
A New Character-based Indexing Method
using Frequency Data for Japanese Documents

OGAWA Yasushi and IWASAKI Masajirou
{ogawa)iwasaki} @ic.rdc.ricoh.co.jp

Information and Communication Research Center, RICOH Co,, Ltd.

Abstract

A character based indexing is preferable for Japanese IR

systems since Japanese words are not segmented. This paper

proposes a new character indexing method to enhance our

previous method which divided character pair index entries

into disjoint groups based on character classes. Since fre-

quency data is used to determine hashed entries for character

pairs and to establish a special string index, both search

speed and precision are improved. Moreovel<, bit strings are

managed using small and large blocks, so registration and

retrieval are accelerated. Experiments using patent abstracts

showed these proposals are quite effective.

1 Introduction

Although word-based indexing is widely used in many lan-

guages such as English [19], it is not easily applied to

Japanese. This is because Japanese is an agglutinative lan-

guage with no apparent separation between words, and thus

compound words are easily generated to express complex

objects and ideas. As for handling compound words, there

are two methods [5] [15]; one is to treat a compound as an

inseparable unit and the other is to divide it into its compo-

nent words. The first method, where compounds are easily

identified by parsing texts based on a rather limited number

of functional words and notational and grammatical rules,

camot retrieve documents with compound words which only

partially match to the query word. In the second method,

partial matching can be easily carried out since the compo-

nents have already been identified during registration, but

identifying component words is a problem because a large

lexical dictionary is necessary which makes it difficult to set

up and maintain a retrieval system.

On the other hand, character-based indexing methods such

as n-gram indexing don ‘t depend on word segmentation

and allow partial matching from the beginning [17] [20].

This is a suitable method for Japanese texts, and has been

widely used in retrieval systems for Japanese documents

Permission to make ciigit:ll/lm-d cupicx of :tll or p:ut of this ln:~[eri:ll
without fee is granted provided 11]:11the c(~pics :Lre not nmdc or
distributed for profit or cwmmcrci:il :Ldvont:igc, lk ACM ct~pyrigl]l/
server notice, the tillc of the public: ili[ln nnci its d:llc :Ippc:lr, und
notice is given 11131 cupyrigbl is hy pcr]llissi[,n [)1’ [he Ass<wi:lti<)n I’or

Computing Mac-hincry, Inc. (ACN4). To ci)py t~lllcrwiw, to republish,
to post on servers or to rcciistributc tu Iisls, rc[]uirus spccilic pcrtnissi{)o
and/or fee.
SIGIR’95 Seattle WA USA[” 1995 ACh4 O-89791 -714 -6/95 /07. S3.50

[14]. These methods sometimes retrieve falsely matched

documents (false drops), but these false drops can be

reduced by increasing the number of distinct entries (keys)

[1][4]. To attain a practical level of precision, pairs of

adjacent characters, i.e. 2-grams, are used as index entries

in most Japanese retlieval systems [13]. However, since

the number of distinct character pairs is huge due to the

large character set (about 7,000 characters), it is desirable to

reduce distinct pairs [6][8][11].

We have previously proposed character-based indexing us-

ing both single character and character pair entries [10] [16].

A novel feature of our method was that character pairs were

hashed so that pairs of different character classes (characters

are clustered into several classes in Japanese) never share the

same hashed vahte. Although the method achieves get better

precision with a relatively small number of entries, there are

two problems. One is performance degradation due to the

use of both single character and character pair indexes. The

other problem is performance degradation due to the fact

that the bit string for each entry’s occurrences in registered

documents is stored using fixed length blocks. This paper

proposes performance enhancement methods to solve these

problems.

This paper is organized as follows: Section 2 explains

the character classes of Japanese for readers unfamiliar with

Japanese. Section 3 desclibes our previous method and

the problems associated with the method. Our proposals

are described in the following two sections. Section 4

details a new index entry organization based on frequency

information, and Section 5 presents an effective method of

managing bit strings. Evaluation results are reported in

Section 6. Section 7 concludes the paper.

2 Japanese Character Classes

We will briefly describe the different classes of Japanese

characters for the benefit of those who are not familiar with

the language.

