
Personalized Itinerary Recommendation withQueuing Time
Awareness

Kwan Hui Lim

The University of Melbourne,

Australia

Data61, CSIRO, Australia

limk2@student.unimelb.edu.au

Jeffrey Chan

RMIT University, Australia

The University of Melbourne,

Australia

jeffrey.chan@rmit.edu.au

Shanika Karunasekera

Christopher Leckie

The University of Melbourne,

Australia

{karus,caleckie}@unimelb.edu.au

ABSTRACT

Personalized itinerary recommendation is a complex and time-

consuming problem, due to the need to recommend popular attrac-

tions that are aligned to the interest preferences of a tourist, and to

plan these attraction visits as an itinerary that has to be completed

within a specific time limit. Furthermore, many existing itinerary

recommendation systems do not automatically determine and con-

sider queuing times at attractions in the recommended itinerary,

which varies based on the time of visit to the attraction, e.g., longer

queuing times at peak hours. To solve these challenges, we propose

the PersQ algorithm for recommending personalized itineraries

that take into consideration attraction popularity, user interests

and queuing times. We also implement a framework that utilizes

geo-tagged photos to derive attraction popularity, user interests

and queuing times, which PersQ uses to recommend personalized

and queue-aware itineraries. We demonstrate the effectiveness of

PersQ in the context of five major theme parks, based on a Flickr

dataset spanning nine years. Experimental results show that PersQ

outperforms various state-of-the-art baselines, in terms of various

queuing-time related metrics, itinerary popularity, user interest

alignment, recall, precision and F1-score.

CCS CONCEPTS

• Information systems→Personalization;Recommender sys-

tems; Location based services; Data mining; Web applications;

KEYWORDS

Tour Recommendations; Trip Planning; Personalization; User Inter-

ests

ACM Reference format:

Kwan Hui Lim, Jeffrey Chan, Shanika Karunasekera, and Christopher Leckie.

2017. Personalized Itinerary Recommendation with Queuing Time Aware-

ness. In Proceedings of SIGIR ’17, Shinjuku, Tokyo, Japan, August 07-11, 2017,
10 pages.

https://doi.org/http://dx.doi.org/10.1145/3077136.3080778

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-

tion for Computing Machinery.

ACM ISBN 978-1-4503-5022-8/17/08. . . $15.00

https://doi.org/http://dx.doi.org/10.1145/3077136.3080778

E

D C

B

A
Itinerary 1 (Queue-aware)
Itinerary 2 (Non-queue)

Missed attraction
visit due to time
budget exceeded

t=1

t=2 t=3
t=4

t=5

t=1

t=2

t=3
t=4

0

500

1000

1500

2000

2500

3000

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Queuing Times
at Attraction B

0

500

1000

1500

2000

2500

3000

t=0 t=1 t=2 t=3 t=4 t=5 t=6

Queuing Times
at Attraction D

Figure 1: Example of itinerary recommendation

with queue time consideration

1 INTRODUCTION

Touring and travelling are popular leisure activities for many peo-

ple, as shown by the 1.18 billion annual tourists in 2015 [39]. A

critical task for any tourist is to plan a trip itinerary that comprises

popular and interesting attractions, which can be completed within

a specific time limit. This task is especially complex and challenging

due to: (i) the need to identify a set of popular attractions that are

also aligned with the traveller’s interests; (ii) the need to organize

these attractions in the form of an itinerary with the constraints

of a starting/ending place (e.g., near a traveller’s hotel) and limited

time for touring; and (iii) the need to plan for travelling, visiting

and queuing times at the attractions, where queuing times are de-

pendent on the time of attraction visit. In particular, neglecting

to account for queuing times can create a frustrating experience

for travellers as they spend an unnecessarily long time queuing

instead of enjoying the attractions, and possibly miss attraction

visits in their itineraries due to these queuing times exceeding their

available touring time.

Figure 1 illustrates the importance of queuing time awareness in

itinerary recommendation. Itinerary 2 (dotted blue line) does not

consider queuing time and recommends an attraction visit sequence

of A → B → C → D → E. However, this itinerary is unable to

complete the visit to Attraction E, due to excessive queuing times

at Attractions B and D that causes the time budget to be exceeded.

Moreover, Itinerary 2 schedules visits to Attractions B and D at

the peak (longest) of their queuing times. In contrast, Itinerary 1

(solid green line) considers queuing time and recommends that

attractions be visited in the sequence of A → D → C → B → E,
as Attraction D has a lower queuing time at t = 2, compared to

Attraction B at the same time. By the time Itinerary 1 visits At-

traction B (at t = 4), its queuing time has shortened drastically,

compared to earlier at t = 2. In addition, Itinerary 1 schedules visits

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

325

https://doi.org/http://dx.doi.org/10.1145/3077136.3080778
https://doi.org/http://dx.doi.org/10.1145/3077136.3080778

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan K. H. Lim et al.

to Attractions B and D when queues are the shortest, thus making

the itinerary more enjoyable with less time wasted on queuing. In

real-life, itinerary recommendation is even more complex due to:

(i) the need to consider attraction popularity and user interest pref-

erences; and (ii) since queuing times are time-dependent, itinerary

recommenders need to also consider the time of visit to attractions

and their queuing times.

In this work, we aim to address these issues and propose the

PersQ algorithm for recommending itineraries that are popular,

personalized to user interests, and minimize queuing times at at-

tractions. To the best of our knowledge, our work is the first to

use geo-tagged photos to automatically determine and incorporate

queuing time in personalized itinerary recommendations. Our main

contributions are:

• We introduce and formulate the QueueTourRec problem

for recommending personalized itineraries that aim to max-

imize attraction popularity and user interest preferences

and minimize queuing times, while adhering to a time

constraint for completing the itinerary (Section 3).

• We propose the PersQ algorithm, where we have devel-

oped a novel implementation of Monte Carlo Tree Search

(MCTS) for the domain of personalized itinerary recom-

mendation with queuing time awareness (Section 5).

• We implement a framework for automatically extracting

attraction popularity, user interests and queuing time from

geo-tagged photos (Section 6). Using this framework, we

have collected a dataset of user visits in five major theme

parks across nine years, which is made publicly avail-

able at https://sites.google.com/site/limkwanhui/datacode#

sigir17 (Section 7.1).

• We introduce various queuing-related evaluation metrics

and compare PersQ against various state-of-the-art base-

lines. The results show that PersQ recommends itineraries

with the lowest ratio of queuing time to total touring time,

and schedules visits to popular attractions at times with

the shortest queues. In addition, PersQ offered the best

overall performance in terms of itinerary popularity, user

interest, precision, recall and F1-scores (Sections 7 and 8).

For the rest of our paper, Section 2 discusses related work in

itinerary recommendation, while Section 4 provides some back-

ground on MCTS.

2 RELATEDWORK

General ItineraryRecommendation. Many earlyworks on itinerary

recommendation [10, 11, 19, 26] are based on the Orienteering

problem [17, 38, 41], where the main objective is to recommend an

itinerary that maximizes a global profit/reward and can be com-

pleted within a specific budget. Attraction popularity is frequently

used as a global profit/reward in the context of recommending and

planning an itinerary in touristic cities [10, 11, 19, 26] or theme

parks [18, 24, 42]. While these are interesting works in itinerary rec-

ommendations, the use of a global profit/reward is common among

all users and thus provides no personalization for user interest pref-

erences. In recent years, more researchers have incorporated user

interests and/or specific preferences to personalize such itinerary

recommendations and we discuss these works next.

