
TOWARDS AN EXPERT SYSTErl FOR BIBLIOGRAPHIC RETRIEVAL:
A PROLOG PROTOTYPE

C.R. ~atters and M.A. Shepherd
Dept. of Mathematics, S t a t i s t i c s , and Computing Science

Dalhousie Un ivers i t y
Ha l i fax , Mova Scot ia, Canada B3H 3J5

W. Robertson
School of Computer Science

Technical University of Nova Scotia
Halifax, rlova Scotia, Canada B3J 2X4

ABSTRACT

A prototype Prolog system has been developed
for online bibliographic retrieval. Most online
bibliographic retrieval systems may be character-
ized by queries based on the occurrence of key-
words and by databases consisting of possibly
millions of records. Such systems have very fast
response times but generally lack any deductive
reasoning capability.

An expert system for online bibliographic
retr ieval, developed in Prolog, would provide
enhanced retrieval capabilities through the
application of deductive reasoning. Such a
system would permit knowledge-type queries to
be asked in addition to the traditional keyword-
type of queries.

A concern with using Prolog to perform an
online search of a million-record data base is
that the response time would be unacceptable.
In order to overcome this drawback two altern-
atives are examined: a special-purpose hardware
device and an extended Prolog capability.

I . INTRODUCTION

A project has been undertaken to develop
a bibliographic retrieval system based on
predicate calculus using Prolog as both
programming language and data language. A
Prolog-based system would provide a deductive
reasoning capability not normally available in
bibliographic retrieval systems. The project
is planned as four stages: prototype retrieval
natural language interface, techniques to handle
large databases, and study of faceted indexing
schemes as the basic construct of the knowledge
base for such a system.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1987 ACM 089791-232-2/87/0006/0272--75¢

Trad i t iona l on l ine b ib l iograph ic systems
tend to be based on e i t he r the Boolean or the
vector-space model o f re t r i eva l (Salton and
McGi l l , 1983) and may access databases conta in ing
m i l l i ons of documents. In both of these models,
the documents are re t r ieved by matching terms of
the query wi th keywords occurr ing in the records
of the database.

In order to nrovide fas t response time,
b ib l iograph ic r e t r i eva l systems are usual ly based
on inver ted f i l e s , although they can be imple-
mented through a DBMS (Crawford, 1981; Macleod
and Crawford, 1983; Shenherd and Watters, 1985a).
As these systems are based on the occurrence of
keywords and not on the relationships between
concepts, the systems lack any deductive reasoning
capability.

A Prolog-based system may provide the deduc-
tive reasonin~ capability required of an expert
biblionraphic retrieval system. An example of
such a system is TUGA (Coelho, 1982) in which the
database consists of documents in the area of
A r t i f i c ia l Intelligence and each document is
classified according to an Ar t i f i c ia l Intelligence
system of categories. TUGA permits the user to
retrieve information about the document collection
and about the classification system. The data-
base, however, consisted of only 46 documents each
indexed according to an a priori classification
scheme.

The appl icabi l i ty of predicate calculus for
the implementation or modelling of the domain of
information retrieval has been discussed elsewhere
(Watters et al, 1986). Although i t may be an
appropriate medium for the manipulation of bibl io-
graphic information, two d i f f i cu l t ies arise: the
definit ion of the knowledge base for deduction,
and online response with large bibliographic
databases.

The knowledge base for use in a deductive
system must combine both the data structures for
containing the concepts covered in a given data-
base and the rules for manipulation of that
know]edge (Rich, 1983). A knowledne base must
reflect the contents of a given database and the
structure of each knowledge base must be able to
expand and accept new relationships as the data-
base expands.

272

A concern with a predicate calculus approach
to retr ieval is the speed of the depth-f i rst
search strategy used in Prolog implementations.
I t is l i ke ly that solutions for providing adequate
access times can be found using either hardware
or software techniques. First a special-purpose
hardware device is proposed that, given an i n i t i a l
query, scans the disk-based Prolog database and
returns to the main computer a subset of predi-
cates relevant to the query. This set of predi-
cates may then be used to resolve the user query
in the normal Prolog manner. A software solution
is also proposed to reduce the size of the problem
space of any given Prolog search by introducing a
function that produces a reduced problem space
(set of predicates) by using variables stored in
predicates to select records from a direct access
f i l e where the records of such a direct access
f i l e contain predicates.

