
A Loosely-Coupled Integration of a Text Retrieval System and an

Object-Oriented Database System

W. Bruce Croft, Lisa A. Smith*

Computer Science Department

University of Massachusetts, Amherst, MA 01003

Howard R. Turtle

West Publishing Company, St. Paul, MN 55164

Abstract

Document management systems are needed for many

business applications. This type of system would com-

bine the functionality of a database system, (for de-

scribing, storing and maintaining documents with com-

plex structure and relationships) with a text retrieval

system (for effective retrieval based on full text). The

retrieval model for a document management system is

complicated by the variety and complexity of the ob-

jects that are represented. In this paper, we describe

an approach to complex object retrieval using a prob-

abilistic inference net model, and an implementation

of this approach using a loose coupling of an object-

oriented database system (IRIS) and a text retrieval

system based on inference nets (IN QUERY). The re-

sulting system is used to store long, structured docu-

ments and can retrieve document components (sections,

figures, etc.) based on their text contents or the con-

tents of related components. The lessons learnt from

the implementation are discussed.

1 Introduction

Database systems provide robust,

objects and maintain the validity

long-term storage of

of the data through

recovery and concurrency control mechanisms. Cir-

rent database systems, such as those based on the rela-

tional model, can represent objects with complex struc-

ture only with difficulty, and often restrict the type of

●On leave from Digital Equipment Corporation

Permission to copy without fee all or pert of this material is
grantad provided that the copies are not made or dietributad for
direct commercial advantage, tha ACM copyright notice and the
title of tha publication and its date appear, and notica is given
that copying is by permission of the Association for Computing
Maohinery. To copy otherwise, or to republish, requires a fee
and/or spacific permission.
15th Ann Int’1 SIGIR ‘92/Denmark-6/92
01992 ACM 0-89791 -524-01921000610223 ...$1 .50

data that can be stored in an object. In response to

these shortcomings, object-oriented database systems

have been designed specifically to represent complex ob-

jects and accommodate user-defined extensions such as

new data types [22]. The content-based retrieval ca-

pability of these systems, however, is typically limited

to selection from a database of objects using Boolean

combinations of simple predicates (for example, [14, 2]),

although it is in general possible to define additional

predicates for specific data types.

In order to provide the powerful document manage

ment facilities that are needed in many business appli-

cations, it will be necessary to combine the ability of ad-

vanced database systems to model, store and maintain

documents with complex structure, with more effective

retrieval strategies based on information retrieval (IR:)

models. It may be necessary, however, to extend these

models to deal with retrieval situations that are not en-

countered in databases of simple, abstract-length texts,

In an object-oriented database, for example, text ob.

jects can be composed of other text objects, and other

types of objects, such as tables and figures, may con-

tain little or no useful text. The most effective retrieval

strategies for such objects are not known.

The inference net model appears to be a good candi-

date for a retrieval model for complex objects. Thk

model emphasises the role of probabilistic inference,

where multiple sources of evidence are used to assess the

likelihood that an object satisfies the user’s information

need [20]. In the context of complex object retrieval,

the inference net model can describe how the meanings

of objects are related. The inference net model also al-

lows for a great deal of flexibility in formulating a query

and relating the query concepts to the concepts used to

describe objects [6].

In a recent paper [8], we described an approach to

using the inference net model in an object-oriented en-

vironment, particularly for the retrieval of composite

223

and multimedia objects. In this paper, we will describe

an alternative model, and a prototype implementation

of the model using a loosely-coupled integration of an

object-oriented database system (IRIS [21]) and a text

retrieval system based on the inference net model (IN-

QUERY [4]).

The goals of the implementation were to demon-

strate the capabilities of the retrieval model, to pro-

vide a platform for future experiments, and to discover

the types of implementation problems that occur with

this type of integration. After describing the retrieval

model and the architecture of the integrated system, we

present some retrieval examples using the system and

then discuss limitations of the implementation. The

test database that was used consists of dissertations in

IAT@ format. We considered this type of document

to be representative of long, structured documents de-

scribed using a markup language.

2 Approaches to Integration

2.1 Database Systems and IR

A number of proposals have been made for incorpo-

rating text retrieval functionalist y in database systems.