In Japanese, there are several classes of character including

Kanji, Katakana and Hiragana, each of which has different

functions. Kanji is based on Chinese ideograms. Kanji

characters may be used individually to form words with

simple meanings, or strung together to form words with more
complex meanings. JIS (Japanese Industrial Standards) have

designated 6353 characters for general use, but in fact we

use only about 1000 of them in a daily life. Hiragana and

121

Table 1: Kanji and Katakana words’ statistics

length

1

2

3

4

5

6

7

8

9

10

over 10

Kanji

num. of

dist. words

1120

9983

23552

39995

24717

18583

8533

4692

2075

960

846

total

frequency

256062

514645

151983

148174

48746

30888

11790

6413

2641

1124

991

Katakana

num. of

dist. words

26

275

944

1401

1557

2526

2688

2030

1529

976

1729

total

frequency

93

8889

83976

48238

23111

20036

12360

6397

4246

2353

2789

Katakana are phonetic characters which represent about 80

different sounds. Hiragana is used for particles, auxiliary

verbs, and conjugational parts, while Katakana is mainly

used to represent words from foreign languages.

In Japanese, words in queries are mainly nouns and verb-

heads, which consist of Kanji or Katakana. Their features,

however, differ in accordance with their functions and the

character set size. Kanji words are generally rather short,

and many distinct words appear in Kanji while the average

frequency of each word is small. Katakana words, on the

other hand, are much longer because they are the phonetic

representations of loan words. The number of distinct words

is small but the average frequency of each word is high.

Table 1 shows the numbers of Kanji and Katakana words

appearing in a total of 100,000 different abstracts on Japanese

Patents (about 14M bytes in total). The averages of word

length and frequency 1 are 2.51 and 8.69 for Kanji, and

4.39 and 13.55 for Katakana. These values confirm the

characteristics described above.

3 Character-based Indexing

3.1 Introduction

Character-based indexing is an access method used in large

document databases, which treats documents as a string of

characters rather than words [1]. For example, an n-gram
index [2] [9] records occurrences of all n-grams, successive

overlapping strings of n characters, in document. When a

query is performed, other n-grams are extracted from the

query and the qualifying documents are quickly obtained as

the intersection of document sets, each of which corresponds

to each n-gram from the query. Since words are not

segmented, many Japanese document retrieval systems adopt

this method [14].

1“Total frequency” in Table 1means the count of all words of a particular
length, and “word frequency” is the count of each word. Word frequency is
given by dividing total frequcnc y by the number of distinct words.

One disadvantage of character-based indexing is that it

sometimes creates false drops. This is because simple

index systems such as an n-gram index discard positional

information of the entry’s occurrence. To exclude false

drops, retrieval systems have to scan retrieved documents

to check whether they actually qualify for the query. It is,

therefore, desirable to reduce false drops so as to decrease

the number of documents to be scanned. Note that there is

in general an inverse relationship between the false drop rate

and the number of distinct entries [1] [4].

Although Japanese has a large number of distinct charac-

ters, a single character index cannot attain sufficient retrieval

precision [7][12]. Indexing any pair of successive charac-

ters, however, is not a solution, either. It generates too many

index entries; approximately 49 x 106(= 7, Oof)z) entries

[13]. Therefore, hashing must be applied to character pairs

to reduce the number of index entries [6][8] [11].

3.2 Our Previous Method

Our previous character-based indexing method [10] [16] uses

single character (l-gram) and character pair (2-gram) in-

dexes. In order to reduce the number of pair entries,

character pairs are hashed so that pair entries are divided

into several groups according to their character classes. We

name the method character class divided hashing.

This idea came from the following two considerations.

First, since the possibility that characters are used in queries

varies depending on their character class, desirable false drop

rates also vary. In addition, as the frequency and character

set size differ with class, it is desirable to change a hashing

scheme based on character classes. If not, a hash method

adjusted for the worst case has to be used, but the number of

hash entries becomes too large. Second, since a hashed entry

may be shared by character pairs of different classes, rarely

occuring Kanji pairs may be falsely matched with frequently

occuring Katakana pairs. This kind of false matching can be

excluded by grouping index entries based on character class.

The following is a hashing procedure for character pairs.

