
A New Approach to Text Searching
(Preliminary version)

Ricardo A. Baeza-Yates

Gaston H. Gonnet

Centre for the New O.E.D.
& Data Structuring Group

Department of Computer Science

University of Waterloo
Waterloo, Ontario, Canada N2L 3Gl *

Abstract

We introduce a family of simple and fast algorithms
for solving the classical string matching problem, string
matching with don’t care symbols and complement sym-
bols, and multiple patterns. In addition we solve the
same problems allowing up to k mismatches. Among
the features of these algorithms are that they are real
time algorithms, they don’t need to buffer the input,
and they are suitable to be implemented in hardware.

1 Introduction

The string matching problem consists of finding all oc-
currences of a pattern of length m in a text of length n.
We generalize the problem allowing “don’t care” sym-
bols, the complement of a symbol, and any finite class
of symbols. We solve this problem for one or more pat-
terns, and with or without mismatches. For small pat-
terns the worst case time is linear on the size of the
text.

The main idea is to represent the state of the search
as a number, and each search step costs a small num-
ber of arithmetic/logical operations, provided that the
numbers are big enough to represent all possible states
of the search. Hence, for small patterns, we have a O(n)

‘The work of the first author was supported by a scholarship
from the Institute for Computer Research of the University of
Waterloo and by the University of Chile and that of the second
author by a Natural Sciences and Engineering Research Council
of Canada Grant No. A-3353.

time algorithm using O(ICI) extra space and O(m+ ICI)
preprocessing time, where C denotes the alphabet.

For string matching, empirical results show that the
new algorithm compares favourably with the Knuth-
Morris-Pratt (KMP) algorithm [ll] for any pattern
length and the Boyer-Moore (BM) algorithm [4] for
short patterns (up to length 6).

For patterns with don’t care symbols and complement
symbols, this is the first practical and efficient algorithm
in the literature, generalizing this to any finite class of
symbols or their complement.

The main properties of this class of algorithms are:

l Simplicity: the preprocessing and the search are
very simple, and only bitwise logical operations,
shifts and additions are used.

l Real time: the time-delay to process one text char-
acter is bounded by a constant.

l No buffering: neither the text nor the pattern need
to be stored.

It is worth noting that the KMP algorithm is not a real
time algorithm, and the BM algorithm needs to buffer
the text.

All these properties indicates that this class of algo-
rithms is suitable for hardware implementation; hence
we believe that this new approach is a valuable contribu-
tion to all applications dealing with text searching. The
motivation behind our work is the work done for New
Oxford English Dictionary project at the University of
Waterloo.

2 A Numerical approach to
String Matching

After the discovery of linear time string matching algo-
rithms [11,4] a lot of research was done in the area. Our

168

algorithm is based on finite automata theory [ll] and
also exploits the fact that in practical applications the
alphabet is finite [4].

Instead of trying to represent the global state of the
search as in previous algorithms, we use a vector of tn
different states, where state i tell us the state of the
search between the positions 1,i of the pattern and
positions (j - i + l),..., j of the text, where j is the
current position in the text.

Suppose that we need b bits to represent each indi-
vidual state. We will see latter that b depends on the
searching problem. Then, we can represent the vector
state efficiently as a number in base 2b:

m-l ..- -

state = c si+12b.'
i=O

where the si are the individual states. Note that if s,
corresponds to a final state we have to output a match
that ends at the current position.

For string matching we need only 1 bit (that is b = l),
where si is 0 if the last i characters have matched or
1 if not. We have to report a match if s, is 0, or
equivalently if state < . ..lllOmsl.

To update the state after reading a new character on
the text, we have to:

l shift the vector state b bits to the left to reflect
that we have advanced in the text one position. In
practice, this sets the initial state of $1 to be 0 by
default.

l update the individusl states according with the new
character. For this, we use a table T that is defined
by preprocessing the pattern with one entry per
alphabet symbol, and an operator op that, given
the old vector state and the table value, gives the
new state. Note that this works only if the effect
of the operator in the individual state ai does not
produce a carry that will affect state si+l.