Blair and others [3, 13, 18] have discussed the imple-

mentation of text-oriented applications using standard

relational database systems and SQL. These approaches

typically have limited representation of complex docu-

ment structure and restrict the retrieval model to exact

matching of Boolean combinations of words.

Lynch and Stonebraker[12] use abstract data types to

incorporate text retrieval in the POSTGRES extended

relational database system. Although their work is also

restricted to exact match searching, the POSTG RES

framework could be used to implement more sophisti-

cated retrieval models.

In the database community, related research has been

done in the general area of uncertainty in databases.

Examples of this type of work are systems that deal

with extensions to the relational model to handle un-

certain data [11] and uncertain queries [15]. The in-

ference net model described in this paper can address

both of these types of uncertainty through the various

probabilities represented.

Metro [15] discusses an extension to a relational

database system for inexact queries. His VAGUE sys-

tem incorporates a “similar-to” comparison operator

in queries. The retrieval model is based on the vec-

tor space model used in IR [17]. Garcia-Molina and

Porter [11] discuss a probabilistic relational data model

where probabilities are associated with the values of

att ribut es.

Two other related efforts include our work on the in-

teractive retrieval of complex objects [7], and Fuhr’s pa-

per on a probabilistic database incorporating relevance

feedback [10].

2.2 The Inference Net Approach

In thk section, we describe how the inference net re-

trieval model can be used for retrieval of complex ob-

jects. This complex object retrieval model is the ba-

sis for the loosely-coupled architecture described in the

rest of the paper. By describing this retrieval model,

however, we are not solving the whole problem of com-

plex object retrieval. There remains many other issues,

such as integration with a complete query language,

integration with “structural” search (e.g. [5]), query

optimization, and interface design.

The inference net model is described in detail in

[19, 20]. It is a probabilistic retrieval model that com-

putes P(IIObject), which is the probability that a user’s

information need is satisfied given a particular object.

Objects are usuaUy considered to contain text, although

in the context of complex object retrieval, this is often

not the case. We consider an information need z a com-

plex proposition about the content of an object, with

possible values true and false. Queries are regarded

as representations of the information need. The major

difference between the inference net model and other

probabilistic models is that it emphasizes the use of

multiple sources of evidence to calculate P(I 10bject).

To apply the inference net model to the retrieval of

complex objects in object-oriented databases, we must

specify how the meanings of an object and its subob-

jects are related. The first step @ this process is to

define our complex object terminology more precisely.

In an object-oriented database, an object is an instance

of an object class. The definition for that class of ob-

jects will be part of the class hierarchy for that system

and application. Tlrat is, a class definition will inherit

instance variables and operations from its superclass

in the class hierarchy. The instance variables of an ob-

ject may contain references to other objects (called sub-

objects). These objects may be instances of a number

of classes, and may in turn contain references to other

objects. It is this variability in structure and content

that makes such objects complex relative to the simple

text abstracts stored in many bibliographic databases.

Figure 1 shows an example of a complex object, which

is an inst ante of a Dissertation object type. This doc-

ument has a complex structure made up of subobjects

of types Chapter, Section, Subsection, Subsubsection,

Paragraph, Figure, and Table.

As part of specifying a query for complex object re-

trieval, users should be able to indicate the required

object class. That is, any object class whose inst antes

can be part of a complex object is a valid result. In

the case of dissert ations, for example, users could spec-

ify whether they wanted to retrieve chapters, sections,

paragraphs, figures or tables. Objects that are in-

224

Dissertation

/-’\ \——————
Chapter Chapter Chapter

/\ \\
Seciion Seciion Sect;on Section

Subsection Subsection Subsection

/\\
Subsubsection Subsubsection

/“ \\\~
Paragraph Paragraph Figure Paragraph Table

I

Figure 1: A complex document type Dissertation

stances of the specified class should also be able to be

retrieved based on their own content (that is, the values

of the instance variables that refer to primitive objects,

such as numbers, strings and text). Alternatively, their

retrieval could be based on the content of their sub-

objects. These observations suggest possible retrieval

models for complex objects based on an inference net.

Figure 2 shows one such model. The network consists

of object nodes (Oi’S), concept representation nodes

(rk’s) and a query node (q). Object nodes in this net-

work correspond to objects with at least some text con-

tent (for example, a paragraph or a figure with a cap-

tion). These objects can be of many different types and

information about object type is not part of this net-

work. It is important to note that the inference net is a

separate representation from the object class hierarchy

and the complex object structure.