The f inal part of the current study is to
study the app l icab i l i ty of indexing or c lass i f i -
cation schemes for encapsulating the concept
information required in such a knowledge base.

2 . PHASE ONE - DEDUCTIVE MODEL FOR RETRIEVAL

A prototype expert retr ieval system has been
developed in Prolog to i l l us t ra te the feas ib i l i t y
and range of capabi l i t ies that can be provided in
a system based on predicate calculus. An expert
bibliographic retr ieval system should be able to
expand both the query formats available to the
user and the capabil i t ies of responses from the
system to the user. In addition to Boolean
combinations of keywords retr ieving copies of
database records, the prototype system provides
responses to a variety of information needs that
include the following:

(a) What journals should I be reviewing?

(b) In what journals should I publish this
art ic le?

(c) Who is active in my research area?

(d) What areas are currently active in
programming languages?

(e) What are the sub-areas of research in
A.I . ?

The prototype, PROBIB-2, was written ent i re ly
in Prolog, which is an implementation of predicate
calculus. Prolog has been used both as the
programming language and as the data storage
language.

2.1. Prototype Database.

The database contains bibliographic descrip-
tions of items that are represented by document
predicates. The knowledge base contains two
subcomponents: subject contents of items and
concept inter-relat ionships, and user prof i les.
These subcomponents are represented by the subject
and user predicates.

The documents in the database are represented
by the predicates defined as:

Doc(<docnum>, <t i t le>, <author>, <source>,

<date>, <subject>)

where

- <docnum> is a cons tan t t h a t u n i q u e l y i d e n t i f i e s
the document

- < t i t l e > is a l i s t o f terms r e p r e s e n t i n g the
t i t l e

- <author> is a l i s t o f terms r e p r e s e n t i n g the
a u t h o r (s)

- <source> i s a cons tan t t h a t i d e n t i f i e s the
j ou rna l / p roceed ings /monog raph where the i tem
can be l o c a t e d

- <date> is a cons tan t t h a t i d e n t i f i e s the
mon th /yea r o f p u b l i c a t i o n

- <sub jec t> is a l i s t o f terms and r e l a t i o n s h i p s
r e p r e s e n t i n g the s u b j e c t c o n t e n t o f the i tem.

The subject predicates define the terms and
the relationships between the terms used in
classifying or describing the subject content of
the documents represented in the database. The
subject predicates, taken al l together, make up a
faceted c lassi f icat ion that represents the content
of the database. In the prototype only one
relationship, the hierarchical relationship, was
used. The subject predicate, Subject, has been
defined as:

Subject(<major concept>, <subconcept>)

where

- <major concept> is a term that ident i f ies a
single subject concept

- <subconcept> is a l i s t of terms that ident i fy
those subject facets occurring in the database
that are d i rect ly subordinate to the major
concept.

Each user prof i le is represented by one or
more predicates of the form:

User(<user-name>, <subject>)

where

- <user-name> is a constant that uniquely
ident i f ies a user

- <subject> is a l i s t of terms and relationships
that represents the area(s) of subject interest
of a user.

2.2. Prototype Retrieval

Retrieval is performed by application of
deduction rules to the database components.
Prolog searches for solutions to query statements
by means of a mechanical theorem proving technique
called resolution. The predicates used in Prolog
are a l l Horn clauses, where a Horn clause has the
form

A : -B ,C ,D

which can be read as

IF (B and C and D) THEN A.

A query is a Horn clause with an empty l e f t side
of the form

? : -E ,F ,G

which can be read as

Find x such that E and F and G are a l l true.

273

The re t r i eva l functions are defined as Horn
clauses and ins tan t ia ted with values from the
query and database to process a user's query.
An example of a deduction ru le for re t r i eva l is

Interest(user, --item) :- User(user, about) ,

Doc(_item, _about).

where x indicates an uninstantiated variable.
This ruTe can be read as

IF (a user is interested in topic x)

AND (an item is about topic x)

THEN (the user is interested in the item),

The prototype i d e n t i f i e s the user through a
password and accesses a previously establ ished
user p r o f i l e o f in terests o f that user. Any
add i t iona] subject areas may be introduced by the
user fo r the current session.

