
The number of addressed buckets is a function of
the number of specified attributes, L, where L
must be greater than or equal to i, and less than
or equal to the number of attributes used to des-
cribe an item, M. M in this case is three.

Item(s) Retrieval

Number of
Attributes Request
in Request Set

L dl'''dL

3 1,3,4

2 1,3

I 3

Possible Mapped to
Combinations Bucket

dl,d2,d3 s

1,3,4 4

1,2,3 i
1,3,4 4
1,3,5 5

1,2,3 i
1,3,4 4
1,3,5 5
2,3,4 7
2,3,5 8
3,4,5 i0

The number of addressed buckets may be de-
termlned from the binomial coefficient:

(N-L) (N-L) .' (N-L)M_ L
(I) QN,M,L = M-L = (M-L) : (N-M) : = (M-L) .'

Where :

M - number of attributes/item
N - number of possible attributes
L - number of specified request attributes

(1 ~)

(N-L)M.L = (N-L) . (N-L-l) ... (N-M+I)

QN,M,L - number of possible combinations for
L specified attributes with fixed
N and M

The fraction of combination buckets addressed
by a request set consisting of L attributes will
be termed the selection ratio. The selection
ratio is defined by:

Number of possible combinations
= for L specified attributes.

(2) S.R.N,M, L Number of possible combinations

for M attributes.

164

Where:

(M)L = M . (M-l) ... (M-L+I)

(N)L = N . (N-I) ... (N-L+I)

Equation (2) yields the simple but interest-
ing result that the worse case selection ratio,
L = I, is:

_ M

S'R'N,M, 1 N

Application of equations (i) and (2) to the
case of five possible attributes with three attri-
butes per item with requests of one, two, and
three attributes yields respectively:

L Q5,3,L SR5,3,L

I 6 3/5

2 3 3/10

3 i i/i0

which is in complete agreement with the figures
deduced from the possible combinations diagram for
the same case.

Combinatorial Mapping

It would appear that the combinatorial struc-
ture offers the ideal mechanism of storage and re-
trieval. That is to say, a request defines a vol-
ume of the address space within which all stored
items are pertinent to the specified request snd
outside of which the items are irrelevant to the
request. The combinatorial structure does, how-
ever, present an addressing or mapping problem.

The required mapping is identical to the de-
sired mapping for the combinatorial space as pre-
sented in conjunction with the Possible Combina-
tions diagram.

(3) g: {dl,d2...dM} la: a C {I,2...P 1

Where:

p = {N~ (Number of possible combina-
\M/ tions in the combinatorial

address space)

The combinatorial mapping g, must collapse M in-
dices or attributes into a single index, the buck-
et address.

The mapping g, may be developed in a fairly
straightforward manner by first considering how
all possible combinations of N objects taken M at
a time without replications and with unordered
samples may be formed. There are, of course,
(N)M/MI possible combinations. These combinations,
each consisting of M indices (attributes), may be
generated by varying the indices in the following
manner:

(4) Idildi2 di.l il:. L N
i2:"lM <i11)

i N : 1,2...(iM.l-1)

Where dj is the jth element of the object set or,
in this case, the jth attribute or index in the
descriptor set. If the M th index in the attribute

set, {dil'di2"''diMl ' is varied most rapidly,

and the (M-I) tN varied next, through the first in-
dex varying least rapidly, all possible combina-
tions will be produced in a fixed order (thereby
effectively deleting permutations in any combina-
tion) and no replications in any combination will
occur.

Since all possible attribute sets can be
generated in a fixed and mathematically predict-
able manner, it would appear that the location or
position of a particular attribute set in the ar-
ray of possible attribute sets could be determin-
ed. Indeed, this is the case (14, 24).

To determine the location of a specified at-
tribute set in the array of possible attribute
sets as produced by the possible-combinations
generator, one may answer either of two questions.
How many combinations are below the specified set;
or alternately, how many are above? The former
question will be answered as the development is
straightforward.