We represent the assignment of a specific representa-

tion concept to an object by a directed arc to the repre-

sentation node from each node representing an object to

which the concept has been assigned. A representation

node contains a specification of the conditional proba-

bility associated with the node given its set of parent

object nodes. In an advanced IR system, the represen-

tation nodes are derived by probabilistic indexing, and

the nodes are associated with index terms extracted

from the document texts. The query node corresponds

to the event that an information need is met and multi-

ple roots that correspond to the concepts that express

the information need. A set of intermediate query nodes

may be used to describe complex query networks such

as those formed with Boolean expressions [6].

By structuring the inference net in this way, objects

can be retrieved independently of each other. We could,

for example, specify that only objects from the class

representing single paragraphs be retrieved. In that

case, each o, node that corresponds to a paragraph ob-

ject is asserted to be ime (one at a time), and the ob-

jects are ranked according to their probability of satis-

fying the information need.

I

Figure 2: A model for composite object retrieval

In many cases, we want the retrieval of objects to

be influenced by the content of subobjects or related

objects. For example, in Figure 1, object 01 has been

instantiated. All remaining objects in the network are

set to jalse, except those objects that are subobjects

of 01 (03 in this case). We assume that all sub objects

(i.e. the transitive closure) have evidence attached to

them in this way, and that each subobject is set to tTue

(the strongest form of evidence). This means that when

an object occurs, all of its subobjects occu~, with cer-

tainty, at the same time. The effect of this evidence is

to raise the probability (or belief) associated with all

representation concepts that describe subobjects. This

effectively adds concepts to 01’s representation and re-

inforces belief in concepts that are used to describe both

the parent object and subobjects. In the example, the

addition of 03 adds concepts T3 and T4 to 01’s repre-

sentation, strengthens belief in rz given 01, and leaves

belief in T1 unchanged.

A similar approach can be used for retrieval of ob-

jects which have no text content using related objects.

For example, suppose that a user wants to retrieve all

figures that satisfy a particular information need. The

figure may have a caption, in which case this could be

used to retrieve them independently of other objects. In

the case where there is no caption, or when the caption

is not sufficiently informative, we can instantiate ob-

jects that represent other parts of the article, and this

instantiation can be done in progressively wider con-

texts. We could initially instantiate objects represent-

99C
L4’2

ing paragraphs in the same section of the document as

the figure. If this did not produce satisfactory results,

we could widen the context until the whole document

is being used to determine the “meaning” of the figure.

Note that this instantiation of objects is going in the

opposite direction to the instantiation of subobjects for

composite object retrieval, and the evidence attached to

objects from wider contexts may be weaker than that

attached to objects that are very “close” to the figure.

The disadvantages of th= approach to complex object

retrieval are the lack of flexibility and computational ef-

ficiency. A similar form of the inference net was used

for citation experiments [19] and was implemented us-

ing inverted files. To do this, however, beliefs had to be

computed for each group of objects (documents) that

were going to be instantiated at the same time. In the

case of complex object retrieval, identifying all these

groups prior to searching may be difficult.

A simpler approach to complex object retrieval is

based on treating each instantiated object as a sepa-

rate piece of evidence, and then combining the beliefs

associated with this evidence at query time. In other

words, each subobject (or related object) is instanti-

ated one at a time, as is done in typical inference net

retrieval. The result of this is a set of belief values

P(IIoI), P(I]03), etc. These belief values can then be

combined to give an overall belief based on all evidence

P(IIoI, o.,...). This is shown in Figure 3. The combi-

nation of the belief values can be done in a variety of

ways, as is the case in a query net. For example, objects

could be ranked according to the maximum or average

belief associated with its subobjects.

The integrated architecture described in this paper

uses this second approach. Based on some related re-

trieval experiments, we compute belief values using the

maximum belief of subobjects. In addition, we combine

this belief value with a belief value computed using the

“whole” object. To do this, object nodes are created

by taking the union of all text in the subobjects. In

the case of the dissertation example, sections could be

retrieved by the belief calculated using all the text in

the section, by the maximum belief associated with a

paragraph in the section, or by a combination of the

two. The belief computed using the entire text con-

tent will be very similar to the belief calculated using

the first approach shown in Figure 2. Preliminary re-

trieval experiments show that combining beliefs in this

way leads to significant effectiveness improvements, but

more work needs to be done. This approach is related

to that described in [16].