Then, each search step is:

state = (state << b) op T[curr char]

where << denotes the shift left bitwise operation.
The definition of the table Twill be basically the same

for all cases. We define

i=O

for every symbol z of the alphabet, in where 6(C) is 0
if the condition C is true, or 1 otherwise. Therefore we
need b . m . ICI bits of extra memory, and if the word
size is at least b - m, only ICI extra words are needed.
We set up the table preprocessing the pattern before the
search. This can be done in 0(I$] (m + [Cl)) time.

Example : Let (a, b, c, d} be the alphabet, and ababc
the pattern. Then, if b = 1, the entries for the table 2’
are:

T Cal = 11010 T[b] = 10101
T Ccl = 01111 ‘f Cdl = 11111

The choice for op in the case of string matching is
almost unique: a bitwise logical or. We finish the ex-
ample, by searching the first occurrence of ababc in the
text abdabababc.

text : a b d a b
T[x] : 11010 10101 11111 11010 10101
state: 11111 11110 11101 11111 11110 11101

text : a b a b C

T[x] : 11010 10101 11010 10101 01111
state: 11101 11010 10101 11010 10101 01111

For example, the state 10101 means that in the cur-
rent position we have two partial matches to the left of
lengths 2 and 4. The match at the end of the text is
indicated by the value 0 in the leftmost bit of the state
of the search. El

The complexity of the search time in the worst and
average case is O(/$ln), where [?I is the time to
compute a shift or other simple operation on numbers
of mb bits using a word size of w bits. In practice (small
patterns, word size 32 or 64 bits) we have 0(n) worst
and average case time.

For each kind of patterns or searching problem, we
could adequately choose b and op. A similar idea was
presented by Gonnet [8] applied to searching the signa-
tures of a text.

3 String Matching with Classes

Now we extend our pattern language to allow don’t care
symbols, complement symbols and more. Formally, ev-
ery position in the pattern can be:

l x: a character from the alphabet.

l C: a don’t care symbol (matches any symbol).

l [characters]: a class of characters, where we allow
ranges (for example a..z).

l S: the complement of a character or class of char-
acters C. That is, matches any character that not
belongs to this class.

For example, the pattern [Pp]a~[aeiou]C~a~..tu..z]
matches the word Patter, but not python or Patton.

String matching with don’t care patterns was ad-
dressed before in Fischer and Paterson [6] achieving

O(nlog2mloglogmlog /Cl)

169

asymptotic search time, and also in Pinter [13] includ-
ing complement symbols (same complexity). However,
these are theoretical results, and their algorithms are
not practical. Pinter also gives a O(mn> algorithm that
is faster than a naive algorithm. For sm.all patterns, the
complexity of our algorithm is much better, and also a
lot easier to implement.

Attempts to adapt the KMP algorithm to this case
have failed [6,13], and for the same reason the BM algo-
rithm as presented in Knuth e‘t al [ll] cannot solve this
problem. It is possible to use the Horspool version of
the BM algorithm [9], but the worst case is O(mn); and
on average, if we have a don’t care character near the
end of the pattern, the whole idea of the shift table is
worthless. By mapping a class of characters to a unique
character, the Karp and Rabin algorithm [lo] solves this
problem too. However, this is a probabilistic algorithm,
and if we check each reported match, the search time is
O(n + m + mM), where M is the number of matches.
Potentially, M = O(n), and their algorithm is slower in
practice (because of the use of multiplications).

For this pattern language, we only have to modify the
table T, such that, for each position, we process every
character in the class. That is

m-l

T, = c ~5(pat;+~ E Class)‘~~” .
i=O

To maintain O([r$](m+]C])) preprocessing time (in-
stead of O([$]m]E]) time), where m is now the size of
the description of the pattern (and not its length), we
use the complement of the class for don’t care symbols
and complements. The search time remains the same.