Table 1: Description of Key Notations

Notation Description

A The set of all attractions

ax A specific attraction, where ax ∈ A
Catax The category of attraction ax

Durax The visit duration at attraction ax

Travax ,ay Travelling time from ax to ay

taax The arrival time at attraction ax

tdax The departure time from attraction ax

Vx An user-attraction visit, Vx = (ax , taax , t
d
ax)

Pop(ax) The popularity of attraction ax

Intu (c) The interest of user u in attraction ax

Queuet (ax) The queuing time at attraction ax at time t

Personalized ItineraryRecommendation. Many recentworks

aim to recommend itineraries that are personalized to users based

on their interest preferences [40] or personalized requirements such

as a specific attraction visit sequence [15], mandatory attraction

categories [8, 28], group interest satisfaction [14, 30], among oth-

ers. For example, [49, 50] implemented a heuristic approximation

algorithm to construct personalized itineraries that optimize for a

heuristic of attraction popularity and user interests relative to the

travelled distance, while [43] utilized a modified Ant Colony Sys-

tem [13] to recommend personalized itineraries that comprise less

crowded attractions. Others such as [29, 31] modelled the personal-

ized itinerary recommendation problem as an integer program with

the objectives of recommending popular attractions and tailoring

the attraction visit duration based on user interest. Similarly, [3, 5]

aim to first identify a set of interesting and popular attractions,

then construct an itinerary comprising these attractions using a

variant of the Travelling Salesman Problem [32]. In addition, there

have been many websites and applications [4, 8, 34, 44] developed

for itinerary recommendations based on variants of the above-

mentioned research.

Top-k POI Recommendation. An adjacent research area to

itinerary recommendation are works on top-k POI recommenda-

tion, which has been extensively studied by the Information Re-

trieval community [25, 27, 46–48]. Most of these works are based

on matrix factorization or collaborative filtering approaches and

their main objective is to recommend a ranked list of top-k POIs

to a user. To achieve this purpose, they utilize various sources of

information such as social links [46], acitivity/user types [25], ge-

ographical/temporal aspects of POIs [27, 47, 48]. Although these

works propose interesting uses of various POI information, the task

of top-k POI recommendation is distinctly different from itinerary

recommendation, which encompasses the added complexity of con-

structing a set of relevant POIs as a time-constrained connected

itinerary with the consideration of travelling time and POI visit

durations, among others.

Discussion ofRelatedWork. While these earlier works are the

state-of-the-art in itinerary and POI recommendation, our work dif-

fers from these earlier works in several important aspects, namely:

(i) ourQueueTourRec problem optimizes for attraction popularity,

user interest preferences and queuing times distribution, which is

automatically constructed based on geo-tagged photos and then

included as part of the travelling cost along with transport time and

attraction visit duration; (ii) unlike top-k POI recommendations,

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

326

 https://sites.google.com/site/limkwanhui/datacode#sigir17
 https://sites.google.com/site/limkwanhui/datacode#sigir17

Personalized Itinerary Recommendation withQueuing Time Awareness SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

our QueueTourRec problem involves recommending a set of POIs

and planning it as a connected itinerary with the associated time

constraints of travelling between POIs, visiting POIs and complet-

ing the itinerary within a time budget; and (iii) while MCTS is

typically used for board game playing [6, 12]
1
, we propose a novel

and non-trivial adaptation of MCTS (denoted the PersQ algorithm)

for solving the QueueTourRec problem.

3 BACKGROUND AND PROBLEM

DEFINITION

Table 1 highlights the key notations used in our work, which we

elaborate more in the next section.

3.1 Preliminaries

For each theme park, there are arem attractions, and we represent

this set of attractions as A = {a1, ...,am }. Each attraction ax is also

associated with its latitude/longitude coordinates, category Catax
(e.g., roller coaster, water rides, indoor), and the duration Durax
needed to visit that attraction (e.g., 10 minutes for a roller coaster).

For itinerary recommendation in theme parks, the primary mode

of transportation is by walking. Thus, we use Travax ,ay to denote

the amount of time taken to walk from attractions ax to ay , which
is derived from a leisure walking speed of 5km/hour [7] to cover

the distance between attractions ax and ay .
While we define our problem in the context of a theme park,

these definitions and problem formulation are generalizable to any

general path planning related context. For example, in the context

of a city, there are also various attractions that a tourist can visit,

where each attraction is also associated with a specific category

(e.g., shopping, beach, park) and visit duration. The travelling speed

Travax ,ay can also modified to reflect the transport modes of walk-

ing, cycling or driving. Similarly, in the context of a museum, the

attractions would be in the form of an artifact or painting, each also

associated with a specific category (e.g., classical, modern, gothic)

and visit duration.

Definition 1: Attraction Visits. For a user u who has visited

n attractions, we represent each visited attraction ax as a tuple,

Vx = (ax , taax , t
d
ax). In this tuple, ax denotes the visited attraction,

while taax and tdax denote the time that useru arrived at and departed

from attraction ax , respectively. Given taax and tdax , we can then

derive the amount of time that user u spent at attraction ax , by
calculating the difference between the arrival and departure times,

i.e., taax and tdax . Note that this time spent includes both the queuing

time at attraction ax and its visiting duration Durax . We later

describe (in Definition 5) how these queuing times can be calculated.

Definition 2: Visit Sequence. Given the set of visited attrac-

tions (i.e., multiple tuples of Vx = (ax , taax , t
d
ax)) by a user u, we

can construct his/her visit sequence by joining consecutive at-

traction visits to form a chronologically-ordered sequence, Su =
(V1,V2, ...,Vn). A visit sequence is split into two separate visit se-

quences if two consecutive attraction visits take place more than

8 hours apart, i.e., tdax − t
a
ax+1

> 8 hours . Other researchers have

adopted a similar approach to divide such visit sequences based

1
More background on MCTS is provided later in Section 4.

on an interval of 8 hours [10, 29, 31]. This list of visit sequences

subsequently serves as the ground truth of real-life theme park

visits, which is used as part of our experimentation and evaluation

of the various algorithms and baselines.

Definition 3: Popularity ofAttractions.Many earlier itinerary

recommendation works [5, 10, 30] represent the popularity of a

Point of Interest (POI) based on the number of visits that this POI

has received. In our work, we employ a similar measure of popular-

ity for each attraction based on the number of times this attraction

has been visited, which is defined as:

Pop(a) =
∑
u ∈U

∑
ax ∈Su

δ (ax = a), ∀ a ∈ A (1)

where δ (ax=a) = 1 if attraction ax is the same as attraction a, and
δ (ax=a) = 0 otherwise.

Definition 4: User-Attraction Interest Relevance.While at-

traction popularity is the same for all users, the interest relevance

of an attraction differs from user to user, i.e., each user will have

their own unique interest preferences. Given that C represents the

set of all attraction categories and P the set of photos taken by user

u, we define the interest level of user u in category c as:

Intu (c) =
1

|P |
∑
p∈P

δ (p = c), ∀ c ∈ C (2)

where δ (p = c) = 1 if photo p is of an attraction that belongs to

category c , and δ (p = c) = 0 otherwise. In short, the interest level

of a useru in attraction category c is based on the number of photos

of attractions that belong to category c , relative to the total number

of photos taken. The intuition behind this definition is that a user

is more likely to take more photos of an attraction (category) that

interests him/her, and less photos otherwise.

Definition 5: Queuing Times of Attractions. In general, each

attraction is also associated with a certain queuing time before a

user can visit the attraction, e.g., queuing to ride a roller coaster

or to buy tickets for a show. Given that Va is the set of visits to

attraction a and t is the visiting time, we represent the queuing

times at an attraction a as:

Queuet (a) = 1

|Va |
∑
u ∈U

∑
ax ∈Su

δ (ax = a)
(
(tdax − t

a
ax) − Durax

)
(3)

where δ (ax=a) = 1 if attraction ax is the same as attraction a, and
δ (ax=a) = 0 otherwise. In short, we calculate the queuing time

at an attraction a based on the total time spent at an attraction

(which includes queuing time and visit duration), subtracted by its

attraction visit duration (e.g., 10 minutes for a roller coaster). We

derive this total time spent based on the departure time tdax and

arrival time taax , which we then subtract by the attraction visiting

time Durax . For simplicity, we consider the time t of Queuet (a)
in terms of the hour of visit and use the average visit duration of

attraction a at a time t to derive its queuing time at time t .2

2
Although we consider t in terms of the hour of visit, t can be easily generalized to

smaller or larger units of time (e.g., 30 min or 2-hourly blocks)

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

327

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan K. H. Lim et al.