Given an attribute set consisting of M ele-
ments ranked from highest to lowest by numeric
value, {di,d~...d~l , it is certainly true that
all attribute combinations formed by taking M at-
tributes at a time from a set of (d~-l) attributes
(note that d~ is the largest value in the attri-
bute set) must be below the given set. Likewise,
it may be stated that all combinations formed by
fixing d i in each combination and taking (M-l)

I
attributes from a set of (d2-1) attributes to com-
plete the combinations must also be below the
given attribute set in the array of possible-
combination sets. This argument may be extended

! I I I to the d M element where dl,d2...d ~ i are all fix-
ed in each combination and the combinations are
completed by taking M-(M-I) or I attribute from a
possible set of (~-i) attributes.

The number of ways M attributes may be taken
from a set of (d{-l) attributes without replica-
tion and ignoring order is simply:

{d~-ll , a binomial coefficient.

It may therefore be concluded that the number of
possible combinations below a specified attribute
set is:

+ +

165

where: ' ' ' ' dl> d^> d > dr.. Adding one to the num- z 5 M
ber of combinations below a specified attribute
set yields the location of that attribute set in
the array of possible combinations as produced by
the possible-combinations generator. This loca-
tion is the "bucket address" in the address space.
The mapping, g, is therefore:

(5) g: {d{d~...d~} ~ a: a C {1,2,3...P}

g(d{,d~...d~) : a : + \M-i /

+ .. + i

where the primes on the d's simply indicate
ordering from highest to lowest.

Although the preceding development of the
mapping, g, might appear overly restrictive, it is
in fact quite general. With the stipulation that
the descriptor set of possible attributes is re-
duced to the subscripts of the actual attributes
ranging from 1 to N, the mapping as defined by (5)
is perfectly correct.

Retrieval Operation

While the preceding development of the attri-
bute set to address mapping defines the storage
mechanism, a retrieval operation does not neces-
sarily involve a single mapping between the re-
quest attribute set and the address space. This
property of the retrieval mechanism was discussed
earlier and was illustrated by equation (I) which
states that Q mappings are required where:

Q : (N-L)M-L

(M-L) :

It is to be recalled that N and M are, respective-
ly, the number of possible attributes and the num-
ber of attributes per item. L is the number of
attributes in a request (i~ L~ M).

As a request must search the Q buckets con-
tained in the fraction of the volume of the ad-
dress space as defined by the request, one method
of mapping to these buckets would be to generate
all possible combinations of attribute sets con-
taining the request attributes and map to the ad-
dress space one to one for each possible combina-
tion. As this technique offers conceptual simpli-
city, it will be pursued.

An obvious starting point in the development
of a retrieval possible-combinations generator is
the total possible-combinatlons generator as pre-
viously presented in (4). With the consideration
of (4), the retrieval-combinations problem reduces
to the generation of all possible combinations of
(N-L) things taken (M-L) at a time. This may be
accomplished by defining a modified descriptor set
for each request consisting of the original des-
criptor set with the L request attributes deleted.

The Q combinations then formed by the combinations
generator yield all possible combinations of M at-
tributes relevant to the request when the L origi-
nal request attributes are included in each com-
bination. These attribute combinations may then
be mapped to the Q buckets by the mapping, g.
This mapping operation is:

(6) g: I d i l , d i 2 . . . d ~ } - - a i : a i C I i , 2 . . .P I

E x a m i n a t i o n and r e t r i e v a l o f t h e b u c k e t i t e m s com-
p l e t e t h e r e t r i e v a l o p e r a t i o n .

I n t h a t t h e c o m b i n a t o r i a l f i l e s t r u c t u r e
s t o r e s and r e t r i e v e s e a c h i t e m as a f u n c t i o n o f
i t s s e v e r a l a t t r i b u t e s w i t h o u t r e s o r t i n g . t o com-
p l e x I i s t s t r u c t u r e s , t h e c o m b i n a t o r i a l s t r u c t u r e
c l o s e l y a p p r o x i m a t e s a s s o c i a t i v e memory p r o c e s s i n g
by " s o f t w a r e " a d d r e s s d e c o d i n g (7 , 2 1) . T h i s
characteristic is basic to all information storage
and retrieval systems but in this case, is exhib-
ited on the file structuring level.