At first, a hashed value is obtained by applying a hash

function to each character in a pair. Then, an entry value is

computed from a pair of these hashed values. In computing

the entry value, disjoint ranges are assigned in accordance

with classes of the former and latter characters. When the
former and latter characters are represented as Cf, c1; the

hash function for class i as hi (hi outputs a value between O
and dz — 1), an entl-y value eid is given by:

I

h(cf) +~l(cl) *dl

: Cf, c1 in CLASS1

h,(cf) +h(c~) *d, +d;

{
eid(cf, q) = ,.O

: cf in CLASS’1, c1 in CLASS2

Ih~(cf)+ h~(c~)*d~+ d;+...
: cf, c1 in CLASS2

. . .

122

As the number of hashed entries for character pairs de-

creases so as to reduce the size of the index, the false drop

rate increases. Thus, a single character index is combined

with the character pair index so that the index size may be

kept small with a low false drop rate.

To record entry’s occurrences in documents, an entry is

associated with a bit string in which the position of a bit

corresponds to a document, and bit strings for all entries are

stored in a file. Each bit string is compressed to reduce the

data size and to increase retrieval speed, and the compressed

bit string is stored in fixed length blocks which distribute

among the file.

3.3 Problems

There are two problems associated with our previous method.

●

●

4

Performance degradation due to the query length:

Retrieval time is nearly proportional to the length of

query, as retrieval is carried out by character basis. Our

method uses both single and pair indexes, so 2m – 1

entlies (?n single plus in – 1 pair entries) have to be

processed for an m character query.

To address this problem, we propose a new index

organizing method (See Section 4).

Performance degradation related to block size:

The block size of the bitmap file influences both the

insert and retrieval performance, but in opposing ways.

In registration, z each bit for the extracted entries is

written in the tail block of the corresponding entry.

Thus, the smaller the block is, the faster the insertion.

In retrieval, all the blocks need to be randomly accessed

because they are distributedly placed. Because retrieval

time is proportional to the number of blocks to be

accessed, performance can be improved by enlarging

the blocks, thereby reducing the number of blocks, In

other words, the insertion and retrieval performances

have an inverse relationship to the block size. 3

To solve the problem, we have developed a novel bit

string management method using both small and large

blocks. Section 5 explains the detail.

New Character Index Method

As for index organization, we propose a new hashing scheme

for character pairs and an effective index whose entries are

character stlings with more than 2 characters.

2WC ~,s$ume each &cumcnt ,s msertcd in the database when the dOCU-

ment is crctucd (on demand insertion).

3Since the number of cn[rics is Iargc in our character-based index, blocks

are prefcmble to be small so as to decrcasc unused areas in blocks.

4.1 New Hashing Scheme for Character Pair

Index

4.1.1 Frequency-based Hashing

False drops can be reduced by flattening the distribution of

index entry”s frequencies in character-based indexes [1] [17]

and signature files [3] [18]. For example, Barton et al has

proposed character-based indexing that does not use fixed

length n-grams for index entries but selects variable length

strings to flatten the entry frequency distribution, resulting

in better precision [1].

Because the above method is for ASCII codes, it is

impractical to apply it directly to Japanese with its numerous

characters. However, the idea is applicable to a hashing

scheme for character pair indexing in the following way.

Since a conventional simple hashing determines a hashed

entry from a character code which has no relationship to

frequency, the entry frequency, i.e. the sum of frequencies

of assigned characters to each entry, varies greatly according

to changes in character frequency. Conversely, given the

character frequencies, entries can be assigned to characters so

that hashed entries are equally balanced by entry frequency.

We call the conventional method code-based, and the other

method using character frequency frequency-based.

Compared to the code-based method, because the

frequency-based generates a more flat distribution of en-

try frequencies in hashing character pairs, it attains higher

retlieval precision [7] [11].

4.1.2 Frequency-based Character Class Divided Hash-

ing

Since frequency-based hashing is effective in improving

precision, we adopted it instead of code-based hashing in our

character class divided method for computing entry values.

Given the same number of hashed entries, the new method

attains better precision than before.