3.2 Problem Definition

Wefirst define the problem of recommending a personalized itinerary

to a single user, with the main objectives of maximizing the pop-

ularity and interest relevance of recommended attractions in this

itinerary, while minimizing the queuing times at these attractions.

We denote this problem as theQueueTourRec problem. Our for-

mulation of QueueTourRec is modelled based on a variant of the

Orienteering problem [38, 41].

Given the set of attractions A, a time budget B, a starting point
a1 and destination point aN , our objective is to recommend an

itinerary I = (a1, ...,aN) that maximizes the total reward Rwrd(I)
accumulated from the recommended itinerary I , while ensuring
that the itinerary is completed within the time budget B. The reward
function Rwrd(I) is calculated based on the popularity, interest rel-

evance and queuing times of the attractions ax ∈ A recommended

in itinerary I , as denoted by Pop(ax), Int(Catax) and Queue(ax),
respectively. The time budget B is calculated using the function

Cost(ax ,ay) = Trav(ax ,ay) + Dur (ay) +Queuet (ay), i.e., consid-
ering for travelling time, attraction/ride duration and queuing time

at time = t .
Unlike earlier works that do not automatically determine and

consider queuing times, our work differs in the following ways: (i)

we derive a queuing time distribution for each attraction (i.e., ex-

pected queuing duration at specific times), based on past tourist vis-

its; (ii) we incorporate these queuing times into the itinerary based

on the proposed visit time at each attraction; (iii) we recommend an

itinerary that optimizes for attraction popularity, user interests and

queuing times; and (iv) in contrast to the Orienteering problemwith

fixed costs, QueueTourRec includes a time-dependent cost that

affects the chosen attractions and queuing times, thus we cannot

utilize traditional algorithms designed for the former.

In essence, our main goal is to plan an itinerary I = (a1, ...,aN)
that maximizes the following objective function:

max

∑
ai ∈I

∑
aj ∈I,ai,aj

Pathtai ,aj

(Int(Catai) + Pop(ai)
Queuet (ai)

)
(4)

where Pathtai ,aj = 1 if a path from attractionai toaj is taken at time

t (i.e., we visit attractions ai and aj in sequence), and Pathtai ,aj = 0

otherwise.

Following which, we then attempt to solve for Eqn. 4, subject to

the following constraints:∑
ai ∈I,i,1

Pathta1,ai =
∑

aj ∈I, j,N
Patht+daj ,aN = 1 (5)

∑
ai ∈I,k,N

Pathtai ,ak =
∑

aj ∈I,k,1
Patht+dak ,aj ≤ 1 (6)

∑
ai ∈I

∑
aj ∈I,ai,aj

Pathtai ,ajCost
t (ai ,aj) ≤ B (7)

where the cost function used in Equation 7 is defined as:

Cost(ai ,aj) = Travai ,aj + Duraj +Queuet (aj) (8)

Equation 4 is a multi-objective function that aims to recommend

attractions in an itinerary I that maximizes the popularity and inter-

est relevance of all visited attractions, while minimizing the queuing

times at these attractions. Equation 4 can also be enhanced with

different weights for Int(Catai), Pop(ai) andQueuet (ai) to provide
varying levels of emphasis on each component. The optimization

of Equation 4 is also subjected to Constraints 5 to 7. Constraint 5

ensures that the recommended itinerary begins from a specific

attraction a1, while terminating at attraction aN .
3
Thereafter, Con-

straint 6 ensures that all paths in the recommended itinerary are

connected and no attractions are visitedmultiple times. Constraint 7

ensures that the recommended itinerary can be completed within

the time budget B. Specifically, the functionCost(ax ,ay) (i.e., Equa-
tion 8) is applied to all visited attractions to obtain the total time

taken for the itinerary, which includes the consideration for trav-

elling time Travai ,aj , attraction/ride duration Duraj and queuing

time Queuet (aj).
TheQueueTourRec problem formulation is based on a variant of

the Orienteering problem, which has been shown to be NP-hard as

the Orienteering problem is a specialized instance of the Travelling

Salesman Problem [38, 41].
4
Furthermore, this problem formula-

tion incorporates a time-dependent cost function Cost t (ax ,ay),
which adds to the complexity of this problem. Due to this NP-hard

complexity, solving theQueueTourRec problem optimally is not

feasible. To overcome these problems, we propose the PersQ algo-

rithm for solving theQueueTourRec problem of recommending

personalized and queue-aware itineraries. In the following sections,

we provide some background on Monte Carlo Tree Search (MCTS)

before describing our PersQ algorithm, which is partially based on

the MCTS algorithm.

4 MONTE CARLO TREE SEARCH

MCTS is a popular search algorithm that has been successfully

applied to many board games such as Chess, Go, Othello, among

others [6, 12]. We first provide some background information on the

MCTS algorithm in its typical application to board games. MCTS

approaches the task of board game playing as a tree search problem,

where nodes of the tree represent a specific board position and leaf

nodes represent a terminal game state, i.e., a win or loss. Thus,

moving from a node to a child node corresponds to making a game

move that results in a new board position. The main objective

is to perform a tree search that results in a set of optimal moves

(nodes) leading to a win state. In the MCTS algorithm, the basic idea

is that game play initially commences with iterations of random

node selection to explore moves, and recording the outcome of

choosing those moves. Thereafter, at subsequent game plays, MCTS

departs from randommoves and progressively builds upon previous

successes by converging to moves that result in win states.

The MCTS algorithm typically runs for a fixed number of iter-

ations (e.g., run for 100 iterations) or repeats the iterations for a

specific running time (e.g., run as many iterations in 10 seconds).

At each iteration, MCTS operates with four main steps:

3
For a more general itinerary recommendation task, such as in a city, a1 and aN
can be defined as the hotel that the tourist is residing in, and thus any recommended

itinerary will start and end at the tourist’s hotel.

4
TheQueueTourRec problem is also NP-hard as it can be generalized to the Orienteer-

ing problem, by using attraction popularity Pop(ai) as a global reward in Equation 4

and setting the queuing times Queue t (ai) to be uniform. For a more detailed proof

on the NP-hardness of the Orienteering problem, please refer to [2, 16].

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

328

Personalized Itinerary Recommendation withQueuing Time Awareness SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

(1) Selection. MCTS starts at the root node r and recursively

selects a child node c to expand based on a certain strat-

egy, until reaching either a leaf/terminal node or an unvis-

ited/unexpanded node. Thus, the root node r corresponds
to the start state of the board, while the child node c corre-
sponds to a move that results in a new board position.

(2) Expansion. If the selected node c is not a leaf node (i.e., a
terminal game condition leading to a win or loss), expand

node c and randomly select one of its unvisited child nodes.

(3) Simulation. Steps 1 and 2 are then continuously simu-
lated (repeated) until reaching the end of the game, i.e., a

leaf/terminal node.

(4) Back-propagation. At this stage, the game would have

ended, resulting in a win or loss to the player. The results

of this game is then back-propagated to all the traversed

nodes (board positions) during this iteration.

Steps 1 to 4 are considered one iteration of MCTS, which are

repeated for a fixed number of iterations or for a specific running

time. Each node (board position) will be labelled with the number of

wins/losses (1/0) and the number of times it has been visited. Step

1 typically employs a selection strategy that exploits nodes with a

high win-to-visited ratio, while Step 2 uses a random exploration

strategy for previously unvisited nodes. Steps 3 and 4 then simulate

the game play to the end and back-propagate the results to all the

visited nodes, incrementing their win count (if game was won) and

visited count by 1.

4.1 Motivations of MCTS for Itinerary

Recommendation

Monte Carlo based methods have also been applied to various

routing problems, such as variants of the Travelling Salesman Prob-

lem [33] and Vehicle Routing Problem [20], with the main purpose

of identifying an appropriate next node to visit in the route. Al-

though it is possible to solve such routing-related problems opti-

mally as an Integer Linear Program, the problem complexity in-

creases exponentially with the number of nodes (attractions). In the

case of the QueueTourRec problem, there is the added complexity

of a time-variable in the form of queuing times at attractions. More

importantly, real-life applications typically require that solutions

be generated in a short time-frame (minutes rather than hours).