III. A Randomized Combinatorial Structure

Although the combinatorial file structure may
be pleasing from the standpoint of a storage and
retrieval mathematical model, it has limited ap-
plication in its present form. In order to pre-
serve associations among items and to assign each
item in the file a unique address, all possible
combinations of descriptors, subject to a priori
constraints, could be required to map into unique
addresses. Should this requirement be levied, the
preceding development of the combinatorial file
structure is of little use; as, for any moderately
large number of possible descriptors with more
than a few attributes per item, the number of pos-
sible combinations becomes far too large for any
practical application. This conclusion is sub-
stantiated by consideration of the number of com-
binations, 7.5 x 107 , of only one-hundred des-
criptors taken five at a time.

The "possible combinations" problem is not
unique to the combinatorial structure, but is en-
countered in most information storage systems.
The classical example is that of using names for
record (the basic information unit, e.g., payroll
entry, account entry, etc.) identification. As
the number of possible names is far greater than
the normal record file, techniques for mapping the
names to unique locations in the storage media
have been developed (16, 22, 28, 31, 34, 35). One
of the more popular and efficient methods of ac-
complishing this mapping is to randomize the rec-
ord "names" and normalize the random codes to the
file length. Each record may then be stored in
its randomized location. The "name" randomiza-
tion may be accomplished by performing arithmetic
operations on the internal machine code used to
represent the name, i.e., hash-coding.

Although the techniques of randomized file

166

addressing are varied and the associated problems
interesting, of principle interest is the applica-
tion of the randomizing concept to the combina-
torial file structure. Whereas randomized file
addressing is concerned with the one to one map-
ping of s record identification name to a storage
address, the combinatorial structure requires not
only that a combination of attributes, which forms
a record identification, map to a storage address
but, additionally, that any subset of the attri-
butes forming the identification maps one to Q
where Q defines the number of mapped addresses.
It is therefore required that any technique of
randomizing aimed at reducing the number of pos-
sible combinations retain the combinatorial map-
ping properties of the combinatorial structure
(i.e., attribute subset mappings of one to Q must
not be sacrificed by randomization).

Examination of the binomial coefficient defin-
ing the number of possible combinations which may
be formed from N attributes taken M at a time
yields an insight into possible techniques to al-
leviate the "possible combinations" problem. It
is readily apparent that the reduction of either
N, the number of possible attributes, or M, the
number of attributes per sample, will reduce the
number of possible combinations (this is true with
the restriction that N> 2M). The randomization of
the M attributes forming an item description, how-
ever, would annul the independence of the M attri-
butes and would therefore invalidate a combina-
torial mapping scheme when retrieval based upon a
partial description (L out of M attributes) is in-
dicated. Although the randomization of attributes
on an item description level must be ruled out as
combinatorial properties are destroyed, the ran-
domization of the descriptor universe consisting
of all N possible attributes is possible while
still retaining the combinatorial structure.

Randomization Technique

The randomization technique consists of map-
ping a subset of the elements of a set D onto the
elements of a set C such that the number of ele-
ments in set C is less than and normally much less
than the number of elements in set D. Or in set
notation

, l-Io ,

where {dl,d2...dM~ is a subset of length M of set
D being mapped into M elements, ~Cl,C2...CM~ , of
set C. Normally, the descriptor set, D, of all
possible attributes consists of word descriptions
in English while the randomized descriptor set, C,
may be of any arbitrary representation. It may
therefore be concluded that with an a priori know-
ledge of the representation of set D, a mapping,
f, may be devised which, as a result of its opera-
tion on an element of set D, produces an element
of set C in a convenient representation. The
statement "in a convenient representation" is
stressed as the combinatorial mapping as developed
in the previous chapter operates on the subscripts
of the attributes. Naturally, it would be very
"convenient" to require that the randomized des-

criptor set, C, consist of subscripts (integers
ranging from i to N).