Inference net for Inference net

03
$., $
$

., :> :.:.\.>
, #

;7

P(I 103)

I P(II 01,03) I

for

Figure 3: Combining beliefs from subobjects

3 The Document Model and

IRIS

In the prototype system described in this paper, dis-

sertations are stored as complex objects in a database

system (IRIS), and retrieval is performed using both

the database system and a text retrieval system. The

model of dissertations used in the database schema de-

scribes complex objects similar to that shown in Figure
.
1.

IRIS is an object-oriented database. management sys-

tem which was developed at Hewlett-Packard Labora-

tories. The version of IRIS that we are currently using

is a research prototype (DPP 4.0 [9]).

The IRIS system is based on a semantic data model

which contains support for abstract data types (ADTs).

The data model is based on the following three con-

structs: objects, types, and functions. It supports

inheritance, constraints, non-normalized data, user-

defined functions, version control, and extensible data

types [21, 9].

The objects within the IRIS system can be retrieved

(referred to) independently of their attribute values by

using a unique object identifier, or OID, that is assigned

when the object is created. All objects are classified by

type, and are associated with a specific set of functions.

Types are organized into a type graph which supports

inherit ante.

Functions in the IRIS system are used to model all

attributes, relationships, and other operations on ob-

jects. Functions are inherited by subtypes.

Figure 4 illustrates the architecture of IRIS. The

IRIS Kernel implements the IRIS data model described

above. There are a number of interfaces, all of which

are built as clients of the Kernel, including the follow-

226

4 The INQUERY System

.sQLqyr ~L7.ddcd.sQL

Foreign ~___.__

++

Iris Kernel
Functions

I Iris, Storage Manager I

Figure 4: The IRIS Architecture

ing: an object version of SQL (OSQL), the C Language

Interface (CLI), a Graphical Editor, and more recently,

the IRIS Programming Language (IPL) [I]. The Graph-

ical Editor is an X Windows-based program which al-

lows both retrieval and update of both function val-

ues and metadata with graphical and forms-based dis-

plays. The C Language Interface allows access to IRIS

in an object-oriented fashion through manipulation of

C variables which denote the IRIS database, metadata,

and objects in the database. The Embedded OSQL in-

terface is also a programming interface, which allows

OSQL to be embedded into various host languages.

Foreign functions provide alternative methods for

computing function values, and are implemented as

subroutines written in some general-purpose program-

ming language and compiled outside of IRIS.

The IRIS Storage Manager provides concurrency con-

trol, recovery, buffering, indexing, clustering, and OID

generation.

Within the context of the IRIS data model, the

schema that was defined to model dissertations contains

a number of type definitions, both atomic and complex.

In addition, functions (based on transitive closure) are

used for determining all subobjects of a particular type

(e.g. chaps () for chapters of a dissertation, paras ()

for paragraphs of any non atomic type, etc.).

The types described in the schema are:

INQUERY is a text retrieval system based on the infer-

ence net retrieval model [4]. It consists of an indexing

module, an interface module, and a text retrieval en-

gine. The indexing module is used to parse the input

text, do automatic indexing, and build the associated

dictionaries and inverted files. The text retrieval en-

gine uses the inverted files and other data to evaluate

query nets described with a query language. The query

language can be used to represent complex combina-

tions of concepts. The interface module is currently

very simple since INQUERY is primarily designed as a

retrieval engine that can be integrated with other sys-

tems and interfaces. The current interface accepts sim-

ple natural language queries or queries expressed in the

INQUERY query language. The indexing and retrieval

engine functionality can be accessed using a simple ap-

plication programmer’s interface (API).

The INQUERY system is designed for both experi-

mental (batch) and interactive use. It has been used

in other experiments with test collections up to 500

MBytes and is being modified to work with even larger

databases. The system is implemented in C and runs

on a variety of workstations using UNIX.