MCTS is well-poised for solving our QueueTourRec problem due

to two main reasons [6]: (i) Instead of traversing the entire search

tree, MCTS allows us to explore a smaller, more promising region

of the solution space, thus leading to a shorter running time; and

(ii) MCTS can be adapted to run only for a fixed amount of time,

thus making it very suitable for real-life application;

However, the direct application of MCTS to the QueueTour-

Rec problem is non-trivial for several reasons: (i) in board games,

each move from a node to a child node has a uniform cost of 1,

whereas this cost is variable for itinerary recommendation and can

be based on distance or travel times; (ii) furthermore, this cost is

time-dependent in the QueueTourRec problem, due to different

queuing times at the same attraction based on the visit time; and

(iii) each win/lose state in a board game corresponds to a binary

reward of 1 or 0, which leads to a simple back-propagation strategy

(Step 4). In contrast, itinerary recommendation results in a complex

Algorithm 1: PersQ - Overview of Algorithm

input :a1 ∈ A: Starting attraction, aN ∈ A: Ending attraction,

S : Starting time of itinerary, B: Total time budget,

maxLoop: Number of iterations.

output : I = (a1, ...,aN): Recommended itinerary.

1 begin

2 Initialize Tvisits as a tree of visit count;

3 Initialize Tr eward as a tree of reward collected;

4 Initialize Il ist as a list of itineraries;

5 for iterations ← 1 tomaxLoop do

6 Initialize Itemp as a list of attraction visits;

7 Append attraction a1 to Itemp ;

8 ai ← a1;

9 aj ← ∅;
10 totalCost ← 0;

11 while totalCost < B do

12 aj ← SelectNextNode(ai ,Tvisits ,Tr eward);
13 Append attraction aj to itinerary Itemp ;

14 totalCost ←
totalCost +Travai ,aj + Duraj +Queue

t (aj);
15 if aj == aN then

16 Break loop;

17 ai ← aj ;

18 BackpropC(Itemp ,Tvisits);
19 if aj == aN then

20 R ← Simulate(Itemp);
21 BackpropR(Itemp ,Tr eward ,R);
22 Append itinerary Itemp to itinerary list Il ist ;

23 Return best itinerary I from Il ist ;

reward structure that is based on the attractions recommended

and their corresponding popularity, interest relevance and queuing

times. In the following sections, we describe our proposed PersQ

algorithm, which is an adaptation of MCTS for theQueueTourRec

problem, and we evaluate the effectiveness of PersQ against various

state-of-the-art methods for personalized tour recommendations.

5 OVERVIEW OF PERSQ ALGORITHM

Algorithm 1 gives an overview of our proposed PersQ algorithm,

which takes as input a desired starting attraction a1, ending at-

traction aN , starting time S and time budget B for completing the

itinerary. The output is in the form of a recommended itinerary

I = (a1, ...,aN), which starts from attraction a1 at time S and fin-

ishes at attraction aN by time S + B.
At the start of Algorithm 1 (Lines 2 and 3), two similar trees are

initialized with the root node n1 as the starting attraction a1, with
its child nodes as the set of attractions ai ∈ A, up to a depth of |A|
(the number of attractions in the theme park). Thus, the traversal

of nodes in this tree is equivalent to an itinerary I = (a1, ...,aN),
with a1 as the node selected at depth = 1, a2 at depth = 2 and so

on, until aN at depth = N . The two above-mentioned trees differ

in terms of the values associated with each node, Tvisits contains

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

329

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan K. H. Lim et al.

Algorithm 2: PersQ - SelectNextNode()

input :ai ∈ A: Current attraction; I = (a1, ...): Current
itinerary; Tvisits ; Tree of visit counts; Tr eward : Tree

of accumulated reward.

output :an ∈ A: Next attraction.
1 begin

2 visitCountai ← GetVisitCount(ai ,Tvisits);
3 an ← ∅;
4 UCTmax ← 0;

5 for aj ∈ A and aj < I do
6 visitCountaj ← GetVisitCount(aj ,Tvisits);
7 totalRewardaj ← GetTotalReward(aj ,Tr eward);
8 exploitaj ←

totalRewardaj
visitCountaj

+
Int (Cataj)+Pop(aj)

T ravai ,aj +Duraj +Queue
t (aj) ;

9 exploreaj ← 2Cp

√
2 lnvisitCountai
visitCountaj

;

10 UCTaj ← exploitaj + exploreaj ;

11 if UCTaj > UCTmax then

12 an ← aj ;

13 Return an ;

the number of times a specific node has been selected (Lines 2),

while Tr eward contains the total reward accumulated by a specific

node (Lines 3). Line 4 initializes Il ist , which will contain a list of

explored itineraries Il ist = (I1, I2, ..., ImaxLoop) at the conclusion
of our algorithm.

Algorithm 1 then runs for a fixed number of iterationsmaxLoop
(Line 5) and we setmaxLoop = 1, 000 as this value allows the algo-

rithm to complete in reasonable time (< 3 minutes). Each iteration

(Lines 5 to 22) is equivalent to a single run of MCTS. At the start

of each iteration, Lines 6 and 7 initialize an itinerary Itemp = (a1)
as an ordered list with a1 as the first attraction to be visited. Fol-

lowing which, Lines 11 to 17 construct an itinerary that can be

completed within the time budget B based on travelling time, ride

duration and queuing times (Line 14). This itinerary is constructed

by iteratively calling the SelectNextNode() method (Line 12) and

appending the next recommended attraction to Itemp (Line 13).

The SelectNextNode()method reflects the Selection and Expansion

stages of traditional MCTS and is discussed further in Section 5.1.

Attractions are continuously appended to Itemp until either the

time budget B is exceeded (Line 11) or the destination attraction

aN is reached (Line 15). After which, BackpropC() (Line 18) up-

dates/increments the visit count of visited nodes in Tvisits based
on the recommended attractions in itinerary Itemp . If itinerary

Itemp ends at attraction aN (Line 19), we calculate the reward

gained from Itemp (Line 20), update the accumulated rewards of

visited nodes in Tr eward accordingly (Line 21), and append Itemp
to Il ist . The calculation of reward and back-propagation of visit

counts/rewards are described in more detail in Section 5.2. At the

end of all iterations (Line 23), we examine all explored itineraries

I ∈ Il ist and return the itinerary with the highest reward.

5.1 Selection and Expansion

Algorithm 2 describes the SelectNextNode()method, which is used

for selecting the next attraction (node) to visit based on a current

attraction ai , visit count tree Tvisits , and reward tree Tr eward .

Instead of examining all possible neighbours of attraction ai , Line
5 focuses the search on attractions that have not been visited. Lines

6 to 10 are a variant of the Upper Confidence Bound [1] applied to

Trees, commonly denoted as UCT [21]. The main aim of UCT is to

choose a next attraction (node) aj to visit, that maximizes:

UCT
Oriд
aj =

totalRewardaj

visitCountaj
+ 2Cp

√
2 lnvisitCountai
visitCountaj

(9)

In Equation 9, the first term

totalRewardaj
visitCountaj

controls for the ex-

ploitation of attractions (nodes) that results in itineraries with high

rewards, relative to the number of times these nodes were cho-

sen. The second term 2Cp

√
2 lnvisitCountai
visitCountaj

controls for the explo-

ration of nodes (attractions) that have not been previously selected,

thus ensuring that different attractions (and hence, itineraries) are

considered. The parameter Cp determines the emphasis to give

to the exploration of nodes and we set Cp =
1√
2

, which Kocsis

and Szepesvári [22] has proved to be the best value as it statisfies

Hoeffding’s inequality.

Our proposed PersQ algorithm improves upon the original UCT

(Equation 9) by including an additional heuristic for next node

(attraction) selection. Our version of UCT is defined as:

UCT
PersQ
aj =

Int(Cataj) + Pop(aj)
Travai ,aj + Duraj +Queue

t (aj)

+
totalRewardaj

visitCountaj
+ 2Cp

√
2 lnvisitCountai
visitCountaj

(10)

Unlike the original MCTS that considers uniform cost (i.e., board

games where each move has a cost of 1), the cost in itinerary recom-

mendation is variable based on the selected next node (attraction).

