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Abstract 

We introduce a family of simple and fast algorithms 
for solving the classical string matching problem, string 
matching with don’t care symbols and complement sym- 
bols, and multiple patterns. In addition we solve the 
same problems allowing up to k mismatches. Among 
the features of these algorithms are that they are real 
time algorithms, they don’t need to buffer the input, 
and they are suitable to be implemented in hardware. 

1 Introduction 

The string matching problem consists of finding all oc- 
currences of a pattern of length m in a text of length n. 
We generalize the problem allowing “don’t care” sym- 
bols, the complement of a symbol, and any finite class 
of symbols. We solve this problem for one or more pat- 
terns, and with or without mismatches. For small pat- 
terns the worst case time is linear on the size of the 
text. 

The main idea is to represent the state of the search 
as a number, and each search step costs a small num- 
ber of arithmetic/logical operations, provided that the 
numbers are big enough to represent all possible states 
of the search. Hence, for small patterns, we have a O(n) 
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time algorithm using O( ICI) extra space and O(m+ ICI) 
preprocessing time, where C denotes the alphabet. 

For string matching, empirical results show that the 
new algorithm compares favourably with the Knuth- 
Morris-Pratt (KMP) algorithm [ll] for any pattern 
length and the Boyer-Moore (BM) algorithm [4] for 
short patterns (up to length 6). 

For patterns with don’t care symbols and complement 
symbols, this is the first practical and efficient algorithm 
in the literature, generalizing this to any finite class of 
symbols or their complement. 

The main properties of this class of algorithms are: 

l Simplicity: the preprocessing and the search are 
very simple, and only bitwise logical operations, 
shifts and additions are used. 

l Real time: the time-delay to process one text char- 
acter is bounded by a constant. 

l No buffering: neither the text nor the pattern need 
to be stored. 

It is worth noting that the KMP algorithm is not a real 
time algorithm, and the BM algorithm needs to buffer 
the text. 

All these properties indicates that this class of algo- 
rithms is suitable for hardware implementation; hence 
we believe that this new approach is a valuable contribu- 
tion to all applications dealing with text searching. The 
motivation behind our work is the work done for New 
Oxford English Dictionary project at the University of 
Waterloo. 

2 A Numerical approach to 
String Matching 

After the discovery of linear time string matching algo- 
rithms [11,4] a lot of research was done in the area. Our 
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algorithm is based on finite automata theory [ll] and 
also exploits the fact that in practical applications the 
alphabet is finite [4]. 

Instead of trying to represent the global state of the 
search as in previous algorithms, we use a vector of tn 
different states, where state i tell us the state of the 
search between the positions 1, . . ..i of the pattern and 
positions (j - i + l),..., j of the text, where j is the 
current position in the text. 

Suppose that we need b bits to represent each indi- 
vidual state. We will see latter that b depends on the 
searching problem. Then, we can represent the vector 
state efficiently as a number in base 2b: 

m-l ..- - 

state = c si+12b.' 
i=O 

where the si are the individual states. Note that if s, 
corresponds to a final state we have to output a match 
that ends at the current position. 

For string matching we need only 1 bit (that is b = l), 
where si is 0 if the last i characters have matched or 
1 if not. We have to report a match if s, is 0, or 
equivalently if state < . ..lllOmsl. 

To update the state after reading a new character on 
the text, we have to: 

l shift the vector state b bits to the left to reflect 
that we have advanced in the text one position. In 
practice, this sets the initial state of $1 to be 0 by 
default. 

l update the individusl states according with the new 
character. For this, we use a table T that is defined 
by preprocessing the pattern with one entry per 
alphabet symbol, and an operator op that, given 
the old vector state and the table value, gives the 
new state. Note that this works only if the effect 
of the operator in the individual state ai does not 
produce a carry that will affect state si+l. 

Then, each search step is: 

state = (state << b) op T[curr char] 

where << denotes the shift left bitwise operation. 
The definition of the table Twill be basically the same 

for all cases. We define 

i=O 

for every symbol z of the alphabet, in where 6(C) is 0 
if the condition C is true, or 1 otherwise. Therefore we 
need b . m . ICI bits of extra memory, and if the word 
size is at least b - m, only ICI extra words are needed. 
We set up the table preprocessing the pattern before the 
search. This can be done in 0( I$] (m + [Cl)) time. 