In addition, adopting frequency-based hashing has another

significant advantage, i.e. faster retrieval. In our previous

method, the use of a single character index after introducing a

character pair index was not to decrease search precision; one

hashed entry is always shared by more than two characters

when a simple hash function is applied to character codes, so

a single character index is necessary to judge whether each

character in the query actually exists in documents. However,

there are entl<ies that are monopolized by single characters in

frequency-based, because character frequencies vary a lot in

Japanese. Such a hashed entry guarantees that a document

surely contains a corresponding character, eliminating the
need to use a single character index for such characters.

Processing m character queries only require access of m – 1

entries when all characters are of the monopolizing type.
Even in the worst case, the number of entry accesses is

2m- 1 entries which is the same number of entries in the old

method. The fewer accesses result in better performance.

123

4.1.3 Hash Table Generation

A hash table which maps characters to entries is necessaly

to enable frequency-based hashing. In our retrieval method,

each character class needs hash tables. 4 However, since our

method calculates entry value from a pair of hashed values

of adjacent characters, the total size of hash tables is much

smaller than the size of a table which determines entry values

directly from character pairs.

To generate a hash table for a particular class, we first

need to determine hashed entry size. Then, depending on
the frequency of each character in the class, entries are

assigned to characters to make the entry frequencies as even

as possible. Because the problem is NP-complete and takes

a great deal of time to find the optimum solution, we adopt a

simple heuristic algorithm as shown below.

1. Sort characters in descending order of frequencies.

2. Assign the most frequent remaining characters to the

entry with the fewest sum of frequencies of the already

assigned characters. Removes the character, and repeats

the step until all characters are processed.

We show, by experimental results, how well this simple

algorithm works. We counted the frequency of a total

of 6,353 characters in the patent abstracts mentioned in

Section 2. 4,395 of all Kanji characters never appeared,

689 only once, and 1,452 more than 100 times. The most

frequent character appeared 73,747 times. When all Kanji

characters are hashed or binned into 128 entries according to

frequencies. The largest bin contained 73,747 occurrences

and the smallest, 22,375 occumences. On the other hand,

using simple code-based method, the largest bin contained

99,881 and the smallest, 2,212.
Theretneval system must be able to know whether an entry

is monopolized by one character or not during retrieval. To

indicate this, a flag is prepared for each entry, and set on or

off during the hash table generation.

Note that it is not always necessary to prepare the whole

document set in advance, as precision is not so degraded

using hash tables made from a part of it. Refer to the

experimental results shown in Section 6.

4.2 Frequent String Index

4.2.1 Introduction

Even after the above improvement was made, at least 7n – 1

entries have to be accessed form character queries. Although

it is possible to speed up the retrieval by employing longer

character strings as index entries, it is impractical to apply

this method to Japanese because characters are so numerous.

We, therefore, adopt the previously mentioned Barton’s

idea [1] of selecting variable length strings with high fre-

quency, but modify it for our character based indexing.

~BcCau~e~OSt~hw~etersin ~ucries ure either Kanji or Katakana as

mentioned before, it may be sufficient LO prepare hash tables only for them.

z+=;’-) ‘req”en’st’i”ginde

\
/

single character index

...

>

~,,... character pair index
. . .

Figure 1: Overall Indexes Organization

First, only strings with more than 2 characters are chosen

for index entries because our method already has single and

pair indexes. Second, we count the frequency of only the

sequences of the same class of characters, specifically Kanji

or Katakana, because Japanese has several character classes

but queries generally contain only Kanji or Katakana. Com-

pared to counting all possible sequences, which requires

large memory, this method is preferable since it is space

efficient.

As the number of string entries increases, the retrieval

is carried out quickly because the probability that a query

contains the string becomes high. However, the string

matching for the enhy extraction requires more memory and

slows down, and additional bit shings need to be stored in

the data file. The number of the string entries is, therefore,

limited to several hundreds in our method. In this way, a

special index named the frequent string index is formed to

speed up the retrieval.

The frequent string index seems similar to word-based

indexing, but different in that :

An entry string is not necessarily a word, but may be a

meaningless character string, which can be easily found

in documents or queries using a simple string match

without grammatical parsing.

Although new words are dynamically added to indexing

entlies ‘in the word-based method, entry strings are a

static set of character strings that are fixed when a

document database is created. Entries, therefore, can

be managed in a simple manner.

4.2.2 Document Registration and Retrieval

Duling document registration, we can scan the target doc-

ument to find all the strings defined in the string index

before extracting conventional character entries. It some-

times happens that an ently string is completely included

within another entry string. In such cases, both entries are

recorded in the index.