Thus, the addition of the heuristic

Int (Cataj)+Pop(aj)
T ravai ,aj +Duraj +Queue

t (aj)
favours attractions with a higher interest relevance and popularity

but with lower associated travelling and queuing time.

5.2 Simulation and Back-propagation

In traditional MCTS for game play, the simulation stage simulates a

run from the root node to a terminal node and calculates the reward,

which is either a 1 for a win or a 0 for a loss. For the purposes of

itinerary recommendation, a simple binary value of 1 and 0 does not

accurately reflect the rewards associated with different itineraries.

Thus, we chose a reward that reflects the attraction popularity, user

interest and queuing times associated with each itinerary, which is

defined as:

Reward =
∑

a∈Itemp

(Int(Cata) + Pop(a)
Queuet (a)

)
(11)

In Algorithm 1, this reward value is calculated in Line 20 after

every iteration of itinerary generation, and subsequently back-

propagated to our reward tree Tr eward in Line 21. Specifically, this

reward is back-propagated to all visited nodes only if the itinerary

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

330

Personalized Itinerary Recommendation withQueuing Time Awareness SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

ends at attraction aN as specified in Constraint 5. The reason for

this is so that we do not unnecessarily favour itineraries that do

not satisfy our destination attraction constraint. On the other hand,

we back-propagate the visit count (i.e., increment by one) to our

visit tree Tvisits (Line 18), regardless of whether the itinerary ends

at our desired destination attraction aN . As a result, nodes that

are frequently visited but with low/no reward are less likely to be

chosen based on ourUCT
PersQ
aj formulation (Equation 10), due to

the high denominator of total visit count.

6 ITINERARY RECOMMENDATION

FRAMEWORK

Our framework for itinerary recommendation utilizes geo-tagged

photos to derive attraction-related statistics and our PersQ algo-

rithm for planning a personalized itinerary. This framework com-

prises the following steps:

(1) Crawling of Geo-tagged Photos. For each theme park,

we used the Flickr API [45] to retrieve all geo-tagged photos

that were taken within the theme park. The photos are

tagged with 16 levels of geo-location accuracy and we only

consider photos with the highest accuracy level of 16. Each

of these photos is also tagged with the user ID of the taker,

timestamp, and latitude/longitude geo-coordinates.

(2) Mapping of Photos to Attractions. Based on the geo-

coordinates of the photos and theme park attractions, we

map each photo to an attraction if they differ by <100m

according to the Haversine formula [36]. If a photo is near

to multiple attractions, we map this photo to the nearest

attraction. At the end of this step, we have a set of attraction

visits of all users to a theme park, as described in Definition

2 of Section 3.1.

(3) ConstructingVisit Sequences. Followingwhich, we chrono-

logically order and join all attraction visits (from Step 2)

of a single user to obtain the visit sequence of this user, as

described in Definition 2 of Section 3.1.

(4) CalculatingAttractionPopularity, User Interests and

Queuing Times. Using the visit sequences from Step 3, we

calculate the attraction popularity, user interests and queu-

ing times according to Definitions 3, 4 and 5 of Section 3.1,

respectively.

(5) Recommending Personalized ItinerariesWith Queu-

ing Time. At the conclusion of Steps 1 to 4, we use the

computed visit sequences, attraction popularity, user in-

terests and queuing times to generate an itinerary recom-

mendation based on our proposed PersQ algorithm, as

described in Section 5.

One limitation of this framework is potential noise in the geo-

tagged photos, which could affect the calculation of visit sequences

and queuing times. An alternative is to use proprietary trajectory

data from actual theme park operators, which are typically obtained

via tracking devices issued to theme park visitors to monitor their

trajectories (via sensors located throughout the theme park). While

such datasets have high accuracy, these proprietary datasets are

often not publicly available for researchers and furthermore, to

construct a similar dataset for another theme park requires the

installation of sensors and explicitly tracking visitors in the new

Table 2: Dataset description

Theme No. of No. of Attraction # Visit

Park Photos Users Visits Sequences

Disneyland 181,735 3,704 119,987 11,758

Disney Epcot 90,435 2,725 38,950 5,816

California Adv. 193,069 2,593 57,177 6,907

Hollywood 57,426 1,972 41,983 3,858

Magic Kingdom 133,221 3,342 73,994 8,126

theme park. As such, we utilized the above-mentioned framework

that is built upon open-source data, i.e., publicly available geo-

tagged photos, and can be easily extended for other theme parks or

cities.

7 EXPERIMENTAL METHODOLOGY

7.1 Dataset

Our dataset comprises nine years of geo-tagged photos that were

taken in five theme parks from Aug 2007 to Aug 2016. The five

theme parks are Disneyland, Epcot, California Adventure, Disney

Hollywood and Magic Kindgom. This dataset was collected using

the Flickr API [45], then mapped to attraction visits and visit se-

quences, as described in Steps 1 to 3 of Section 6. Each attraction ax
is also assigned a category Catax (e.g., roller coaster, water rides,

etc) based on its corresponding Wikipedia page. Similarly, each

attraction ax is also associated with a ride duration Durax , which
can also be found on that attraction’s Wikipedia page or a website

like [37]. While earlier works have constructed datasets from geo-

tagged photos, our dataset is the first that includes the queuing time

distribution at each attraction based on these geo-tagged photos.

The descriptive statistics of this dataset are shown in Table 2.

7.2 Baseline Algorithms

As there is no existing work that considers all three components

of queuing time, attraction popularity and user interest, we select

various state-of-the-art baselines that consider both attraction pop-

ularity and user interest for recommending personalized itineraries.

These baselines are as follows:

• Iterative Heuristic Approximation (IHA). A heuristic

algorithm proposed in [49, 50] that commences with an

itinerary from the starting attraction a1 to destination at-

traction aN and iteratively adds a new attraction between

the current and destination attractions, until the budget

is reached. The attraction selected to be added is the one

with the maximum heuristic value of

Int (Cataj)+Pop(aj)
T ravai ,aj +Duraj

,

i.e., the next attraction with the highest profit relative to

its travelling cost.

• UserBasedCollaborative Filtering for Itineraries (UBCF-

I). A variant of the popular User Based Collaborative Fil-

tering (UCBF) [35, 47, 48] that utilizes user interest simi-

larities (based on their ratings on items) to recommend a

set of top-k items for another user. In our adaptation to

itinerary recommendations, we define user ratings based

on the number of posted photos on a specific attraction,

hence more photos represent a higher rating. Thereafter,

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

331

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan K. H. Lim et al.

we take the ranked top-k items (attractions) and iteratively

add them to the starting attraction a1 until the budget is
reached, resulting in the recommended itinerary.

• Personalized Tour Recommender (PersTour). An In-

teger Programming based algorithm proposed in [29, 31]

is used, which recommends personalized itineraries that

consider attraction popularity and user interest, with a

variable visit duration to attractions based on a user’s in-

terest preferences. The PersTour algorithm defines user

interest levels based on the length of time a user stays at

attractions, relative to the average user.

• TourRecommendationWith Interest Category (TourInt).

The TourInt algorithm [28] formulates the tour recom-

mendation problem with a mandatory category, which has

to be visited at least once in the recommended itinerary. To

personalize the recommended itinerary, TourInt defines

this mandatory category as the attraction category that

has been most frequently visited in the user’s other visit

sequences.

• Trip Builder (TripBuild). We adapted the problem for-

mulation in [3, 5] to fit our QueueTourRec problem, by

adding in constraints of start and destination attractions.

TripBuild recommends personalized itineraries that op-

timize for attraction popularity and user interest, where

user interest is based on the number of times a user has

visited attractions of a certain category, relative to his/her

total attraction visits.