The user in teracts with the system using a
domain-specif ic natural language in te r face ,
described below. ~

For example a user may ask:

> What a r t i c l e s were pr inted a f t e r 1984?

> Where can I get them?

The re t r i eva l process a t a l l times uses
informat ion re la ted to the user's search in te res t
and to the h is tory o f the current search session.
In th is way requests can be nested and dia log
can be less r e p e t i t i v e . As an example of nested
searching consider the fo l lowing search segment
fo r user ca l led 'John' whose user p r o f i l e
indicates an in te res t in ' in format ion r e t r i e v a l ' :

Probib >John are you s t i l l in terested in
information re t r i eva l?

User >yes

User >find me references on l o g i c .

User >get me those on prolog
. ° .

User >which o f these are before 1982.

In th is search segment each request narrows the
reference space s ta r t i ng with the space defined
by the user's p r o f i l e as fo l lows:

informat ion re t r i eva l
informat ion re t r i eva l - l o g i c
informat ion re t r i eva l - l o g i c -p ro log
informat ion re t r i eva l - l o g i c -p ro log -be fo re 1982.

In order to al low the user to fo l low an
i t e r a t i v e (i . e . , nested) search d ia log, sets o f
temporary predicates sa t i s fy ing the current goal
are created. These temporary sets o f predicates
can then be used in sa t i s fy ing fu r ther goals as
requested by the user.

3. PHASE TWO - NATURAL LANGUAGE INTERFACE

The second phase of the prototype development
was to incorporate a natural language in ter face

between the user and the re t r i eva l system. The
natural language used is a subset of Enalish
res t r i c ted to the domain of b ib l ioaraph ic
querying.

The parser, act ing on a context- f ree grammar,
was wr i t ten in Proloa fo l lowing the ou t l ine
described by Clocksin and Mel l ish (1984). The
parser searches for a complete sentence from the
input, where acceptable sentences are defined by
the grammar shown in Figure I . Figure 2 presents
sample sentences defined by th is grammar. Each
of these sentence structure de f i n i t i ons forms a
path that the parser f o l l o w s i n t ry ing to match
the input words. During execution the parser
fol lows one path at a time, with backtracking,
t ry ing to exhaust the l i s t of •input words.
Figure 3 is an example of a parse tree fo r an
acceptable sentence. The range of sentence
• structures and breadth of vocabulary can both be
eas i l y expanded.

The parser returns a set Of goals to the
re t r i eva l module, as shown in Figure 3. The
parser ins tan t ia tes these goal predicates that
are used by Prolog to process the query.

• 4 . PHASE THREE - HANDLING LARGE DATABASES

The prototype re t r i eva l system described in
th is report has a very small database o f 40
references and I0 user n ro f i l e s . As long as the
predicates can be kept in memory response time
is sa t is fac to ry . When predicates are stored in
a f i l e , however, and accessed only as needed,
the response time degenerates great ly . Since
b ib l iograph ic databases can be expected to be

ve ry large other access methods must be
considered to provide acceptable response times.

4.1. Hardware APProach

As an a l t e rna t i ve to bu i ld ing a Prolog
machine, a special-purpose hardware device is
proposed that , given an i n i t i a l query, scans the

• disk-based Prolog database and returns to the
main computer a subset of predicates re levant to
the query and/or the user p r o f i l e .

The Special-Purpose Prolog Cont ro l le r (SPPC)
has been designed and simulated to operate at the
word ser ia l t ransfer rate o f a disk con t ro l l e r .
The device is synchronized by the Direct Memory
Access (DMA) Cont ro l le r o f the host computer.
This requires a spec i f ic format, described in
Appendix A, fo r the records on the disk. I t is
assumed that the Prolog i n te rp re te r (or compiler)
conforms to th is format. The matching discussed
in th is paper is fo r the presence of ins tan t ia ted
var iables in spec i f ic f i e l d posi t ions o f the
predicates.