4 Pattern Matching with Mis-
matches

In this section, we allow up to k characters of the pattern
to mismatch with the corresponding text. For example,
if k = 2, the pattern mismatch matches miscatch and
dispatch, but not respatch.

Landau and Vishkin [12] give the first eficient algo-
rithm to solve this particular problem. Their algorithm
uses O(lc(n + mlogm)) time and O(k(n + m)) space.
While it is fast, the space required is unacceptable for
practical purposes. Gab1 and Giancarlo [7] improve this
algorithm to O(kn + mlogm) time and O(m) space.
This algorithm is practical for small k. However, if
k = O(m), it is not so. Other approaches to this prob-
lem are presented in [3].

We solve this problem explicitly only for one pattern,
but the solution can be easily extended for multiple pat-
terns (see next section). In this case one bit is not

enough to represent each individual state. Now we have
to count matches or mismatches. In both cases, at most
O(log m) bits per individual state are necessary because

m is a bound for both, matches and mismatches. Note,
too, that if we count matches, we have to complement
the meaning of 6 in the definition of T. Then, we have
a simple algorithm using

B = [log,(m + 1)1

and op being addition. If b, 5 k then we have a match.
Note that this is independent of the value of k.

Therefore we need O(]C]mlogm) bits of extra space.
If we assume that we can always represent the value
of m in a machine word, we need O(lYEllm) words and
preprocessing time. However for small m, we need only
0(/C]) extra space and O(]C] + m) preprocessing time.
For a word size of 32 bits, we can fix B = 4 and we
can solve the problem for up to m = 8, as presented in
Figure 4, where we count matches.

Clearly only O(log k) bits are necessary to count the
mismatches if we allow at most k mismatches. The
problem is that when adding we have a potential carry
into the next state. We can get around this problem by
having an overflow bit, so that we remember if overflow
has happened, but that bit is set to zero at each step of
the search. In this caze we need

B = [logz(k + l)] + 1

bits. At each step we record the overflow bits in an
overflow state, and we reset the overflow bits of all in-
dividual states (in fact, we only have to do this each k
steps, but it is not practical to get in all that trouble).
Note that if k > m/2, then we count matches. The only
problem for this case, is that is not possible to tell how
many errors there are in a match. Table 1 shows up to
what m we can use for a 32 bits word.

k, m - k 1 Bits per state 1 m

‘11

Table 1: Maximum pattern length (m) for a 32 bits
word depending on k.

Therefore, with a slightly more complex algorithm,
we can solve more cases, using only O(cmlog k) extra
bits.

5 Multiple Patterns

We consider in this section the problem of more than one
pattern, for patterns with classes (also we can extend
this to mismatches). To denote the union symbol we
use “I”, for example pl(p2 searches for the pattern p1 or
the pattern ~2.

170

The KMP algorithm and the BM algorithm had been
extended already to this case (see [I] and [5] respec-
tively), achieving a worst case time of O(n + m), where
m is the total length of the set of patterns.

If we have to search for ~11.. . Ipa, and we keep
one vector state per pattern, we have an immediate
O([$]S~) time algorithm, for a set of s strings. How-
ever, we can concatenate all the vectors, keeping all
the information in only one vector state and achieving
O([?]n) search time. The disadvantage is that now
we need numbers of size xi [piI bits, and 0(ICI xi lpi/)
extra space.

6 Implement at ion

In this section we present efficient implementations to
algorithms that count the number of matches of the
different classes of patterns in a text using one word
numbers in the C programming language. Algorithms
with different semantic actions in case of a match are
easily derived from them.

The programming is independent of the word size as
much as possible. We use the following symbolic con-
stants:

MAXSYM: size of the alphabet. For example, 128 for
ASCII code.

WORD: word size in bits (32 in our case).

B: number of bits per individual state (1 for string
mat thing) .

EOS: end of string (0 in C).

l-71

Figure 1 shows an efficient implementation of the
string matching algorithm. Another implementation is
possible using op as a bitwise logical and operation, and
complementing the value of T, for all x E C.