The mapping necessary to achieve randomiza-
tion of M attributes describing an item is, there-
fore, in set notation:

(7) f: ~dld2...dM} --ICl,C2...CM} : ciCIl, 2...N 1

The randomized code set, C, may be of any length,
N, necessary to reduce the possible combinations
to manageable levels and the mapping is determined
by the digital storage device characteristics.

Duplicate Code Probability

Some inmnediate consequences of the randomiza-
tion mapping are apparent. In that any possible
descriptor must map to one of the integer elements
of the randomized code set and all storage and re-
trieval operations use these mapped integers, the
randomized combinatorial structure is functionally
independent of the file descriptor universe. An-
other, perhaps detrimental, aspect of the randomi-
zation of the descriptors is the possibility of
two or more descriptors mapping to the same ran-
domized code. This possibility of duplicate codes
requires s modification to the combinatorial
structure,

The previous section developed the combina-
torial mapping structure based upon the assumption
of M unique attributes describing an item. This
assumption appeared valid in that the duplication
of an attribute does not add additional informa-
tion to an item description. The randomization
mapping, however, negates the unique attribute
assumption.

In order to better evaluate the impact of
possible duplicate randomized codes on the com-
binatorial structure, it is necessary to form a
more definitive measure of this duplication than
simply the word "possible". With the assumption
that the randomization function produces a truly
random mapping of the attribute set of length M,
resulting in a randomized code set of length M, a
measure of the "degree" of code duplication re-
duces to finding the probability of obtaining J
unique codes in a sample of M codes formed by
drawing M codes from a universe of N distinguish-
able codes with replacement. This probability
determination is similar to the classical "birth-
day problem"; however, it is necessary not only to
determine the probability that no two codes in the
sample are the same (M unique codes), but also to
determine the probability of M-l, M-2...i unique
codes in s sample of M codes. This information is
necessary in that each duplication of a code ef-
fectively reduces the number of attributes des-
cribing an item by one. The degree of this infor-
mation loss is determined by the following (i0,
14).

The probability that in a sample formed by
drawing M items from N items with replacement, any
of the N items may appear K I times while the re-
maining N-i items appear K2,K3...KN times is:

167

M: NI

= ..KN: , , ~: (8) P KIIK2:" 11"12" ""

NM

where:

M - number of items in sample

N - total number of items

K i - total number of times that the i th item
appears in the sample

(K I + K2...K N = M)

i i - total number of times that the i th digit
appears in the set of K's.

(OK i th digit~ M:i th digit is integer)

(i I + 12... ~ = N).

The probability of finding M unique items in a
sample of M items is therefore:

MI NI

p = i:i~..i~0:..0~ M~(N-M)~O:

N M

= N'(N-I)...(N-M+I) = (N)M

N M N M

as: KI,K2...K M = i and KM+I,KM+2...K N = O, and

i I = M, 12= N-M and 1314... ~ = 0,

which reduces to the expected solution of the
"birthday problem".

In that the probability of J unique items ap-
pearing in a sample of size M is not always deter-
mined by a single combination of duplications (the
K set), all possible combinations of duplications
resulting in a specified number of unique items
must be listed and their probabilities evaluated
and surmned to yield the probability of J unique
items in a random sample. The next section will
contain an application of formula (8) which will
further illustrate all "possible duplication com-
binations".

Duplicate Code Handling

Because of the possibility of duplicate attri-
bute codes arising due to the randomization map-
ping of (7), it is necessary to devise some method
capable of handling duplicate attribute codes in
the context of combinatorial mapping. One possi-
ble solution to this duplication problem would be
to redevelop the combinatorial structure allowing
the duplication of attributes. In view of the
preceding development, this would not be particu-
larly difficult; however, a simple fact illus-
trates the futility of a combinatorial structure
with the possibility of duplicate attributes: all
combinations in a duplicate attribute combinatorial
structure are not equally likely.