Example : Let (a, b, c, d} be the alphabet, and ababc 
the pattern. Then, if b = 1, the entries for the table 2’ 
are: 

T Cal = 11010 T[b] = 10101 
T Ccl = 01111 ‘f Cdl = 11111 

The choice for op in the case of string matching is 
almost unique: a bitwise logical or. We finish the ex- 
ample, by searching the first occurrence of ababc in the 
text abdabababc. 

text : a b d a b 
T[x] : 11010 10101 11111 11010 10101 
state: 11111 11110 11101 11111 11110 11101 

text : a b a b C 

T[x] : 11010 10101 11010 10101 01111 
state: 11101 11010 10101 11010 10101 01111 

For example, the state 10101 means that in the cur- 
rent position we have two partial matches to the left of 
lengths 2 and 4. The match at the end of the text is 
indicated by the value 0 in the leftmost bit of the state 
of the search. El 

The complexity of the search time in the worst and 
average case is O(/$ln), where [?I is the time to 
compute a shift or other simple operation on numbers 
of mb bits using a word size of w bits. In practice (small 
patterns, word size 32 or 64 bits) we have 0(n) worst 
and average case time. 

For each kind of patterns or searching problem, we 
could adequately choose b and op. A similar idea was 
presented by Gonnet [8] applied to searching the signa- 
tures of a text. 

3 String Matching with Classes 

Now we extend our pattern language to allow don’t care 
symbols, complement symbols and more. Formally, ev- 
ery position in the pattern can be: 

l x: a character from the alphabet. 

l C: a don’t care symbol (matches any symbol). 

l [characters]: a class of characters, where we allow 
ranges (for example a..z). 

l S: the complement of a character or class of char- 
acters C. That is, matches any character that not 
belongs to this class. 

For example, the pattern [Pp]a~[aeiou]C~a~..tu..z] 
matches the word Patter, but not python or Patton. 

String matching with don’t care patterns was ad- 
dressed before in Fischer and Paterson [6] achieving 

O(nlog2mloglogmlog /Cl) 
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asymptotic search time, and also in Pinter [13] includ- 
ing complement symbols (same complexity). However, 
these are theoretical results, and their algorithms are 
not practical. Pinter also gives a O(mn> algorithm that 
is faster than a naive algorithm. For sm.all patterns, the 
complexity of our algorithm is much better, and also a 
lot easier to implement. 

Attempts to adapt the KMP algorithm to this case 
have failed [6,13], and for the same reason the BM algo- 
rithm as presented in Knuth e‘t al [ll] cannot solve this 
problem. It is possible to use the Horspool version of 
the BM algorithm [9], but the worst case is O(mn); and 
on average, if we have a don’t care character near the 
end of the pattern, the whole idea of the shift table is 
worthless. By mapping a class of characters to a unique 
character, the Karp and Rabin algorithm [lo] solves this 
problem too. However, this is a probabilistic algorithm, 
and if we check each reported match, the search time is 
O(n + m + mM), where M is the number of matches. 
Potentially, M = O(n), and their algorithm is slower in 
practice (because of the use of multiplications). 

For this pattern language, we only have to modify the 
table T, such that, for each position, we process every 
character in the class. That is 

m-l 

T, = c ~5(pat;+~ E Class)‘~~” . 
i=O 

To maintain O([r$](m+]C])) preprocessing time (in- 
stead of O([$]m]E]) time), where m is now the size of 
the description of the pattern (and not its length), we 
use the complement of the class for don’t care symbols 
and complements. The search time remains the same. 

4 Pattern Matching with Mis- 
matches 

In this section, we allow up to k characters of the pattern 
to mismatch with the corresponding text. For example, 
if k = 2, the pattern mismatch matches miscatch and 
dispatch, but not respatch. 