7.3 Evaluation

Like many recent itinerary recommendation works [5, 9, 29, 31, 43],

our experimental evaluation uses the visit sequences of users as the

ground truth of real-life visits by these users. Each visit sequence

corresponds to the real-life attraction visits of users in a specific

theme park, e.g., Attraction a4 → a12 → a7 → a23. To ensure a

fair comparison with the baselines, which consider user interest,

we perform our evaluation only on users with at least two visit se-

quences. Using these travel sequences, we then apply leave-one-out

evaluation [23], where we use one visit sequence for evaluation and

the other visit sequences to determine the interest preferences of

this user. For each visit sequence, we use the first and last attraction

of each visit sequence as input to PersQ and the baselines, along

with the actual time spent in the visit sequence as the time budget.

In addition, we also incorporate queuing time into the evaluation

and thus attractions may be dropped from recommended itineraries

due to the additional queuing time. We repeat the evaluation for

all travel sequences in our dataset and compare PersQ against the

various baselines using the following evaluation metrics:

(1) Maximum Queue-time (MQI). The queuing times at at-

tractions recommended in itinerary I , relative to their max.

queuing time, defined as:MQI =
1

|I |
∑
a∈I

Queue t (a)
Maxt∈T

(
Queue t (a)

) .
(2) Queue:Cost Ratio (QCI). The average ratio of queuing

time to itinerary (time) cost of an itinerary I , defined as:

QCI =
1

|I |
∑

ai ∈I,i,1
Queue t (a)

T ravai−1,ai +Durai +Queue
t (ai) .

(3) Queue:PopularityRatio (QPI). The average ratio of queu-
ing time to attraction popularity of an itinerary I , defined

as: QPI =
1

|I |
∑
a∈I

Queue t (a)
Pop(a) .

(4) Popularity (PopI). The total popularity based on all at-

tractions in an itinerary I , defined as: PopI =
∑
a∈I

Pop(a).

(5) Interest (IntI). The total interest alignment (to a user u)
based on all attractions in an itinerary I , defined as: IntuI =∑
a∈I

Intu (Cata).

(6) Recall: RI . The ratio of attraction visits in a user’s real-

life visit sequence that also exist in the recommended

itinerary I . Given that Ar is the set of attractions in the

recommended itinerary I and Av is the set of attraction

visits in the real-life travel sequence, we define recall as:

RI =
|Ar∩Av |
|Av | .

(7) Precision: PI . The ratio of attractions in the recommended

itinerary I that also exist in a user’s real-life visit sequence.

Using the same notations for Ar and Av , we define preci-

sion as: PI =
|Ar∩Av |
|Ar | .

(8) F-score (FI). The harmonic mean of the precision PI and

recall RI of an itinerary I , defined as: FI =
2×PI×RI
PI+RI .

Metric 1 allows us to determine the extent to which an itinerary

schedules visits to attractions at their maximum (longest) queuing

times (MQI=1) or at their minimum (MQI=0), where a smaller

value of MQI is preferred as it means we avoided attractions at

their busiest time. Metric 2 measures the ratio of queuing time to

the total time spent travelling to, queuing at and visiting/riding

attractions, where a smaller QCI value shows that the user spends
less time queuing as part of the itinerary. Metric 3measures the ratio

of queuing time to the attraction popularity, and allows us to better

differentiate between popular attractions (which are more likely

to have longer queuing times) and unpopular ones with shorter

queuing times. Similarly for Metric 3, a smaller value of QPI is
preferred as it indicates short queuing times at popular attractions.

Metrics 4 and 5 are standard measures of itinerary popularity (PopI)
and user-interest alignment (IntI), respectively, while Metrics 6,

7 and 8 measure how well a recommended itinerary reflects the

real-life attraction visits of a user.

8 RESULTS AND DISCUSSION

Queue-time Metrics. Table 3 gives an overview of the experimen-

tal results, in terms of the six evaluation metrics introduced in Sec-

tion 7.3. PersQ outperforms all baselines with the lowest Maximum

Queue-time (MQI), Queue:Cost Ratio (QCI), Queue:Popularity Ra-

tio (QPI). In relative terms, PersQ out-performed all baselines with

a reduction of 8.5% to 65.9% in Maximum Queue-time, 9.0% to

24.6% in Queue:Cost Ratio, and 21.6% to 45.1% in Queue:Popularity

Ratio. These results indicate that PersQ recommends visits to pop-

ular attractions at times with the shortest queues, and constructs

itineraries that include minimal time spent queuing at attractions.

Recall, Precision, F1-score. In terms of Recall (RI) and F1-

score (FI), PersQ also out-performs all baselines for all datasets,

with relative improvements of 24.2% to 45.5% for Recall, and 15.3% to

19.1% for F1-score. In terms of Precision (PI), PersQ out-performs

all baselines in 24 out of 25 cases, with a relative improvement

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

332

Personalized Itinerary Recommendation withQueuing Time Awareness SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan

Table 3: Comparison between PersQ and various baselines, in terms of themean and standard errors of MaximumQueue-time

(MQI), Queue:Cost Ratio (QCI), Queue:Popularity Ratio (QPI), Popularity (PopI), Interest (IntI), Recall (RI), Precision (PI) and
F1-score (FI). Lower values of MQI , QCI and QPI are preferred, while higher values of PopI , IntI , RI , PI and FI are better. The

bold/blue numbers indicate the best result for each metric.

Algorithm

Maximum Queue:Cost Queue:Pop

Popularity Interest Recall Precision F1-score

Queue-time Ratio Ratio

C
a
l
i
.
A
d
v
.

PersQ 0.059±.002 0.257±.007 2515±121 1.794±.055 3.704±.105 0.483±.010 0.307±.007 0.338±.007
IHA 0.173±.006 0.346±.009 7669±904 1.394±.043 3.425±.083 0.332±.006 0.296±.006 0.287±.005
UBCF-I 0.196±.007 0.330±.009 15679±1665 0.636±.025 1.530±.048 0.258±.005 0.282±.006 0.244±.004
PersTour 0.188±.008 0.330±.011 5583±917 0.902±.033 1.423±.055 0.227±.007 0.223±.007 0.204±.006
TourInt 0.188±.007 0.339±.011 4583±319 0.910±.033 1.444±.057 0.228±.007 0.225±.007 0.206±.006
TripBuild 0.197±.008 0.321±.011 5182±360 0.871±.033 1.469±.055 0.225±.006 0.223±.007 0.205±.006

H
o
l
l
y
w
o
o
d

PersQ 0.184±.005 0.298±.011 3585±335 1.28±.053 2.12±.088 0.482±.015 0.439±.014 0.431±.013
IHA 0.283±.009 0.423±.015 4570±223 1.29±.044 1.85±.070 0.367±.010 0.417±.012 0.371±.010
UBCF-I 0.320±.012 0.410±.012 17493±1270 0.62±.029 1.09±.045 0.297±.008 0.370±.010 0.313±.008
PersTour 0.263±.010 0.402±.013 10287±931 0.82±.033 1.23±.058 0.305±.009 0.367±.012 0.317±.010
TourInt 0.256±.010 0.395±.013 9543±861 0.81±.033 1.22±.058 0.302±.010 0.364±.012 0.314±.010
TripBuild 0.272±.011 0.412±.014 12144±1071 0.77±.034 1.24±.058 0.309±.010 0.374±.012 0.322±.009

E
p
c
o
t

PersQ 0.113±.004 0.284±.008 4088±152 0.891±.031 2.407±.086 0.472±.012 0.413±.012 0.407±.010
IHA 0.279±.006 0.344±.010 6861±285 0.852±.025 2.511±.069 0.380±.008 0.368±.008 0.353±.007
UBCF-I 0.212±.007 0.331±.010 11664±823 0.500±.017 1.232±.044 0.291±.007 0.314±.008 0.283±.006
PersTour 0.250±.008 0.356±.011 8034±360 0.604±.021 1.490±.060 0.310±.008 0.322±.009 0.297±.007
TourInt 0.252±.007 0.352±.011 8112±340 0.599±.021 1.459±.058 0.317±.008 0.327±.009 0.303±.007
TripBuild 0.246±.008 0.342±.011 8208±386 0.584±.021 1.561±.060 0.300±.008 0.312±.009 0.287±.008

D
i
s
n
e
y
l
a
n
d

PersQ 0.161±.004 0.263±.005 5673±263 0.731±.017 2.287±.055 0.332±.006 0.295±.006 0.289±.005
IHA 0.198±.004 0.332±.006 13437±419 0.690±.020 3.531±.068 0.267±.004 0.270±.004 0.249±.003
UBCF-I 0.176±.004 0.378±.007 14986±1072 0.495±.012 1.567±.037 0.235±.004 0.296±.005 0.240±.004
PersTour 0.177±.005 0.322±.008 8255±579 0.623±.017 1.523±.045 0.190±.004 0.201±.005 0.180±.004
TourInt 0.193±.005 0.313±.008 10267±1324 0.612±.017 1.498±.044 0.188±.004 0.200±.005 0.179±.004
TripBuild 0.193±.005 0.289±.008 10601±1634 0.580±.017 1.454±.043 0.176±.004 0.181±.005 0.165±.004

M
a
g
i
c
K
i
n
g
.