The SPPC scans the en t i re database and
returns a set of predicates re la ted to the query.
This set o f predicates may then be used to resolve
the user query in the normal Prolog manner. This
model is s im i la r to that developed by Watters
(1986) to perform a fast sequential scan of very
large but unindexed b ib l iograph ic databases. The
resu l t o f the fast hardware scan was an index to
the set o f p o t e n t i a l l y relevant documents upon
which t r a d i t i o n a l onl ine re t r i eva l could then be
performed.

274

Figure 1. Partial Grammar Definition

Rule Rule Definition
No. Name
.

1 sentence :- single-word commands.
2 sentence :- verbphrase,nounphrase.
3 sentence :- verbphrase.
4 sentence :- nounphrase,verbphrase.
5 sentence :- catch-all,error. (illegal sentences)

6 verbphrase
7 verbphrase
8 verbphrase
9 verbphrase
10 verbphrase

:- $verb,$adverb,nounphrase,verbphrase.
:- $verb,$adverb,$noun,nounphrase,verbphrase.
:- $verb,$adverb,$noun,nounphrase.
:- $verb,$adverb,nounphrase.
:- $verb,$adverb.

11 nounphrase
12 nounphrase
13 nounphrase
14 nounphrase
15 nounphrase

:- $adjective,$noun,preposition-phrase.
:- $determiner,$adjective,$noun,preposition-phrase.
:- preposition-phrase.
:- $determiner,$adjective,$noun.
:- $adjective,$noun.

16 preposition-phrase :- prep-and-sub.

17 prep-and-sub :- $preposition,$subject,prep-and-sub.
18 prep-and-sub :- $preposition,$subject.
19 prep-and-sub :- $preposition,special-phrase.

Terminals (preceeded by $ above)

20
21 noun
22 verb
23 preposition
24 subject
25 a d j e c t i v e
26 determiner
27 adverb

special-phrase :- [...phrase...].
:- journals,proceedings, etc .

• - have,wrote,published,etc.
:- after,on,before,during,etc.
• - logic, bibliographic,full-text, recursion,etc.
:- f u l l , c o m p l e t e , e t c .
:- t h e , t h i s , a , e t c .
• - a g a i n , e t c .

4.1.1, Hardware Design

The SPPC has been designed to operate at the
word serial transfer rate of a disk controller.
The device is synchronized by the Direct Memory
Access (DMA) Controller of the computer with
which i t is designed to co-operate. This approach
requires that the memory address normally supplied
by the DMA Controller be superceded by the SPPC
to eliminate unwanted records by overwriting them
in the main memory buffer. I t is assumed that a
complete f i l e is normally transferred to the
memory buffer under DMA control, and that a]6 bi t
word is available from the disk when the DMA
controller makes a request for a CPU cycle. The

SPCC operation is synchronized to the DMA cycle
request and picks up each word transferred to
memory to check i t against the appropriate word
in the SPPC buffer. A block schematic of the
SPPC is shown in Figure 4.

The SPPC operation can be described by the
following "hardware" pseudocode, which can be
converted into a circuit implementation. In this
pseudocode, each bracketed number is associated
with a state of the algorithmic machine (ASM).
As the ASM must check each word before the next
word becomes available the clock of the ASM is
synchronized to the disk bit rate. The variables
upon which decisions are made in the pseudocode

275

remain stable during a state. An Immediate action
(1) is comp]eted before the end of the state in
which i t is invoked; any new data ind i rect ly

controlled by such an action, is therefore,
available for decision makina in the subsequent
state.