5 The Integrated System

The integrated system (COINS) uses the functionality

of INQUERY and IRIS to model and store complex ob-

jects and retrieve them using their text content. COINS

accesses the IN QUERY database through a set of C

functions, and accesses and manipulates the data ftext

stored in the IRIS database through C variables.

The database used for the prototype system con-

sists of dissertations written in 14TEX, which have a

well-defined, complex structure. The IAT# source for

the dissertations is scanned, parsed, and used to cre-

ate database objects in IRIS, and text objects in IN-

QUERY.

The COINS interface allows a user to enter queries

that specify the types of objects to be retrieved, the

type of retrieval model to use, and the desired contents

of the objects. Queries in OSQL and the INQUERY

query language are also accepted. Objects are retrieved

as ranked lists.

5.1 Indexing the Dissertations

● Atomic Types (no subobjects): Equation, Para- Figure 5 shows the process by which dissertations
graph, Picture, Tabular in IATfi are entered into the IRIS and IN QUERY

databases.
● Non Atomic Types: Figure, Table, Chapter, Doc- The first step uses lex to define and recognize the

ument, Dissertation (subtype of Document), Sec- valid tokens within the source file, and yacc to perform
tion, Subsection, Subsubsectionj Subsubsubsec-

tion,
actions based on the type of tokens found. Eighteen lex

regular expressions and fifty-one yacc production rules

227

are used to recognize the components of the document

structure in the IATEX source, store objects in the IRIS

database, and create a text file for input to INQUERY.

The parser uses a history stack to keep track of the hi-

erarchical document structure and to record OIDS for

objects as they are stored in IRIS. These OIDS and tran-

sitive closure functions are used to output text records

to a temporary file. The text record for a section, for

example, consists of the OID for the section and all the

text in the section (including all subsections, etc.). For

a paragraph, the text record consists of the OID for the

paragraph and the text of the paragraph.

LKTEX
Dissertation File

h

~ ~r;;)

/

objects
OIDS

IRIS database
Text file

(OIDS and text)

‘nV::::&

Figure 5: Processing the J4TEX Source

The file of text records is passed to the INQUERY

indexing module which creates the appropriate indexes

and dictionaries for word- and phrase-based retrieval

using the inference net.

The test database contains two dissertations which

were parsed into 3,378 objects. Of these, 2,169 were

stored in IRIS (some objects such as references and

citations were ignored), and 1,950 corresponding text

objects were stored in INQUERY (objects such as

equation and eqnamay do not have text). A total of

3,438 indexes for terms were created in INQUERY. The

size of the dissertation files was approximately 1 MByte,

the size of the IRIS files (including system overhead)

was approximately 4 MBytes, and the size of the IN-

QUERY indexes was 2.5 MBytes (proximity and other

information is currently stored uncompressed).

5.1.1 Retrieval Architecture

The COINS retrieval architecture (Figure 6) supports

the ret rieval model in Figure 3. That is, it allows re-

trieval from any level of a a hierarchical object struc-

ture, as well as supporting retrieval based on subobjects

or related objects. In particular, retrieval can be based

on the text of each object only (normal mode), based

on the text of parent objects (super mode), and based

on the text of subobjects (sub mode). Retrieval based

on combinations of these modes is also possible.

Input menu choice

t

EE@El

input query (OSQL, natural language, or
structured)

output access to the full text from the
ranked hst returned from INQUERY.

\

input nl or structured inputi Object IDs
query output text representation

output ranked list of of requested objects
object IDs and weights

Figure 6: The COINS Retrieval Architecture

The control module is the central module of the

COINS retrieval system, and takes the role of the inter-

face between INQUERY and IRIS, as well as between

the user interface code and the rest of the system. This

module takes as input the query which has been entered

into the user interface, and processes it according to the

query type. If an OSQL query is entered, the control

module simply calls IRIS to return the results of that

query. If a natural language request or query in the IN-

QUERY language has been entered, the control module

makes a function call to IN QUERY. IN QUERY returns

a ranked list of objects with their associated probabili-

ties of satisfying the information need (scores) and their

OIDS. The control module then filters the ranked list

based on the specified object type and retrieval mode.

The OIDS are used to access objects in IRIS as part of

the filtering process.

Figure 7 shows an example of searching in the COINS

22t3

system. The first screen shows the specification to re-

trieve subsections using the normal retrieval mode. The

“amount of text to retrieve” specifies that full text is

required for browsing, as opposed to a short summary.