PersQ 0.132±.003 0.244±.005 4275±133 0.901±.025 3.330±.088 0.440±.008 0.326±.007 0.343±.006
IHA 0.240±.004 0.321±.008 6885±329 0.772±.017 3.159±.064 0.305±.005 0.312±.006 0.288±.004
UBCF-I 0.206±.005 0.323±.007 11328±424 0.474±.012 1.389±.038 0.265±.004 0.304±.006 0.261±.004
PersTour 0.208±.006 0.303±.010 8822±494 0.486±.016 1.305±.047 0.202±.005 0.201±.006 0.186±.005
TourInt 0.195±.006 0.316±.010 9410±531 0.490±.017 1.311±.048 0.200±.005 0.200±.006 0.185±.005
TripBuild 0.191±.006 0.287±.009 9074±456 0.479±.017 1.393±.048 0.193±.005 0.189±.006 0.177±.005

of up to 5.3%. The only exception is for the Disneyland dataset,

where PersQ out-performs all baselines but under-performs UBCF-

I by less than 0.34% in terms of Precision. Moreover, we are more

interested in the F1-score, as it considers both precision and recall,

and PersQ out-performs all baselines by at least 15.3% in terms of

F1-score. These results indicate that itineraries recommended by

PersQ are highly representative of the real-life visits of these users.

Popularity and Interests. In terms of Attraction Popularity

(PopI) and User Interests (IntI), PersQ also offers the best over-

all performance, while IHA offers the second best performance.

PersQ has the highest Popularity scores for four of five theme

parks and the highest Interest scores in three of five theme parks,

while IHA leads in Popularity and Interest for one and two theme

parks, respectively.

Discussion. The superior performance of PersQ is due to its

three-fold consideration of attraction popularity, user interests and

queuing times, which is automatically determined from geo-tagged

photos. In contrast, the various baselines only consider attraction

popularity and user interests, and hence may recommend visits

to attractions that are popular and interesting but with excessive

queuing times. This excessive queuing time consumes a large por-

tion of the touring time, as indicated by the high QCI scores, thus

causing attractions later in the itinerary to be missed. Apart from

PersQ, IHA is also able to offer a relatively good performance in

terms of attraction popularity and user interests due to its use of the

profit (popularity and interest) over cost (travelling time) heuristic.

9 CONCLUSION AND FUTUREWORK

In this paper, we proposed the QueueTourRec problem of rec-

ommending personalized itineraries of popular and interesting

attractions, while minimizing queuing times. QueueTourRec is

an NP-hard problem that includes time-dependent queuing times,

which we then solve using our proposed PersQ algorithm that is

adapted from MCTS. For determining queuing times, we also imple-

mented a framework that utilizes geo-tagged photos to determine

the distribution of queuing times at each attraction, as well as the

attraction popularity and user interest preferences. We evaluated

PersQ on a dataset of five major theme parks and show that PersQ

out-performs the state-of-the-art in terms of maximum queuing

times, queuing time to itinerary cost ratio, queuing time to attrac-

tion popularity ratio, attraction popularity, user interest alignment,

recall, precision and F1-score.

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

333

SIGIR ’17, August 07-11, 2017, Shinjuku, Tokyo, Japan K. H. Lim et al.

In future, we intend to address other aspects of the QueueTour-

Rec problem, such as: (i) addressing the cold-start problem by using

social ties of users to solicit user interest; (ii) accounting for the ef-

fects of holidays, special events, weather and other uncertainties on

attraction operations; (iii) developing a game-theoretic approach to

itinerary recommendation that optimizes for global queuing times

and crowdedness for the entire population of theme park visitors;

(iv) incorporating a strict attraction category constraint for various

user demographics (e.g., no dark rides for kids).

Acknowledgments. This work was supported in part by Data61, a Google

PhD Fellowship in Machine Learning, a Google PhD Travel Scholarship and

an ACM SIGIR Student Travel Grant. The authors thank the anonymous

reviewers for their useful comments.

REFERENCES

[1] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine Learning 47, 2-3 (2002), 235–256.

[2] Avrim Blum, Shuchi Chawla, David R. Karger, Terran Lane, AdamMeyerson, and

Maria Minkoff. 2007. Approximation algorithms for orienteering and discounted-

reward TSP. SIAM J. Comput. 37, 2 (2007), 653–670.
[3] Igo Brilhante, Jose Antonio Macedo, Franco Maria Nardini, Raffaele Perego, and

Chiara Renso. 2013. Where shall we go today? Planning touristic tours with

TripBuilder. In Proc. of CIKM’13. 757–762.
[4] Igo Brilhante, Jose Antonio Macedo, Franco Maria Nardini, Raffaele Perego, and

Chiara Renso. 2014. TripBuilder: A Tool for Recommending Sightseeing Tours.

In Proc. of ECIR’14. 771–774.
[5] Igo Ramalho Brilhante, Jose Antonio Macedo, Franco Maria Nardini, Raffaele

Perego, and Chiara Renso. 2015. On planning sightseeing tours with TripBuilder.

Information Processing & Management 51, 2 (2015), 1–15.
[6] Cameron B. Browne, Edward Powley, Daniel Whitehouse, Simon M. Lucas,

Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon

Samothrakis, and Simon Colton. 2012. A survey of monte carlo tree search

methods. IEEE Trans. on Computational Intel. and AI in Games 4, 1 (2012), 1–43.
[7] Raymond C. Browning, Emily A. Baker, Jessica A. Herron, and Rodger Kram.

2006. Effects of obesity and sex on the energetic cost and preferred speed of

walking. Journal of Applied Physiology 100, 2 (2006), 390–398.

[8] Luis Castillo, Eva Armengol, Eva Onaindía, Laura Sebastiá, Jesús González-

Boticario, Antonio Rodríguez, Susana Fernández, Juan D. Arias, and Daniel

Borrajo. 2008. SAMAP: An user-oriented adaptive system for planning tourist

visits. Expert Systems with Applications 34, 2 (2008), 1318–1332.
[9] Dawei Chen, Cheng Soon Ong, and Lexing Xie. 2016. Learning Points and Routes

to Recommend Trajectories. In Proc. of CIKM’16. 2227–2232.
[10] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Nadav Golbandi,

Ronny Lempel, and Cong Yu. 2010. Automatic construction of travel itineraries

using social breadcrumbs. In Proc. of HT’10. 35–44.
[11] Munmun De Choudhury, Moran Feldman, Sihem Amer-Yahia, Nadav Golbandi,

Ronny Lempel, and Cong Yu. 2010. Constructing travel itineraries from tagged

geo-temporal breadcrumbs. In Proc. of WWW’10. 1083–1084.
[12] Rémi Coulom. 2006. Efficient selectivity and backup operators in Monte-Carlo

tree search. In Proc. of CCG’06. 72–83.
[13] Marco Dorigo, Mauro Birattari, and Thomas Stützle. 2006. Ant colony optimiza-

tion. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39.
[14] Inma Garcia, Laura Sebastia, and Eva Onaindia. 2011. On the design of individual

and group recommender systems for tourism. Expert Systems with Applications
38, 6 (2011), 7683–7692.

[15] Aristides Gionis, Theodoros Lappas, Konstantinos Pelechrinis, and Evimaria

Terzi. 2014. Customized tour recommendations in urban areas. In Proc. of
WSDM’14. 313–322.