For example, when both “Y’ Y)”(pw-i-n: pudding) and
“’7- U > 7”(pu-ri-n-ta: plinter) are defined as the entry

124

strings, and the document contains “ ~J ~ — ~’ ~ ; ~”(ka.
ra-a-pu-ri-n-fa: color printer), both entries are extracted,

while the conventional character indexes are updated in the

same way as before. In other words, we record single entries

(%, 7, –, 7°, “o”) and pair entries (hashed results from

h7, 7–, –?, –7’, . ~.) as shown in Figure 1. Lines

correspond to extracted entries, which are categorized into

three groups, i.e. string, single character and character pairs

indexes. Note that only the Katakana parts of indexes are

shown here.

In document retrieval, we use similar methods as in

document registration. The difference is the treatment of

included entries, When an entry string is included within

another string, the former is discarded. Moreover, conven-

tional entries included in the extracted string entry are not

used during retrieval, The difference is illustrated in Figure

1. Among possible entries, only entries not contained within

other entries are extracted, as indicated by the thick lines.

5 New Bit String Management using

Blocks of Two Sizes

5.1 Introduction

As for the block size problem in implementation, we propose

a new bit string management method where bit strings are

stored in fixed length blocks of two sizes. We call smaller

blocks buckets and larger ones containers. Containers are

the same size as or a few times larger than a disk page. The

container size is an integral multiple of the bucket size. 5

We use small buckets in registration to achieve high speed

insertion. After many documents are registered, the retrieval

performance is degraded as a larger number of buckets are

used to store bit strings. At this point, we invoke a file

reconfiguration so that the buckets are gathered to form con-

tainers. By processing blocks one entry after another, the

merged containers for an entry “s bit string are written to the

disk sequentially. This operation is named a block reconfig-

uration, as illustrated in Figure 2. Hatched areas represent

blocks of an entry’s bit string, and small and large rectangles

are buckets and containers respectively. After the block

reconfiguration, a bit string can be accessed sequentially by

larger containers, resulting in improved search response. In

this way, the bit string management using two sized blocks

with the block reconfiguration enables high performance in

both registration and retrieval.

5.2 Block Reconfiguration Algorithm

As mentioned above, buckets are merged into containers

one entry after another. However, several buckets may
not fill a container, so they are written back into the disk

~In nur implcrnentai{m, the container mrd bucket sims arc usually SCLm

1K and 64 bytes.

entry index .

~
[:,,~,

(a) Distributed buckets before block reconfiguration

(b) Sequentially placed mntairrers after block reconriguralinn

Figure 2: Block Reconfiguration

1
I I f

\ /’
fragment cmltainers

Figure 3: Fragment Containers

as buckets. Containers have to be located so that the

beginning of the container agrees with the beginning of disk

page for fast access. The remaining buckets are therefore

packed in a special fragment container. Since one

entry’s remaining buckets cannot fill a fragment container,

it is shared by several buckets of different entries. On

the other hand, remaining buckets of an entry occasionally

use two fragment containers. Figure 3 shows fragment

containers; the left container includes buckets from three

entries while remaining buckets of the entry shown by small

square hatch are stored in both containers. In summary, after

the reconfiguration, there are two kinds of containers: one is

a normal container that is filled with data from one entry, and

the other is a fragment container that stores several buckets

from more than two entries.

Each entry is processed as follows :

1.

2.

Prepare two container buffers on memory, one for a

normal and the other for a fragment, and create a

temporary file.

Process all entries one by one as follows :

(a)

(b)

(c)

Read one bucket from the original file, and copy

the data into the normal container buffer.

When the normal buffer is filled with the data,

write the filled buffer to the temporary file, clear

the buffer, and repeat the step (a).

When all the buckets are read, copy the remaining
data in the normal buffer to the fragment buffer.

If the fragment buffer is filled with data, write it

to the temporary file and clear it.

125

3.

4.

6

6.1

Write the fragment buffer if it contains data.

Free the buffers and replace the original file by the

temporary file.