Another, more attractive, solution to the du-
plicate attributes problem would be to ignore du-
plicate attributes and, for the purposes of the
storage mapping, generate at random non-duplicate
attribute codes to replace any duplicates. Al-
though this obviously constitutes a loss of re-
trieval efficiency, degradation occurs only at the
search level as, although s set of requestors
could possibly encompass a large area of the file,
the requestors would, of course, define the area
into which the original attribute set had mapped.
It is to be again noted that the duplication of
attributes is a probabilistic function as defined
by (8) and the action of randomizing duplicates
would be taken only on occasion. Elaboration on
the probabilistic nature of randomized attribute
duplication will be given in the next section.

The random replacement of duplicate attribute
codes as well as the normal randomization of the
original attributes necessitates a search for
original descriptor/requestor attribute matches
subsequent to bucket address decoding during re-
trieval operation. This search necessity is a
result of the attribute randomization phase (en-
coding) where mapping of original attributes is
many to one. This simply means that a mapped
bucket address may or may not contain the original
requestor attributes, hence, the need for the
search operation. It is hastened to indicate that
all unmapped buckets will not contain the request
attributes. The retrieval operation may therefore
be perhaps best described as a "divide and con-
quer" technique.

IV. File Design and Application

In order to demonstrate the feasibility of
the Randomized Combinatorial File Structure and to
illustrate the techniques and considerations of a
system design utilizing this file structure, an
information storage and retrieval simulator was
designed. This simulator encompassed all of the
randomized combinatorial file structuring concepts
and the system design c~osely followed the item
storage and retrieval block diagrams as presented
on the following page. It is to be noted that the
choice of the term "simulator" over the term "sys-
tem" is made simply to indicate that no attempt
was made to optimize instruction coding, an arti-
ficial data base was used, and core storage was
used as the information storage media.

The first step in the design of a simulator
is to select the combinatorial file structure pa-
rameters. The basic parameters are those of the
number of descriptor attributes per item, M, and
the total number of possible attribute codes, N.
The former is dictated by the item description re-
quirements while the latter is selected by maximum
retrieval efficiency versus required file size
considerations.

In order to illustrate the dependence of the
selection ratio (retrieval efficiency) and the
number of possible attribute code combinations (a
consideration dependent on the required file size)
on N, a computer program was devised to produce a

168

INPUT I
l£em and M
attributes

If: Encode each of the M
attributes into one
of N possible states.

{dl,d 2.-.dm}-~'{cl,c2...cml: c i CII,2-..N 1

Order t h e a r r a y o f M
encoded a t t r i b u t e s to
e l i m i n a t e p e r m u t a t i o n s .

I
I f d u p l i c a t e s e x i s t i n
t h e encoded a t t r i b u t e
s e t , d e l e t e and r e p l a c e
the duplicates with

randomly selected codes
from the N possible states.

g:

f
Calculate a bucket address from the
ordered, encoded attribute set.

Io~ ~} -~: ~I ~,~ ~I
Where:

Store the item with 1

l
associated attributes

in bucket a.

ITEM STORAGE BLOCK DIAGRAM

I INPUT I
L request attributes

n o true i
i n t o one o f N p o s s i b l e s t a t e s .

: rl,r2...rLl--~ l,C2...CL : ciC 1,2...N

encoded attributes to
eliminate permutations.

r
Delete duplicates in the
encoded attribute set.

Subsequent retrieval is
based on the L' unique

codes.

I
Generate the Q possible code sets
of length M which contain the L'

unique, encoded request attributes.

Where:

/N-L '~
Q = \M-L']

Calculate the bucket address of
each of the Q ordered code sets.

g: ~ ~ ~;ml--~ ~ ~ I ~'~ ~I
Where:

I
S e a r c h e a c h o f t he Q a d d r e s s e d b u c k e t s ,

r e t r i e v i n g a i 1 i t e ms m a t c h i n g t he o r i g i n a l
L r e q u e s t a t t r i b u t e s .