Experimental results for searching 100 times for all
possible matches of a pattern in a text of length 50K
are presented in Table 2. For each pattern, a prefix
from length 2 to 10 was used. The patterns were chosen
such that each first letter had a different frequency in
English text (from most to least frequent). The timings
are in seconds and they have an absolute error bounded
by 0.5 seconds. They include the preprocessing time in
all cases.

The algorithms implemented are Boyer-Moore, as
suggested by Horspool [9] (or BMH), which, accord-
ing to Baeza-Yates [2], is the fastest practical version
of this algorithm; Knuth-Morris-Pratt, as suggested by
their authors [ll] (or KMPr, and as given by Sedgewick
[14] (or KMP2); and our new algorithm as presented
in Figure 1 (Sol), and another version using the KMPl
idea (SOs) (that is, do not use the algorithm until we see
the first character of the pattern). The changes needed
for the later case (using structured programming!) are

shown in Figure 2. Note that SO1 and KMPz will be
independent of the pattern length, that SO2 and KMPl
will be dependent of the frequency of the first letter of
the pattern in the text, and that BMH depends on the
pattern length.

From Table 2 we can see that SO2 outperforms
KMPI, being between a 40% and 50% faster. Also it is
faster than BMH for patterns of length smaller than 4
to 9, depending on the pattern.

Figure 3 shows the preprocessing phase for patterns
with classes, using “-” as the complement character and
“\” as the escape character. The search phase remains
as before. The search time for this class of patterns is
the same as the search time for a string of the same
length.

For pattern matching with at most Ic mismatches and
word size 32 bits, we use B = 4 and we count matches,
solving the problem up to m = 8, as presented in Fig-
ure 4.

Figure 5 shows the changes needed for the case where
we use O(log k) bits per state.

For multiple patterns, the preprocessing is very simi-
lar to the one in Figure 3. The only change in the search
phase is the match testing condition:

if ((state k mask) != mask) /* Match? */

where mask has a bit with value 1 in the adequate po-
sition for each pattern. Note that this indicates that a
pattern ends at the current position, and it is not pos-
sible to say where the pattern starts without wasting
0([%] sM) time, being M the number of matches and
s the number of patterns.

7 Final Remarks

We have presented a simple class of algorithms that can
be used for string matching and some other kinds of
patterns, with or without mismatches. The time com-
plexity achieved is linear for small patterns, and this is
the case in most applications. For longer patterns, we
need to implement integer arithmetic of the precision
needed using more than a word per number. Still, if the
number of words per number is small, our algorithm is
a good practical choice. Using VLSI technology to have
a chip that uses a register of 64 or 128 bits that imple-
ments this algorithm for a stream of text, faster search
time can be achieved.

The applications of these algorithms are restricted to
main memory, or to text data bases where a very coarse
granularity index is provided and pattern matching is
done within the granules.

This type of algorithms can also be used for other
matching problems, for example mismatches with dif-
ferent costs (see [3]) or for patterns of the form
(set of patterns)C*(aet of patterns) (see 1131).

Faetstrmat (text, pattern)
register char *text;
char *pattern;
c

register unsigned int state, lim;
unsigned int T[MA.XSYM] ;
int i, j , matches;
if(strlen(pattern) > WORD >

Error(“Use pattern size C= word eke” >;
/* Preproceeeing */
for(i=O; i<MAXSYM; i++) T[i] = -‘O;
for(lim=O, j=l; *pattern != EOS; lim I= j, j <C= B, pattern++)

T[*pattern] &= ‘j;
lim = -(lir >> B);
/* Search */
matches = 0; state = -0; /* Initial state */
for(; *text != EOS; text++)

c
state = (state << B) 1 T[*textl; /* Next state */
if(state < lim)

matches++; /* Match at current position-len(pattern)+l */

)
return(matchor >;

1

Figure 1: Shift-Or algorithm for string matching.