[16] Bruce L. Golden, Larry Levy, and Rakesh Vohra. 1987. The Orienteering problem.

Naval Research Logistics 34, 3 (1987), 307–318.
[17] Aldy Gunawan, Hoong Chuin Lau, and Pieter Vansteenwegen. 2016. Orienteering

Problem: A survey of recent variants, solution approaches and applications.

European Journal of Operational Research 255, 2 (2016), 315–332.

[18] Aldy Gunawan, Zhi Yuan, and Hoong Chuin Lau. 2014. A Mathematical

Model and Metaheuristics for Time Dependent Orienteering Problem. In Proc. of
PATAT’14. 202–217.

[19] Hsun-Ping Hsieh, Cheng-Te Li, and Shou-De Lin. 2012. TripRec: recommending

trip routes from large scale check-in data. In Proc. of WWW’12. 529–530.
[20] Astrid S. Kenyon and David P. Morton. 2003. Stochastic vehicle routing with

random travel times. Transportation Science 37, 1 (2003), 69–8.
[21] Levente Kocsis and Csaba Szepesvári. 2006. Bandit based monte-carlo planning.

In Proc. of ECML’06. 282–293.

[22] Levente Kocsis, Csaba Szepesvári, and JanWillemson. 2006. Improved monte-carlo
search. Technical Report. University of Tartu, Institute of Computer Science.

[23] Ron Kohavi. 1995. A study of cross-validation and bootstrap for accuracy esti-

mation and model selection. In Proc. of IJCAI’95. 1137–1145.
[24] Hoong Chuin Lau, William Yeoh, Pradeep Varakantham, Duc Thien Nguyen, and

Huaxing Chen. 2012. Dynamic Stochastic Orienteering Problems for Risk-Aware

Applications. In Proc. of UAI’12. 448–458.
[25] Kenneth Wai-Ting Leung, Dik Lun Lee, and Wang-Chien Lee. 2011. CLR: a

collaborative location recommendation framework based on co-clustering. In

Proc. of SIGIR’11. 305–314.
[26] Xun Li. 2013. Multi-day and multi-stay travel planning using geo-tagged photos.

In Proc. of GeoCrowd’13. 1–8.
[27] Xutao Li, Gao Cong, Xiao-Li Li, Tuan-Anh Nguyen Pham, and Shonali Krish-

naswamy. 2015. Rank-GeoFM: a ranking based geographical factorizationmethod

for point of interest recommendation. In Proc. of SIGIR’15. 433–442.
[28] Kwan Hui Lim. 2015. Recommending Tours and Places-of-Interest based on

User Interests from Geo-tagged Photos. In Proc. of SIGMOD’15 PhD Symposium.

33–38.

[29] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera.

2015. Personalized Tour Recommendation based on User Interests and Points of

Interest Visit Durations. In Proc. of IJCAI’15. 1778–1784.
[30] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera.

2016. Towards Next Generation Touring: Personalized Group Tours. In Proc. of
ICAPS’16. 412–420.

[31] Kwan Hui Lim, Jeffrey Chan, Christopher Leckie, and Shanika Karunasekera.

2017. Personalized Trip Recommendation for Tourists based on User Interests,

Points of Interest Visit Durations and Visit Recency. Knowledge and Information
Systems (2017), In Press.

[32] Clair E. Miller, Albert W. Tucker, and Richard A. Zemlin. 1960. Integer pro-

gramming formulation of traveling salesman problems. J. ACM 7, 4 (1960),

326–329.

[33] Edward J. Powley, Daniel Whitehouse, and Peter I. Cowling. 2013. Monte Carlo

tree search with macro-actions and heuristic route planning for the multiobjec-

tive physical travelling salesman problem. In Proc. of CIG’13. 1–8.
[34] Ioannis Refanidis, Christos Emmanouilidis, Ilias Sakellariou, Anastasios Alexi-

adis, Remous-Aris Koutsiamanis, Konstantinos Agnantis, Aimilia Tasidou, Fotios

Kokkoras, and Pavlos S. Efraimidis. 2014. myVisitPlanner GR: Personalized

Itinerary Planning System for Tourism. In Proc. of SETN’14. 615–629.
[35] Paul Resnick, Neophytos Iacovou, Mitesh Suchak, Peter Bergstrom, and John

Riedl. 1994. GroupLens: an open architecture for collaborative filtering of net-

news. In Proc. of the CSCW’94. 175–186.
[36] Roger W. Sinnott. 1984. Virtues of the Haversine. Sky and Telescope 68, 158

(1984).

[37] TouringPlans.com. 2016. Disney’s Hollywood Studios Attraction Durations.

(2016). https://touringplans.com/hollywood-studios/attractions/duration.

[38] Theodore Tsiligirides. 1984. Heuristic methods applied to Orienteering. Journal
of the Operational Research Society 35, 9 (1984), 797–809.

[39] UNWTO. 2016. United Nations World Tourism Organization (UNWTO) Annual

Report 2015. (2016). http://www2.unwto.org/annual-reports.

[40] Pieter Vansteenwegen, Wouter Souffriau, Greet Vanden Berghe, and Dirk Van

Oudheusden. 2011. The city trip planner: An expert system for tourists. Expert
Systems with Applications 38, 6 (2011), 6540–6546.

[41] Pieter Vansteenwegen, Wouter Souffriau, and Dirk Van Oudheusden. 2011. The

Orienteering problem: A survey. Euro. J. of Operational Rsch. 209, 1 (2011), 1–10.
[42] Pradeep Varakantham and Akshat Kumar. 2013. Optimization approaches for

solving chance constrained stochastic orienteering problems. In Proc. of ADT’13.
[43] Xiaoting Wang, Christopher Leckie, Jeffery Chan, Kwan Hui Lim, and Tharshan

Vaithianathan. 2016. Improving Personalized Trip Recommendation to Avoid

Crowds Using Pedestrian Sensor Data. In Proc. of CIKM’16.
[44] Wolfgang Wörndl and Alexander Hefele. 2016. Generating Paths Through

Discovered Places-of-Interests for City Trip Planning. In Information and Com-
munication Technologies in Tourism. Springer International Publishing, 441–453.

[45] Yahoo. 2016. Flickr API. (2016). https://www.flickr.com/services/api/.

[46] Lina Yao, Quan Z. Sheng, Yongrui Qin, Xianzhi Wang, Ali Shemshadi, and Qi He.

2015. Context-aware Point-of-Interest Recommendation Using Tensor Factoriza-

tion with Social Regularization. In Proc. of SIGIR’15. 1007–1010.
[47] Mao Ye, Peifeng Yin, Wang-Chien Lee, and Dik-Lun Lee. 2011. Exploiting geo-

graphical influence for collaborative point-of-interest recommendation. In Proc.
of SIGIR’11. 325–334.

[48] Quan Yuan, Gao Cong, ZongyangMa, Aixin Sun, and Nadia Magnenat Thalmann.

2013. Time-aware point-of-interest recommendation. In Proc. of SIGIR’13.
[49] Chenyi Zhang, Hongwei Liang, and Ke Wang. 2016. Trip Recommendation

Meets Real-World Constraints: POI Availability, Diversity, and Traveling Time

Uncertainty. ACM Transactions on Information Systems 35, 1 (2016), 5.
[50] Chenyi Zhang, Hongwei Liang, Ke Wang, and Jianling Sun. 2015. Personalized

Trip Recommendation with POI Availability and Uncertain Traveling Time. In

Proc. of CIKM’15. 911–920.

Session 3B: Filtering and Recommending 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

334

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Problem Definition
	3.1 Preliminaries
	3.2 Problem Definition

	4 Monte Carlo Tree Search
	4.1 Motivations of MCTS for Itinerary Recommendation

	5 Overview of PersQ Algorithm
	5.1 Selection and Expansion
	5.2 Simulation and Back-propagation

	6 Itinerary Recommendation Framework
	7 Experimental Methodology
	7.1 Dataset
	7.2 Baseline Algorithms
	7.3 Evaluation

	8 Results and Discussion
	9 Conclusion and Future Work
	References