ITEM RETRIEVAL BLOCK DIAGRAM

169

table listing the number of possible attribute
combinations (buckets) for N ranging from four to
one hundred while M ranged from three to ten. In
addition to the number of buckets, the table also
listed the selection ratio and the number of ad-
dressed buckets for one out of M to M out of M re-
trieval attributes for each combination of N and
M. Although this table is far too lengthy for in-
clusion in this paper, a portion of these data is
presented in g~aphical form on Graphs I and 2.
Both graphs cover only the narrow range of N from
6 to 20 and M from 4 to 6 which is of importance
to the simulator design.

Graph i presents a plot of the number of
buckets against the number of possible attribute
codes, N, for various values of M, the number of
attributes per item. Graph 2, on the other hand,
presents the worst case selection ratio plotted a-
gainst N for various values of M. Inspection of
Graph i yields the fairly obvious observation of
the rapid rise of the number of buckets due to an
increase in N for a fixed M. This rapid increase
in the number of buckets places a limit on the se-
lection of N for a fixed M as discussed in the
previous section. Graph 2 illustrates the de-
crease in the worst case selection ratio as N
(possible codes) is increased for a fixed M. From
the standpoint of retrieval efficiency, therefore,
it is advantageou~ to select an N as close as pos-
sible to the limit as dictated by Graph i.

The choice of core storage as an information
storage medium precluded the use of a very large
data base. In view of this constraint, an artifi-
cial data base of 4000 items with five descriptor
attributes per item was formed. With the assump-
tion of 4000 items with five descriptor attributes
per item, the selection of N may be made.

Reference to Graph i with M = 5 indicates
that N must be below 15 to yield fewer than 4000
buckets. In order to allow for the random distri-
bution of items in the buckets, N = 14 is chosen.
This choice yields 2002 buckets with a reasonable
likelihood that any examined bucket will contain
at least one item after a uniform random distribu-
tion of the items among the buckets.

The choice of N = 14 yields a worst case se-
lection ratio of .357 as seen from inspection of
Graph 2. The remaining selection ratios with the
number of buckets addressed by each are presented
in the table below.

Known Selection Addressed
Attributes Ratio Buckets
(Requestors)

i out of 5 .35714 715 out of 2002

2 out of 5 .10989 202 out of 2002
3 out of 5 .02747 55 out of 2002
4 out of 5 .004995 i0 out of 2002
5 out of 5 .004995 i out of 2002

SELECTION RATIOS

(14 Possible Attribute Codes with 5 Attributes
per Item)

Consideration of the preceding table illustrates
the "divide and conquer" retrieval operation of
the combinatorial file structure.

Effect of Duplicate Codes

Although the preceding table presents a true
picture of the retrieval efficiency from the at-
tribute code level, the effect of possible dupli-
cate codes must be treated. A table presenting
the probabilities of no duplicates of requestor
attributes is shown below. The detail of possible
duplications may be derived from Equation 8 and is
not presented.

Request Attributes
Probability of

No Duplications

5 .44669
4 .62536
3 .79592
2 .92857
i 1.00000

PROBABILITY OF NO DUPLICATE CODES
(Drawn from 14 Codes)

It comes as no surprise that the probability
of duplicate codes increases as the number of
specified request attributes increases. This in-
crease, however, may be considered as a fairly
small perturbation to retrieval efficiency in view
of the far more rapid decrease in the selection
ratio as the number of specified attributes in-
creases (see Selection Ratios Table previously

presented).

Implementation and Results

The combinatorial file structure simulator,
comprised for the most part of Fortran IV rou-
tines, was implemented on an IBM 7040 computer and
storage and retrieval tests made. These test runs
were performed by first utilizing a storage mode
programming package to read a prepared tape of
4000 descriptor described items which were then
stored in a manner consistent with the combina-
torial file structure; and secondly, by utilizing
a retrieval mode package to read card input re-
quests consisting of various numbers of requestors
and to retrieve all items in the combinatorial
file which were fully or partially described by
each request.

The retrieval times for a typical retrieval
test are presented in the following table. This
test consisted of five requests with the requests
ranging from five to one requestor attributes re-
spectively. Each request is listed with the num-
ber of request terms, time per bucket addressed,
and the total time used to satisfy the request.