(I)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(1o)

IF NOT start THEN (I)
ELSE Reset Buffer-Pointer(I) : (2);
IF DMA-Request THEN

Latch-Word {Word consists of Hi-Byte,Lo-Byte}:
Latch Memory-Address(I) :
(3) {To check SOR/EOD }

ELSE (2) ;
IF (Lo-Byte=SOR) OR (Hi-Byte=SOR) THEN

(4) {To check Word tokens against Buffer-Token}
ELSE

IF (Lo-Byte=EOD) OR (Hi-Byte=EOD).THEF,~ ,-
(I) {To wait for next i n i t i a t i o n }

ELSE (2) ; ..
{Check Word tokens against Buffer-Token} : '
IF (Buffer-Token=IGNF) THEN

INC Buffer-pointer(I) : : -
(5) {Look at Word for EOF to match IGNF EOF]

ELSE
IF (Lo-Byte=SOR) THEN

(6) {To look for match or mismatch at Lo-Byte}
ELSE • - -....

IF (Hi-Byte=SOR) THEN
(I I) {To check for match or mismatch at Hi-Byte}

ELSE
(6);

{Look at Word for EOF to match.IGNF EOF}
IF NOT (Lo-Byte=EOF) THEN

IF NOT (Hi-Byte=EOF) THEN
(7) {To continue search for EOF at next word}

ELSE {Hi-Byte was EOF: Continue scan at next word}
INC Buffer-Pointer(1) : .
(8) {To go tonext f i e ld at next Wor'd}

ELSE
{Lo-Byte was EOF: Next byte to check is in Hi-Byte}
INC Buffer-Pointer(I) :
(9) {Check token in Hi-Byte af ter IGNF EOF};

{Look for match or mismatch at Lo-Byte}
IF NOT (buffer-token=Lo-Byte) THEN {Mismatch: look for EOR}

Reset Buffer-Poi nter(I) ~ " "
(13) {Check Hi-Byte for an EOR}

ELSE
{[4atch at Lo-Byte must be match to date}
INC Buffer-Pointer(I) :
(l l) {Check Hi-Byte for a match};

{Search Word for EOF to match IGNF EOF}
IF DMA-Request THEN

La tch-$~o rd:
(5) {Check Lo-Byte and Hi-Byte for EOF}

ELSE (7);
{Continue scan at next f i e ld start ing at next ~lord}
IF DMA-Request THEN

La tc h-Wo rd:
(4) {To star t check of a new f i e ld }

ELSE
(8) ;

{Check token in Hi-Byte after IGNF EOF}
IF (Buffer-token=IGNF) THEN

INC Buffer-Poi nter(I) :
(12) {Check Hi-Byte for EOF to match IGNF EOF}

ELSE
(l l) {Check Hi-Byte for a match};

{Look for an EOR,after a mismatch, start ing at next Word}
IF DMA-Request THEN

Latch-Word:
(13) {Check Hi-Byte for an EOR}

ELSE

276

(10);
(1]) {Check token in Hi-Byte for a match}

IF NOT(buffer-token=Hi-Byte) THEN {Mismatch at Hi-Byte}
Reset Buffer-Pointer(1) :
(13) {Check Hi-Byte for an EOR}

ELSE
IF (Buffer-token=EOR) AND (Hi-Byte=EOR) THEN

Pass-Record-Along: Reset Buffer-Pointer(1):
(2) {Wait for new record}

ELSE {~latch to date}
INC Buffer-Pointer:
(14) {Continuescanning present record};

(12) {Check Hi-Byte for EOF to match IGNF EOF}
IF NOT (Hi-Byte=EOF) THEN

(7) {Look for EOF, to match IGNF EOF, from next word}
ELSE

INC Buffer-Pointer(I) :
(8) {Wait for next f ie ld};

(13) {Check Hi-Byte for an EOR}
IF NOT (Hi-Byte=EOR) THEN

IF (Lo-Byte=EOR) THEtl
Error-Interrupt {EOR's are in Hi-Byte only}: (l)

ELSE
(lO) {Look for EOR, after mismatch, from next word}

ELSE {Overwrite the mismatching record}
Reload (1) DMA's next address with (Memory-Address)-]:
(2);

(]4) {Match to date at Hi-Byte; continue scanning in present record}
IF DMA-Request THEN

Latch-Word:
(6) {Look for match or mismatch at Lo-Byte}

ELSE
(14);

Figure 2. Sample Input Sentences

Get me references on logic.
What are the journals on logic.
Which proceedings are after 1980?
I need journals during 1980.
Which ones of these are published after 1980?
Let me have journals on bibliographic retrieval after 1980.
What proceedings are published on logic after 1980?
Let me have all journals on logic and prolog published during 1982.
Get me the complete records.
I need those references on logic for information retrieval
Which ones of these are on prolog?
Where can I find them?
Who wrote these articles?
Tell me who wrote them.
Where can I find references after 1980 on logic?