The second screen shows the query, the initial number

of objects retrieved from INQUERY, and the number

of objects after they have been filtered by object type.

The third screen shows the ranked list of objects re-

trieved by INQUERY (including the OIDS, which are

not intended for end user display). The fourth screen

shows the text of the top-ranked subsection, with query

words highlighted.

Figure 8 shows the results of retrieving chapters us-

ing the sub retrieval mode based on paragraphs. In

other words, the rank of the chapter is determined by

the maximum probability value associated with a para-

graph in the chapter. In this case, many more objects

are retrieved from INQUERY than are eventually dis-

played aft er filtering.

Finally, Figure 9 shows the results of retrieving fig-

ures based on the super mode using subsections. The

query was to retrieve figures that involve a comparison

of the inference network model to Fuhr’s model. The

caption of the top ranked figure, displayed in the sec-

ond screen, does not contain a critical word in the query

(the caption is ‘{inference network for the RPI model”

and the RPI model is another name for Fuhr’s model).

Because retrieval was based on the text of the subsec-

tion that contained the figure, it is not necessary to rely

on the limited caption text.

6 Implementation Issues

The version of IRIS that was used for COINS had a

number of limitations that forced us into particular de-

sign decisions. Most of these limitations have not had

an affect on the functionality of COINS, but compli-

cated the implementation of the system.

Initially, we planned to use the foreign function ca-

pability to integrate the INQUERY functionality with

IRIS. The foreign functions would simply be INQUERY

functions and the entire application could have been

written in OSQL, with some links to external code seg-

ments. The problem with that approach was that for-

eign functions are not available in the prototype version

of IRIS. In a future version of IRIS, it would be of in-

terest to examine this approach since it would result in

a more integrated query language.

In the prototype system, the object size limit is 4K,

which includes some overhead for the system, so the

maximum amount of data that we are able to store

within a particular object is 3996 bytes. When dealing

with text, this is not very large, and we were only able

to store text within IRIS at the lowest object level in

which it occurred. In this schema, that is the para-

graph level. The database then is created by storing

text with the object at the lowest level, and creating

links between that level and the immediate parent ob-

ject. The full text of an object such as a section can be

retrieved using the transitive closure function provided

in IRIS.

Finally, it should be noted that the prototype sys-

tem is very slow. Using IRIS to filter the output of

INQUERY is a time-consuming operation, and for ef-

ficiency reasons, additional indexes were created using

INQUERY to provide information about object type.

The process of creating the database is also unaccept-

ably ~low (more than io

the two dissertations).

7 Conclusion

hours for the 2000 objects- in

The COINS system is a complete implementation of a

complex object retrieval model based on inference nets.

The loosely-coupled integration of an object-oriented

database system and a text retrieval system was shown

to be a feasible platform for this retrieval model, and a

variety of queries based on the structure and content of

the objects that make up long, complex documents can

be processed. The implementation highlighted a num-

ber of problems with the loosely-coupled architecture,

primarily related to efficiency. This system, however,

should only be regarded as a step towards the eventual

goal of an integrated database/text retrieval system for

complex objects.

Our main emphasis in future research will be to in-

vestigate tightly-coupled integrations. In particular, we

are interested in developing probabilistic object alge-

bras, similar to the probabilistic relational algebras dis-

cussed in [11]. An algebra of this would support the

manipulation of object structure and probabilities pro-

duced by the underlying retrieval algorithms.

Acknowledgments

This research was supported in part by AFOSR con-

tract 91-0324, Hewlett Packard Corporation, and Digi-

tal Equipment Corporation.

References

[1] J. Annevelink. Database programming languages:

A functional approach. In 1991 ACM SIGMOD

International Conference on Management of Data,

pages 318–327, 1991.

[2] J. Banerjee, H. Chou, J.F. Garza, W. Kim,

D. Woelk, and N. Ballou. Data model issues for

object-oriented applications. ACM Transactions

on Ofice Information Systems, 5(1) :3–26, 1987.

229

LI wernt

,1

I

k
,,

““ ~: ~,.4&2 (313> Sjc:e,:tion
.- :. 1.1 -.