Although the time used to satisfy each re-
quest should not be considered as an evaluation of
retrieval efficiency (e.g.,no attempt was made to
isolate input/output operations from the total
time), the times are of interest when considered
from a "relative time" standpoint. If the opera-

170

o
H

Z
O
H

oo

o0
<

o0

.3-

.4

.5

.6

.7

.8

.9

1.0 I i I
6 7 8

GRAPH 2

WORST CASE SELECTION RATIO
(i Out of M Attributes Known)

I ' ' ' ' ' ' ' I I I i I ! I i I I I I I
9 i0 ii 12 13 14]5 16 17 18 19 20 21

N

171

80001

7500-

7000

6500,

600,

GRAPH I

NUMBER OF BUCKETS
~D
H

II

~ 450C

4000

~ 3500
o

3000

Z

20(

1500

I000

500

~ 9 i0 ii 12 13 14 15 16 17 18 19 20 21

N

172

tlon of retrieval mode simulator was as predicted,
the "time to retrieve" should have been in direct
proportion to the predicted number of buckets each
request should address. This simply indicates
that "time per bucket" should be relatively con-
stant. This is indeed the case, and is illustrat-
ed in the table.

Request Time to Addressed Time Per
Terms Retrieve Buckets Bucket

(Seconds) (Predicted) (Milliseconds)

5 .07 i 70
4 .28 I0 28
3 1.42 55 26
2 5.50 202 27
i 17.85 715 25

As can be seen, all of the requests (with the ex-
ception of the first) exhibited an average "time
per bucket" of 25 to 28 milliseconds. The dis-
crepancy in the time of the first request may be
attributed to input/output overhead as only one
bucket is addressed and the time presented is near
the resolution of the computer interval timer
(16.67 milliseconds).

V. Conclusion

The randomized combinatorial file structure
achieves storage and retrieval mapping by direct
combinatorial address decoding. This direct map-
ping property negates the necessity for the stor-
age of large file directories or list structures
(e.g., an inverted file directory) while retaining
the random access, rapid retrieval characteristics
of list structured files (4, 8, 9, 18, 23, 27).
The combinatorial mapping is conceptually similar
to key-to-address transformation techniques (16,
22, 28, 31, 34, 35) but the transformation maps
not as a function of a single key but as a func-
tion of a combination of keys.

Although the application of the file struc-
ture presented in this paper was made on a limited
scale, implementation of the structure at a signi-
ficantly greater level can be envisioned. In or-
der to accommodate a large library of data, auxil-
iary random access storage such as disk files or
auxiliary large capacity core storage could be u-
tilized for the storage of items of information.
The system design techniques presented in the ap-
plication section are applicable to a large-scale
system and should be easily integrated in an in-
formation storage and retrieval system.

BIBLIOGRAPHY

(i) ARON, J. Information systems in perspective.
Computing Surveys, 1:4 (December, 1969) 213-
236.

(2) BECKER, J.; HAYES~ R. Information storage
and retrieval: tools, elements, theories.
Wiley, New York, 1963.

(3) BOURNE, C. Methods of information handling.
Wiley, New York, 1963.

(4) CANTER, J.D.; DONAGHEY, C. E. UPLIFTS-Uni-
versity of Pittsburgh linear file tandem sys-

tem. Communications of the ACM, 8:9 (Septem-
ber, 1965) 579-581.

(5) CHERRy, C.; ed. Information theory. Butter-
worth, London, 1961,

(6) CHEYDLEUR, B.; ed. Colloquium on technical
preconditions for retrieval center operations.
Spartan Books, Washington, D. C., 1965.

(7) CHEYDLEUR, B. F. SHIEF: a realizable form of
associative memory. American Documentation,
14:1 (January, 1963) 56-57.

(8) DODD, G. Elements of data management sys-
tems. Computing Surveys, 1:2 (June, 1969)
117-133.

(9) DZUBAK, B. J.; WARBURTON, B. J. The organi-
zation of structured files. Con~nunications
of the ACM, 8:7 (July 1965) 446-452.

(i0) FELLER, W. An introduction to probability
theory and its applications. Wiley, New York~
1963.