Evaluation

Evaluation Method

We used the abstracts of Japanese patents which we also used

for word counting. Queries were randomly selected from

Kanji and Katakana strings extracted from the abstracts. We

prepared 30 queries of length 2,4,6,8 and 10, resulting 300

(=30x5x2) queries. For evaluating retrieval precision, we

used the false drop rate FDR and the precision rate PRE 6

computed as follows:

FDR =
#(retrieved but imelevant dots)

#(irrelevant dots) -

PRE =
#(retrieved and relevant dots)

#(retrieved dots)

Sun SPARCstation 20 model 50 running SunOS 4.1.3 was

used in evaluation. Response time was measured in the cold

start condition where no data is cached on memory.

The new bit string management method with the block

reconfiguration was at first evaluated, then was the new index

organization. We thought it would be better to evaluate the

retrieval speed up caused by the new index organization

using the new file structure, so the implementation issue was

tested first.

6.2 Baseline Performance

First of all, we show the performance for the previous

method, which divides hashed entries into 6 classes, includ-

ing Kanji and Katakana, and adopts the same code-based

hashing which computes modulo 32 of character code for all

classes.

Registration and retrieval time was measured. To register

all 100,000 abstracts, it took lh 48min (1,130 char/see) with

the block size of 64 bytes, and 2h 26min (840 char/see) with

the block size of 1024 bytes. As expected, the smaller the

block size is, the faster the registration is. On the other hand,

the average search response time over the 300 queries was

2.71 sec for 64, and 1.53 sec for 1024. The smaller blocks

slowed down the retrieval. This clearly demonstrated the

problem related to the block size.

Next we checked the effect of the query length on retrieval

speed. Figure 4 shows the relationship between the query

length and response time. The two upper lines represent the

response time before block reconfiguration. We found that

the response time increased with the query length.

bPrecision is usually used with recall, but thesecharacter based indexing
methods always find the documents containing the qrscry string. Thus we

only usc precision here.

-.-64 bytes before recontigttration

--*-- 64 bytes after reconfiguration
- +- 1024 bytes before reconfiguration

—*- 1024 bytes after reconfiguration

query length

(a) Kanji

41

o~o

query length

(b) Katakana

Figure 4: Query Length vs. Response T]me

6.3 Evaluation of New Bit String Management

After the baseline performance profile was outlined, the

effects of the block reconfiguration was evaluated. The

container size was set to 1024 bytes. To reconfigure, it took

167 sec with 64-byte buckets, and 110 sec with 1024 bytes.

We found that the reconfiguration required only a fraction of

registration time (about 2.570 at 64 bytes). The larger block

took less time because the number of blocks to be accessed
decreased as the block size enlarged.

The retrieval response times were measured and the results

are plotted on Figure 4 (shown as the lower two lines). The

average response times were 0.57 sec for 64-byte buckets and

0.6 sec for 1024-byte buckets. This means the reconfigura-

tion speeded up the retrieval by 4.75 for 64 bytes, and 2.78 for

1K bytes. These results shows the new management scheme

is quite effective. It should be noted that the response time

improved greatly even when the container size was same as

the bucket size, implying that the performance can improve

126

— code-ba$ed
.-*-. frequency-based [l(Y%]

- + frequency-baml [100%]

0.001] f

0.000001~
256

number of hashed entries

100
--.-.< .-*. z ?.=.=----------- --,

v“

90

g
-g 80
0.-
.%
z 70
n

60-j

50~
o 64 128 192 256

number of hashed entries

Figure 5: Retrieval Precision Improvements: Kanji

by relocating distributed blocks in successive positions. In

the following experiments, the response time was measured

after the reconfiguration with lK-byte containers.

6.4 Evaluation of New Index Organization

6.4.1 Effect of Frequency-based Hashing

We evaluated the frequency-based hashing scheme. First,

retrieval precision, false drop probability and precision rate,

were measured for simple code-based and novel frequency-

based cases. The number of hashed entries was set at 64,

128,256 for Kanji and 16, 32, 64 for Katakana.

Results are shown in Figure 5 (Kanji) and Figure 6

(Katakana). Lines for frequency, plotted as “frequency-

based [100%]”, lie under lines for code-based in FDR and

vice versa in PRE. As indicated, the frequency-based

method always outperforms the code-based one.