Landau and Vishkin [12] give the first eficient algo- 
rithm to solve this particular problem. Their algorithm 
uses O(lc(n + mlogm)) time and O(k(n + m)) space. 
While it is fast, the space required is unacceptable for 
practical purposes. Gab1 and Giancarlo [7] improve this 
algorithm to O(kn + mlogm) time and O(m) space. 
This algorithm is practical for small k. However, if 
k = O(m), it is not so. Other approaches to this prob- 
lem are presented in [3]. 

We solve this problem explicitly only for one pattern, 
but the solution can be easily extended for multiple pat- 
terns (see next section). In this case one bit is not 

enough to represent each individual state. Now we have 
to count matches or mismatches. In both cases, at most 
O(log m) bits per individual state are necessary because 

m is a bound for both, matches and mismatches. Note, 
too, that if we count matches, we have to complement 
the meaning of 6 in the definition of T. Then, we have 
a simple algorithm using 

B = [log,(m + 1)1 

and op being addition. If b, 5 k then we have a match. 
Note that this is independent of the value of k. 

Therefore we need O(]C]mlogm) bits of extra space. 
If we assume that we can always represent the value 
of m in a machine word, we need O(lYEllm) words and 
preprocessing time. However for small m, we need only 
0(/C]) extra space and O(]C] + m) preprocessing time. 
For a word size of 32 bits, we can fix B = 4 and we 
can solve the problem for up to m = 8, as presented in 
Figure 4, where we count matches. 

Clearly only O(log k) bits are necessary to count the 
mismatches if we allow at most k mismatches. The 
problem is that when adding we have a potential carry 
into the next state. We can get around this problem by 
having an overflow bit, so that we remember if overflow 
has happened, but that bit is set to zero at each step of 
the search. In this caze we need 

B = [logz(k + l)] + 1 

bits. At each step we record the overflow bits in an 
overflow state, and we reset the overflow bits of all in- 
dividual states (in fact, we only have to do this each k 
steps, but it is not practical to get in all that trouble). 
Note that if k > m/2, then we count matches. The only 
problem for this case, is that is not possible to tell how 
many errors there are in a match. Table 1 shows up to 
what m we can use for a 32 bits word. 

k, m - k 1 Bits per state 1 m 

‘11 

Table 1: Maximum pattern length (m) for a 32 bits 
word depending on k. 

Therefore, with a slightly more complex algorithm, 
we can solve more cases, using only O(cmlog k) extra 
bits. 

5 Multiple Patterns 

We consider in this section the problem of more than one 
pattern, for patterns with classes (also we can extend 
this to mismatches). To denote the union symbol we 
use “I”, for example pl(p2 searches for the pattern p1 or 
the pattern ~2. 
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The KMP algorithm and the BM algorithm had been 
extended already to this case (see [I] and [5] respec- 
tively), achieving a worst case time of O(n + m), where 
m is the total length of the set of patterns. 

If we have to search for ~11.. . Ipa, and we keep 
one vector state per pattern, we have an immediate 
O([$]S~) time algorithm, for a set of s strings. How- 
ever, we can concatenate all the vectors, keeping all 
the information in only one vector state and achieving 
O([?]n) search time. The disadvantage is that now 
we need numbers of size xi [piI bits, and 0( ICI xi lpi/) 
extra space. 

6 Implement at ion 

In this section we present efficient implementations to 
algorithms that count the number of matches of the 
different classes of patterns in a text using one word 
numbers in the C programming language. Algorithms 
with different semantic actions in case of a match are 
easily derived from them. 

The programming is independent of the word size as 
much as possible. We use the following symbolic con- 
stants: 

MAXSYM: size of the alphabet. For example, 128 for 
ASCII code. 

WORD: word size in bits (32 in our case). 

B: number of bits per individual state (1 for string 
mat thing) . 

EOS: end of string (0 in C). 

l-71 

Figure 1 shows an efficient implementation of the 
string matching algorithm. Another implementation is 
possible using op as a bitwise logical and operation, and 
complementing the value of T, for all x E C. 

Experimental results for searching 100 times for all 
possible matches of a pattern in a text of length 50K 
are presented in Table 2. For each pattern, a prefix 
from length 2 to 10 was used. The patterns were chosen 
such that each first letter had a different frequency in 
English text (from most to least frequent). The timings 
are in seconds and they have an absolute error bounded 
by 0.5 seconds. They include the preprocessing time in 
all cases. 