(ii) GARVIN, P.; ed. Natural language and the
computer. McGraw-Hill, New York, 1963.

(12) GHOSH, S.; ABRAHAM C. Application of finite
geometry in file organization for records
with multiple-valued attributes. IBM Journal
of Research and Development, 12:2 (March,
1968) 180-187.

(13) GOLOMB, S.; BAUMERT, L. Backtrack program-
ming. Journal of the ACM, 12:4 (October,
1965) 516-524.

(14) GUSTAFSON, R. A randomized combinatorial
file structure for storage and retrieval sys-
tems. Ph.D. thesis, University of South
Carolina, Columbia (December, 1969).

(15) GUTENMAKHER, L. Electronic informatlon-logic
machines. Intersclence, New York~ 1963.

(16) HANAN, M.; DALERMO, F. P. An application of
coding theory to a file address problem. IBM
Journal of Research and Development, 7:2
(April, 1963) 127-129.

(17) HAYS, D. Introduction to computational lin-
guistics. Elsevier, Amsterdam, 1967.

(18) HSIAO, D.; HARVARY F. A formal system for
information retrieval from files. Communi-
cations of the ACM, 13:2 (February, 1970)
67-73.

(19) KENT, A. Textbook on mechanized information
retrieval. Interscience, New York, 1962.

(20) KENT, A.; TAULBEE, O.; eds. Electronic in-
formation handling. Spartan Books, New York,
1965.

(21) KISEDA, J. R.; PETERSEN, H. E.; SEELBACH, W.
C.; TEIG, M. A magnetic associative memory.
IBM Journal of Research and Development, 5:2
(April, 1961) 106-121.

(22) KOHNEIM, A. G,; WEISS, B. An occupancy dis-
cipline and applications. SIAM Journal on
Applied Mathematics, 14:6 (November, 1966)
1266-1274.

(23) LEFKOVITZ, D. File structures for on-line
systems. Lecture notes for ACM Seminar on
File Structures. Detroit, 1967.

(24) LEHI<ER, D. The machine tools of combinator-
ies. In: E. Beckenbach; ed. Applied Com-
binatorial Mathematics. Wiley, New York,
1964.

(25) LUM, V. Y. Multi-attribute retrieval with
combined indexes. Communications of the ACM~
13:11 (November, 1970) 660-665.

173

(26) MEADOW, C. Man-machine communication. Wile~
New York, 1970.

(27) MEADOW, C. The analysis of information sys-
tems. Wiley, New York, 1967.

(28) PETERSON, W. W. Addressing for random-access
storage. IBM Journal of Research and Develop-
ment, 1:2 (April, 1957) 130-146.

(29) SALTON, G. Automatic information organiza-
tion and retrieval. McGraw-Hill, New York,
1968.

(30) SALTON, G. Data manipulation and programming
problems in automatic information retrieval.
Communications of the ACM, 9:3 (March, 196~.

(31) SCHAY, G.; RAVER, N. A method for key-to-
address transformation. IBM Journal of Re-
search and Development, 7:2 (April, 1963)
121-126.

(32) SCHECTER, G.; ed. Information retrieval: a
critical view. Thompson, Washington, D. C.,
1967.

(33) SPIEGEL, J.; WALKER~ D.; eds. Information
systems sciences: proceeding of the second
congress. Spartan Books, Washington, D. C.,
1965.

(34) TARTER, M.; KRONMAL R. Non-uniform key dis-
tribution and address calculation sorting.
In: Proceedings of 21st National Conference,
ACM. Thompson, Washington, D. C., 1966.

(35) TOYODA, J.; TEZUKA, Y.; KASHARA, Y. Analysis
of the address assignment problem for clus-
tered keys. Journal of the ACM, 13:4 (Octo-
ber, 1966) 526-532.

(36) VlCKERY, B. On retrieval system theory.
Butterworth, London, 1965.

(37) WALSTON, C. E. Information retrieval. In:
F. Alt; M. Rubinoff; eds. Advances in Compu-
ters. Academic Press, New York, 1965.

174