We also tested hash tables generated from only a fraction

(10%) of the target document collections. Hash tables made
from all the documents were used in the above experiments.

Results are plotted in the same figures as “frequency-based

[10%]”. There are only a few differences between 10% and

— code-based
-.9-. frcquenc y-based [10%]

- +- frequency -bafed [100%]

0.01
3

I

0.00001~1
number of hashed entries

100

90
-1 ..’-

601
50~

64
number of hashed entries

Figure 6: Retrieval Precision Improvements: Katakana

100’-ZO,and therefore, the entire document collections are not

always needed to prepare hash tables.

Next, the response time was measured (Figure 7). As

expected, the performance was improved in both Kanji and

Katakana, but the effect was not the same. The difference

comes from the fact that the number of monopolized entries

(see Section 4.1.2) was 2, 21, 97 out of total 64, 128, 256

entries for Kanji, while the number was 2, 14, 57 out of

total 16, 32, 64 for Katakana. Compared to the character set

size of 6353 for Kanji and 86 for Katakana, the fraction of

monopolized entlies was much larger for Katakana than for

Kanji. This results in a large improvement of Katakana.

In summary, frequency-based hashing improves mainly

retrieval precision for Kanji, but it is, for Katakana, effective

in both precision and speed up.

6.4.2 Effect of Frequent String Index

Finally, the effect of the frequent string index for speed im-

provement was evaluated. In this experiment. the frequency-

based hashing was again used and the number of hashed en-

tries was fixed to 128 for Kanji, and 32 for Katakana. Again

the effect of improvement is much greater in Katakana than

127

— code-based with 64 entries
--*. - frequency-based with 64 entries
- +- frequency-~ased with 128 entries

—e- frequency-basedwith 256 entries

1.0 1

query length

(a) Kanji

- code-based with 16 entries
----- f~equency-basedwith 16entries
- +- frequency-basedwith 32 entries
—~–frequency-basedwith 64 entries

1.o-

0.8

~~ ;/

..~
T ,.,..-
& ,.=’”...
$ 0.6 ..-
.- ,.+

...g A>.,..’”
; 0.4

,.
m“’ -.,.,

: .*” -,.,z~ - ---~
o.2- “’:,.””- ~-~>-.H

.’,//~--
K“

o.o~o

query length

(b) Katakana

Figttre7: Speed Up by Frequency-based Hashing

Kanji (Figure 8). This is because there are fewer distinct

words in Katakana than in Kanji as mentioned in Section 2,

so that the probability that a long query includes one or more

of the entry strings becomes larger. Considering the fact

that the average word length is also longer for Katakana, the
string index is effective for Katakana.

7 Conclusion

This paper proposes a new character indexing method to

enhance our previous method. We applied frequency-based

hashing to calculate entry values for character pairs. Using

frequency data, retrieval performance improved and the
false drop rate decreased. In addition, longer queries can

— without string index
--*-- 128 string entries

- + 256 string entries

—+- 512 stling entlies

o.o~
0246810

query length

(a) Kanji

o.oLn—rT——
O24681O

query length

(b) Katakana

Figure 8: Speed Up by String Index

be processed at high speed by introducing a frequent string

index whose entries have frequently occuling strings with

more than 2 characters. Furthermore, the new bit string

management method using small and large blocks accelerates

both registration and retrieval, as small blocks are used in

registration while bh strings are accessed by large blocks

which are placed sequentially by the block reconfiguration.

The main feature of the proposed method is that indexes

al-e configured taking into account properties such as the

character set size and frequency and the average word length

of different character classes. Because Kanji and Katakana

are the main character classes used in quelies, indexes are

organized to fit their properties. The use of frequency-based

hashing for Kanji can greatly enhance retrieval precision,

which generally tends to stay low since Kanji has a large
number of characters and their frequencies change greatly.

Although the retrieval speed is not much faster than before,

it isn “t a problem because the average length of Kanji words

128

is short. On the other hand, Katakana has a rather smaller

character set w bile its words are much longer. Therefore,

frequency-based hashing is more effective for improving

speed rather than precision. The frequent string index also

improves the retrieval speed.

We have proposed and evaluated our indexing method

for Japanese documents, but it can be applied to other

languages with large character sets. For example, Chinese

uses several thousand Kanji characters, Korean has a few

thousand Hangul character codes in addition to Kanji.