The algorithms implemented are Boyer-Moore, as 
suggested by Horspool [9] (or BMH), which, accord- 
ing to Baeza-Yates [2], is the fastest practical version 
of this algorithm; Knuth-Morris-Pratt, as suggested by 
their authors [ll] (or KMPr, and as given by Sedgewick 
[14] (or KMP2); and our new algorithm as presented 
in Figure 1 (Sol), and another version using the KMPl 
idea (SOs) (that is, do not use the algorithm until we see 
the first character of the pattern). The changes needed 
for the later case (using structured programming!) are 

shown in Figure 2. Note that SO1 and KMPz will be 
independent of the pattern length, that SO2 and KMPl 
will be dependent of the frequency of the first letter of 
the pattern in the text, and that BMH depends on the 
pattern length. 

From Table 2 we can see that SO2 outperforms 
KMPI, being between a 40% and 50% faster. Also it is 
faster than BMH for patterns of length smaller than 4 
to 9, depending on the pattern. 

Figure 3 shows the preprocessing phase for patterns 
with classes, using “-” as the complement character and 
“\” as the escape character. The search phase remains 
as before. The search time for this class of patterns is 
the same as the search time for a string of the same 
length. 

For pattern matching with at most Ic mismatches and 
word size 32 bits, we use B = 4 and we count matches, 
solving the problem up to m = 8, as presented in Fig- 
ure 4. 

Figure 5 shows the changes needed for the case where 
we use O(log k) bits per state. 

For multiple patterns, the preprocessing is very simi- 
lar to the one in Figure 3. The only change in the search 
phase is the match testing condition: 

if ( (state k mask) != mask ) /* Match? */ 

where mask has a bit with value 1 in the adequate po- 
sition for each pattern. Note that this indicates that a 
pattern ends at the current position, and it is not pos- 
sible to say where the pattern starts without wasting 
0( [%] sM) time, being M the number of matches and 
s the number of patterns. 

7 Final Remarks 

We have presented a simple class of algorithms that can 
be used for string matching and some other kinds of 
patterns, with or without mismatches. The time com- 
plexity achieved is linear for small patterns, and this is 
the case in most applications. For longer patterns, we 
need to implement integer arithmetic of the precision 
needed using more than a word per number. Still, if the 
number of words per number is small, our algorithm is 
a good practical choice. Using VLSI technology to have 
a chip that uses a register of 64 or 128 bits that imple- 
ments this algorithm for a stream of text, faster search 
time can be achieved. 

The applications of these algorithms are restricted to 
main memory, or to text data bases where a very coarse 
granularity index is provided and pattern matching is 
done within the granules. 

This type of algorithms can also be used for other 
matching problems, for example mismatches with dif- 
ferent costs (see [3]) or for patterns of the form 
(set of patterns)C*(aet of patterns) (see 1131). 



Faetstrmat ( text, pattern ) 
register char *text; 
char *pattern; 
c 

register unsigned int state, lim; 
unsigned int T[MA.XSYM] ; 
int i, j , matches; 
if( strlen(pattern) > WORD > 

Error( “Use pattern size C= word eke” >; 
/* Preproceeeing */ 
for( i=O; i<MAXSYM; i++ ) T[i] = -‘O; 
for( lim=O, j=l; *pattern != EOS; lim I= j, j <C= B, pattern++ ) 

T[*pattern] &= ‘j; 
lim = -(lir >> B); 
/* Search */ 
matches = 0; state = -0; /* Initial state */ 
for( ; *text != EOS; text++ ) 

c 
state = (state << B) 1 T[*textl; /* Next state */ 
if( state < lim ) 

matches++; /* Match at current position-len(pattern)+l */ 

) 
return( matchor >; 

1 

Figure 1: Shift-Or algorithm for string matching. 
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Pattern: epresentative Pattern: representative 
BMH KMPl KMPz SOI SO1 BMH KMPI KMPz SOI SO2 