-

m
=
2
3
4
5
6
7
a
9

10
=

m
=

2
3
4
5
6
7
a
9

10

Pattern: epresentative Pattern: representative
BMH KMPl KMPz SOI SO1 BMH KMPI KMPz SOI SO2

36.6 24.4 58.7 30.2 15.8 23.6 15.5 49.9 30.2 13.2
25.2 24.3 59.0 30.2 15.7 16.2 15.0 50.2 30.4 13.0
20.5 24.5 58.7 30.2 15.6 12.6 15.0 50.1 30.2 13.1
17.3 24.3 58.8 30.4 15.8 11.0 15.2 50.1 30.4 13.1
15.3 24.4 58.7 30.3 15.9 9.6 15.1 50.9 30.6 13.4
13.2 24.3 58.6 30.1 15.7 9.0 15.3 50.8 30.5 13.1
12.5 24.4 58.6 30.4 15.6 7.9 15.3 50.7 30.6 13.3
11.6 24.4 59.7 30.1 15.6 7.5 15.3 50.5 30.7 13.3
11.2 24.3 58.3 30.1 15.8 7.1 15.4 50.1 30.2 13.0 1

Pattern: lenislative Pattern: kinematics
BMH KMPI KMPa SOI SO1 BMH KMPl KMPz SOI SOa

37.7 21.0 58.2 30.6 11.9 35.2 19.0 57.6 30.2 10.4
25.6 21.0 58.6 31.1 12.3 24.9 19.0 57.4 30.1 10.5
19.9 20.9 57.8 30.4 11.8 19.9 18.8 57.4 29.9 10.4
16.5 20.6 57.8 30.1 11.7 16.7 19.0 57.4 30.0 10.4
14.3 20.6 58.0 30.2 11.6 14.3 19.1 57.6 30.1 10.4
12.9 20.5 57.5 30.1 11.8 13.0 19.0 57.5 30.1 10.4
12.0 20.6 57.9 30.3 12.0 12.2 19.0 57.6 30.0 10.4
11.2 20.7 57.7 30.3 12.1 10.8 19.0 57.3 30.1 10.6
10.3 20.9 58.2 30.3 11.8 10.0 19.1 57.5 30.2 10.5

Table 2: Experimental results for prefixes of 4 different patterns (time in seconds)

172

initial = -0; first = *pattern;
do <

do <
stab = (state << B) 1 T[*text]; /* Next state */
if(state < liar) matches++;
text++;

) while(state != initial >;
while(*(text-l) != EOS 88 *text != first) /* Scan */

text++;
state = initial;

) while{ *(text-l) != EOS);

Figure 2: Shift-Or algorithm for string matching (trickier version).

/* Computo lrn&,h and procwa don't cara rymbolr and complmantn */
for(i=O, j=l, lan=O, mask-O; *(pattorn+i) I= EOS; i++, ion*+, j <<= B)
<

if(*(pattern*i) == ‘-’)
i

i++; numk I= j;
1

/* Complawnt */

if(*(pattorn*i) == '1') /* Clam of mymbalm */

x
for{ ; *(pattern+i) I= 'I'; i++)

if< *(pattrrn+i) == '\\' 1 it+; /* Eexpa rymbol */
1
91~ if(*(pattmrn+i) == '\\') i++; /* E8cap8 symbol */
air* if(*(patt*rn+i) == '.I) mark I= j; /* Don't care symbol */

1
if(lan > WORD) Srror(War B*maxlan 4- word mixon);
/* sme up T */
for{ l=O; ICMAXSTM; i++) ICil = ‘mmk;
for{ j-1, 11~0; *p&torn I= EOS; lim I= j. j <C= B, p&torn++)
<

compl = FALSE;
if(*pattern == '*') /* Complamont */
i

i++; crmpl n TRUE:
1
if (*p&torn == 'E') /* Claaa of qmbola */

for(p&tarn++; *pattarn != '1'; pattarn++)
<

if(*pattern == '\\' > pattern++; /* Emcape symbol */
if(compl) f[*patternI I= j;
l lm. I[*pattrrn] &= -j;
if{ l trncmp(pattwn+l.Y..Y,9) == EQUAL) /* Range of qmbolr */

for{ k=*(pat.torn++)+l; k<=*(++patten); k++)
if(compl) T[k] I= j;
4lab ?[k] t= -j;