~

{Ll xterm

1~ “, , , , :,, ,,, ,

. and . . .

etum.k f w . and = =

Figure 7: An example of normal mode retrieval

230

+
wo~,~:l,?>?,,et-,,1..... .

~ ““”

-, —.

I

Figure 8: An example of suh mode retrieval

%il){pIctwe}(575 .~)(-So,151>

wtmo.4w){\0val(2s.m)}
Wlt(2W,4W!{\mab &x(0. O!{fd.r,$}>
p.lt(mo.390)(\v? ctw(0,-1)m}.1
wt(192,3s0)<\vectcr(-1. -1 !{82}>
>Put(212.395){\vectw(2.-1) {1;6>}

wt(OiM,3M)bwl(x .xI)}
,M,f(fim. <wl}n.. iah.. (h cl\rtf I t>i

Figure 9: An example of super mode retrieval

231

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

David C. Blair. An extended relational retrieval

model. Information Processing and Management,

24(3):349-371, 1988.

J. P. Callan, W.B. Croft, and S.M. Harding. The

INQUERY retrieval system. Technical report, De-

partment of Computer Science, University of Mas-

sachusetts, Amherst, MA 01003, 1992.

M.P. Consens and A.O. Mendelzon. Expressing

structural hypertext queries in graphlog. In Pro-

ceedings of Hypertezt 89, pages 269-292, 1989.

W. B. Croft, H.R. Turtle, and D.D. Lewis. The

use of phrases and structured queries in informa-

tion retrieval. In proceedings of the ACM SIGIR

Conference on Research and Development in In-

formation Retrieval, pages 32-45, 1991.

W. Bruce Croft, R. Krovetz, and H. R. Turtle. In-

teractive retrieval of complex documents. lnjo~rna-

iion I+ocessing and Management, 26(5):593–6 13,

1990.

W. Bruce Croft and Howard Turtle. Retrieval of

complex objects. In Proceedings of EDB T 92, 1991.

(to appear).

D.H. Fishman. Overview of the Iris dbms. Hewlett

Packard Technical Report, HPL-SAL-89-15, 1989.

Norbert Fuhr. A probabilistic framework for vague

queries and imprecise information in databases. In

Proceedings of VLDB 90, pages 696-707, 1990.

H. Garcia-Molina and D. Porter. Supporting prob-

abilistic data in a relational system. In Proceedings

of EDB T, pages 60-74, 1990.

C. A. Lynch and M. Stonebraker. Extended

user-defined indexing with applications to tex-

tual databases. In Proceedings of the Veq LaTge

Database Conference, pages 306-317, 1988.

I.A. Macleod and R.G. Crawford. Document re-

trieval as a database application. Information

Technology: Research and Development, 2:43-60,

1983.

D. Maier and J. Stein. Development and im-

plementation of an object-oriented dbms. In

B. Shriver and P. Wegner, editors, Research Direc-

tions in Object-Oriented Programming, pages 355-

392. MIT Press, 1987.

Amihai Metro. VAGUE: A user interface to

relational databases that permits vague queries.

ACM Transactions of Ofice Information Systems,

6(3):187-214, July 1988.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Gerard Salton and Chris Buckley. GIobal text

matching for information retrieval. Sczen.cc,

253:1012-1015, 1991.

Gerard Salton and Michael J. McGill. Introduction

to Modern Information RetTieva/. hIcGraw-Hill,

1983.

H.J. Schek. Methods for the administration of tex-

tual data in database systems. ln C.J. Van Rljsber-

gen, R.N. Oddy, and P.W. Williams, editors, Re-

seaTch and Development in Information Retrieval,

pages 218-235, 1981.

Howard R. Turtle. Inference NeiwoTks for Doc-

ument Retrieval. PhD thesis, University of Mas-

sachusetts at Amherst, 1990.

H.R. Turtle and W.B. Croft. Evaluation of an

inference network-based retrieval model. .4 CM

Transactions on Information Systems, 9(3): 187–

222, 1991.

K. Wilkinson, P. Lyngbaek, and W. Hasan.

The Iris architecture and implementation. IEEE

Transactions on Knowledge and Data Engineering,

2(1):63-75, 1990.

S. B. Zdonik and D. Maier. Readings in Object-

Oriented Database Systems. Morgan Kaufmann,

San Mateo, CA, 1990.

232