36.6 24.4 58.7 30.2 15.8 23.6 15.5 49.9 30.2 13.2 
25.2 24.3 59.0 30.2 15.7 16.2 15.0 50.2 30.4 13.0 
20.5 24.5 58.7 30.2 15.6 12.6 15.0 50.1 30.2 13.1 
17.3 24.3 58.8 30.4 15.8 11.0 15.2 50.1 30.4 13.1 
15.3 24.4 58.7 30.3 15.9 9.6 15.1 50.9 30.6 13.4 
13.2 24.3 58.6 30.1 15.7 9.0 15.3 50.8 30.5 13.1 
12.5 24.4 58.6 30.4 15.6 7.9 15.3 50.7 30.6 13.3 
11.6 24.4 59.7 30.1 15.6 7.5 15.3 50.5 30.7 13.3 
11.2 24.3 58.3 30.1 15.8 7.1 15.4 50.1 30.2 13.0 1 

Pattern: lenislative Pattern: kinematics 
BMH KMPI KMPa SOI SO1 BMH KMPl KMPz SOI SOa 

37.7 21.0 58.2 30.6 11.9 35.2 19.0 57.6 30.2 10.4 
25.6 21.0 58.6 31.1 12.3 24.9 19.0 57.4 30.1 10.5 
19.9 20.9 57.8 30.4 11.8 19.9 18.8 57.4 29.9 10.4 
16.5 20.6 57.8 30.1 11.7 16.7 19.0 57.4 30.0 10.4 
14.3 20.6 58.0 30.2 11.6 14.3 19.1 57.6 30.1 10.4 
12.9 20.5 57.5 30.1 11.8 13.0 19.0 57.5 30.1 10.4 
12.0 20.6 57.9 30.3 12.0 12.2 19.0 57.6 30.0 10.4 
11.2 20.7 57.7 30.3 12.1 10.8 19.0 57.3 30.1 10.6 
10.3 20.9 58.2 30.3 11.8 10.0 19.1 57.5 30.2 10.5 

Table 2: Experimental results for prefixes of 4 different patterns (time in seconds) 
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initial = -0; first = *pattern; 
do < 

do < 
stab = (state << B) 1 T[*text]; /* Next state */ 
if( state < liar ) matches++; 
text++; 

) while( state != initial >; 
while( *(text-l) != EOS 88 *text != first ) /* Scan */ 

text++; 
state = initial; 

) while{ *(text-l) != EOS ); 

Figure 2: Shift-Or algorithm for string matching (trickier version). 

/* Computo lrn&,h and procwa don't cara rymbolr and complmantn */ 
for( i=O, j=l, lan=O, mask-O; *(pattorn+i) I= EOS; i++, ion*+, j <<= B ) 
< 

if( *(pattern*i) == ‘-’ ) 
i 

i++; numk I= j; 
1 

/* Complawnt */ 

if( *(pattorn*i) == '1' ) /* Clam of mymbalm */ 

x 
for{ ; *(pattern+i) I= 'I'; i++ ) 

if< *(pattrrn+i) == '\\' 1 it+; /* Eexpa rymbol */ 
1 
91~ if( *(pattmrn+i) == '\\' ) i++; /* E8cap8 symbol */ 
air* if( *(patt*rn+i) == '.I ) mark I= j; /* Don't care symbol */ 

1 
if( lan > WORD ) Srror( War B*maxlan 4- word mixon ); 
/* sme up T */ 
for{ l=O; ICMAXSTM; i++ ) ICil = ‘mmk; 
for{ j-1, 11~0; *p&torn I= EOS; lim I= j. j <C= B, p&torn++ ) 
< 

compl = FALSE; 
if( *pattern == '*' ) /* Complamont */ 
i 

i++; crmpl n TRUE: 
1 
if ( *p&torn == 'E' ) /* Claaa of qmbola */ 

for( p&tarn++; *pattarn != '1'; pattarn++ ) 
< 

if( *pattern == '\\' > pattern++; /* Emcape symbol */ 
if( compl ) f[*patternI I= j; 
l lm. I[*pattrrn] &= -j; 
if{ l trncmp(pattwn+l.Y..Y,9) == EQUAL ) /* Range of qmbolr */ 

for{ k=*(pat.torn++)+l; k<=*(++patten); k++ ) 
if( compl ) T[k] I= j; 
4lab ?[k] t= -j; 