1
l lra if< *p&torn I= I.') /* Not a don't care symbol */
i

if (*pattorn == '\\') pattrrn++; /* Eaeapo symbol */
if (compl) It*pattornl I= j;
l 11* IC*pattern] t- 'j;

1
1
lim = -(lin >> B);

Figure 3: Preprocessing for Patterns with Classes.

173

Fastmist(k, pattern, text > /* String matching with k mismatches */
int k; /* (B=4, WORD=32, MAXSYM=i28. EOS=O) */
char *pattern, *text;
c

iat i. j, m. matches;
unsigned int T[MAXSYM];
unsigned int mask, 4tat4, Urn;
if(ntrlm(pattorn)*B > WORD)

Error(O'Faetmiet only works for pattern size <= WORD/B");
/* Preproceeeing */
for(i=O; iWA.XSYM; i++) T[i] = 0;
fort m=O, j=l: *pattern != EOS; m++, pattern++, j <<= B)

T[*pattern] += j;
lim = (m-k) << ((a-l)*B);
if(m*B == WORD) maak = -0;
4144 nank = j-i;
/* Ssucb */
matches = 0; 8tate = 0: /* Initial 4tate */
iott l-1; icm &I *t4xt I- E08; I++, taxt++)

ntate = (state << B) + T[*text];
for(; *text !- EOS; text++)
i

state = ((atate << B) + T[*text]) 0 Bask;
if(state >= lim) /* Match at current position-m+1 */

match4e++; /* with m-(state>>(n-l)*B) errors */
3
return(matches);

3

Figure 4: Pattern Matching with at most k mismatches (simpler version).

174

m = 6trlen(pattarn); type = MISMATCH; /* count miumatchor *I
if(2*k > m) /* String matching with at lwart m-k matchem */
I

WI- = MATCH; k = m-k; /* count matchor *I
1
B = clogl(k+l) + 1; /* cloga ir the ceiling of log bar@ 2 of n */
if(m > WORD/B) Error(q Fartmilt doer not work for thir casoy);
I* Preprocomdng */
lim = k << ((m-i)*B);
for(i=l. ovmask=O; iC=m; i++) ovmauk = (ovmauk C< B) 1 (1 << (B-1));
if< typa == MATCH)

for(i=O; i<HAXSYM; i*+) T[il = 0;
ElM
<

lim l = 1 << (cm-l)*B);
for(i=O; i<MAXSYM; i+*) T[iI = ovmask >> (B-1);

1
for(J=l; *pattorn I= EOS; pattern++, j <<= B)

if(typo == MATCH)
T[*pattornI += j;

l lna
T[*pattorn] &= -1;

if(m*B == WORD) mark = -0;
ala* mauk - j - 1;
/* Smarch */
matchon = 0; rtata - 0; overflow = 0; /* Inltikl rtbr */
for(id; i<m && *taxt. I= EOS; i+*. twt+*)
<

rtato = (at&r CC B) * T[*toxt];
overflow = (overflow << B) 1 (rtato & ovmark);
rtato L- '0vnlark;

1
for(; *twit I= EOS; twzt++)
<

rtatr = ((atat. << B) + TC*taxtl) k mask;
overflow = ((overflow C< B) 1 (atate L ovmauk)) k mask;

stab &= -ownark;
if (type == MATCH)
<

if((state I overflow) >= lim)
matchma++; /* Match with more than m-k l rrorn */

1
dsa if((Itat0 1 overflow) C lim >

matcham++; /* Match with (rtate>>(m-l)*B) l rrora */

Figure 5: String Matching with at most k mismatches.

175