Future work includes detailed evaluations using different

types of documents to see the effect of the document length

and the difference in character frequencies. In addition,

we study the possibility of implementing more sophisticated

retlieval model, such as vector space [19], probabilistic [22]

and inference net [21], for our character indexes.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

I.J Barton et al. An information theoretic approach to

text searching in direct access systems. CACM, Vol. 17,

No. 6, pp. 345–350, 1974.

W.B. Canvnar et al. N-gram-based text filtering for

TREC-2. In P/”oc, of TREC-2, pp. 17 1–179, 1994.

C. Faloutsos el al. Design of a signature file method

that accounts for non-uniform occurence and query

frequencies. In Proc. of Int. Conf. on VLDB ‘85.,

pp. 165-170, 1985.

C. Faloutsos etal. Description and performance anal-

ysis of signature file methods for office filing. In ACM

Trans. on Office Infot-mation Systems, Vol. 5, No. 3,

pp. 237–257, 1987.

H. Fujii and W. B. Croft. A comparison of indexing

techniques for Japanese text retrieval. In Proc. of lfih

ACM SIGIR Conf., pp. 237–246, 1993.

Y, Fujii et al. A singature file create method for full-text

search (in Japanese). In Proc. of 48th IPSJ Conf. (4),

pp. 159–160, 1994.

T. Fukushima et al. A signature file compression

method for full text retrieval (in Japanese). In Proc. of

47th IPSJ Conf. (4), pp. 83-84, 1993.

K. Furuse et al. Implementation of signature tile access

method in a DBMS (in Japanese). Technical Report

DE94-58, IEICE, pp. 23–29, 1994.

M.C. Harrison. Implementation of the substring test by
hashing. CACA4, Vol. 14, No. 12, pp. 777–779, 1971.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

M. Iwasaki and Y. Ogawa. A new character-based

indexing method for Japanese texts using reduced ad-

jacent character bitmap tables. In lnt. Symp. on Next

Generation Database Systems and Their Applications,

pp. 145-150, 1993.

Y. Kawashimo et al. Development of full text search

system Bibliothecas (in Japanese). In Proc, of 45th

JIPS Conj (3), pp. 24 1–242, 1992.

K. Kitamura et al. Development of CD-ROM version

for classical Japanese literature text and its basic con-

cordance system (in Japanese). In Proc. of 41 th IPSJ

Conf. (4), pp. 142–143, 1990.

S. Miyahara et al. A study of high-speed full-

text retrieval using character transition probability (in

Japanese). In Proc. of 40th IPSJ Conf. (4), pp. 880,

1990.

Y, Ogawa. Trends in text database studies (in Japanese).

[n lPSJ Advanced Database System Symp., pp. 153–

162, 1993.

Y. Ogawa et al. Simple word strings as compound key-

words: An indexing and ranking method for Japanese

texts. In Proc. of 16th ACM SIGIR Conf., pp. 227-236,

1993.

Y. Ogawa et al. A new indexing and text ranking

method for Japanese text databases using simple-word

compounds as keywords. In Proc. of 3vd Int. Symp. on

DA SFAA, 1993.

C,S Roberts. Partial-match retrieval via the method of

superimposed codes. Proceedings of IEEE, Vol. 67,

No. 12, pp. 1624-1642, 1974.

R, Sacks-Davis and A. Kent. Multikey access methods

based on superimposed coding techniques. ACM Trans.

on Database Systems, Vol. 12, No. 4, pp. 655–696,

1987.

G. Salton and M. J. McGill. Introduction to Modem

Information Retrieval. McGraw-Hill, 1983.

N. Tavakoli and A. Ray. A new signature approach

for retrieval of documents from free-text databases.

information Procesing & Management, Vol. 28, No. 2,

pp. 153–163, 1992.

H. Turtle and W.B. Croft. Inference networks for

document retrieval. In Proc. of 13th ACIVI SIGIR Con$,

pp. 1–24, 1990.

C.J. van Rijsbergen. Information Retrieval. Butter-

worths, 1979.

* IEICE stands for “The Institute of Electronics, Information and

Communication Engineers” of Japan, and IPSJ for “Information Processing

Society of Japan’”.

129