1 
l lra if< *p&torn I= I.' ) /* Not a don't care symbol */ 
i 

if ( *pattorn == '\\' ) pattrrn++; /* Eaeapo symbol */ 
if ( compl ) It*pattornl I= j; 
l 11* IC*pattern] t- 'j; 

1 
1 
lim = -(lin >> B); 

Figure 3: Preprocessing for Patterns with Classes. 
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Fastmist( k, pattern, text > /* String matching with k mismatches */ 
int k; /* (B=4, WORD=32, MAXSYM=i28. EOS=O) */ 
char *pattern, *text; 
c 

iat i. j, m. matches; 
unsigned int T[MAXSYM]; 
unsigned int mask, 4tat4, Urn; 
if( ntrlm(pattorn)*B > WORD ) 

Error( O'Faetmiet only works for pattern size <= WORD/B" ); 
/* Preproceeeing */ 
for( i=O; iWA.XSYM; i++ ) T[i] = 0; 
fort m=O, j=l: *pattern != EOS; m++, pattern++, j <<= B ) 

T[*pattern] += j; 
lim = (m-k) << ((a-l)*B); 
if( m*B == WORD ) maak = -0; 
4144 nank = j-i; 
/* Ssucb */ 
matches = 0; 8tate = 0: /* Initial 4tate */ 
iott l-1; icm &I *t4xt I- E08; I++, taxt++ ) 

ntate = (state << B) + T[*text]; 
for( ; *text !- EOS; text++ ) 
i 

state = ((atate << B) + T[*text]) 0 Bask; 
if( state >= lim ) /* Match at current position-m+1 */ 

match4e++; /* with m-(state>>(n-l)*B) errors */ 
3 
return( matches ); 

3 

Figure 4: Pattern Matching with at most k mismatches (simpler version). 
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m = 6trlen(pattarn); type = MISMATCH; /* count miumatchor *I 
if( 2*k > m ) /* String matching with at lwart m-k matchem */ 
I 

WI- = MATCH; k = m-k; /* count matchor *I 
1 
B = clogl(k+l) + 1; /* cloga ir the ceiling of log bar@ 2 of n */ 
if( m > WORD/B ) Error( q Fartmilt doer not work for thir casoy ); 
I* Preprocomdng */ 
lim = k << ((m-i)*B); 
for( i=l. ovmask=O; iC=m; i++ ) ovmauk = (ovmauk C< B) 1 (1 << (B-1)); 
if< typa == MATCH ) 

for( i=O; i<HAXSYM; i*+ ) T[il = 0; 
ElM 
< 

lim l = 1 << (cm-l)*B); 
for( i=O; i<MAXSYM; i+* ) T[iI = ovmask >> (B-1); 

1 
for( J=l; *pattorn I= EOS; pattern++, j <<= B ) 

if( typo == MATCH ) 
T[*pattornI += j; 

l lna 
T[*pattorn] &= -1; 

if( m*B == WORD ) mark = -0; 
ala* mauk - j - 1; 
/* Smarch */ 
matchon = 0; rtata - 0; overflow = 0; /* Inltikl rtbr */ 
for( id; i<m && *taxt. I= EOS; i+*. twt+* ) 
< 

rtato = (at&r CC B) * T[*toxt]; 
overflow = (overflow << B) 1 (rtato & ovmark); 
rtato L- '0vnlark; 

1 
for( ; *twit I= EOS; twzt++ ) 
< 

rtatr = ((atat. << B) + TC*taxtl) k mask; 
overflow = ((overflow C< B) 1 (atate L ovmauk)) k mask; 

stab &= -ownark; 
if ( type == MATCH ) 
< 

if( (state I overflow) >= lim ) 
matchma++; /* Match with more than m-k l rrorn */ 

1 
dsa if( (Itat0 1 overflow) C lim > 

matcham++; /* Match with (rtate>>(m-l)*B) l rrora */ 

Figure 5: String Matching with at most k mismatches. 

175 