277

Figure 3. Mapping of Parser Output to Logic Rules

sentence (#2)

verbphrase(#9)

ve~nphrase(#15)
adverb //~

di. noun

Get [] [] me

,L;,L

Logical Rules

complete-recO ~"
noun-found(references) (
sub-found(logic) <
prep-found(after)
sub-found(198 I) ~.

full references on logic after

nounphrase(# 1 I)

adj. noun preposition-phrase(# 16)

I
prep-and-sub(# 17)

prep. subject prep-and-sub(#18)

prep subject

I I
1981

4.2. Software Ap~r__@ac h

Until special-purpose hardware is a rea l i t y ,
database designs must be considered that w i l l be
able to process inferences on large databases
quickly. A software alternative to special-
purpose hardware is suggested wherein the database
records are indexed, as suggested by Warren (1981),
but only the higher level of indices are kept in
memory as predicates. The rest of the predicates
can be stored as direct access records in a disk
f i l e , as shown in Figure 5. The indexing predi-
cates contain the direct access record numbers as
variables and can thereby be used to generate
subsets of predicates for Prolog search as needed.
In this way, problem spaces can be kept small for

searching in the Prolog depth-f irst manner.

5. PHASE FOUR - DESIGN OF KNOWLEDGE STRUCTURE FOR
BIBLIOGRAPHIC DATABASES

In the prototype, a simple hierarchical set
of relationships is defined between the various
components of the subject of each document. The
same relationships are user to define the users'
interests.

The fourth phase of this project is to inves-
t igate structures for the knowledge base that are
perhaps better suited to this problem space.
Faceted schemes appear to have promise and may
provide those toolsneeded to define the concepts

278

COMMAND AND [X)WNLOAD INTERFACE 1 I DMA
~ ~ - - i REQ

~ddro_____¢s - In

I ' - - F -' ADDRE=

J ~ , ,NCR~ I I ' ° ° ~ ' - °
i I nEs~m
I (LoByte =) I (X iByte =) (B u f f e r - re,ken =)

I son .r--~-q

I ~L=.,f ~ t - - - - _ _ ._~_____._r~ERROR - INTERRUPT
| ~ PROGRAMMABLE ~ INCBP (BUFFER PTR) L PROGRAMMABLE ,,, .,, ,]

LOGIC ,ARRAY ~ _ ~ ~ I~ n = o = / u r " , I [_~ LATCH - ADDRESS
NEXT STATE [L_~ LATCH _ WORD

F PRESENT STATE CLOCK I j. RELOAD -ADDRESS

F£gure 4 A Block Schemat£c of the SPFC

Figure 5. Use of Direct Access File for Indexing

Prolog DB

)red /

memory

)red(..ptr..)

direct access file

~ p r e d

279

and relationships that are actually present in a
given database.

The relationships between components of a
subject: may be expressed through a fu l l y faceted
indexing scheme (Ranganathan, 1967). Shepherd and
Watters (1985b) demonstrated that a document data-
base, where each document is f u l l y described by a
faceted scheme, can be mounted in a relational
DBMS and retrieval performed using the facets in
addition to keyword occurrences. In a system that
is essentially a faceted system, Smith et al
(1984), were able to map domain-specific surface
structures found in the indexing of the Chemical
Abstracts into a set of deep structures or infor-
mation classes. From these mappings i t was
possible to develop a relational database where
theattr ibute fields were based on the information
classes. In addition, the relationship between
logic and relational DBMS has been described by
Gallaire (198|) and Dahl (1982).

6. SUMMARY

A four-phased project exploring the applica-
tion of predicate logic to information retrieval
has been described.

A Prolog-based prototype system has been
introduced that has the potential of providing a
deductive reasoning capability for large bibl io-
graphic databases. Continuing research is
directed towards the integration of a fu l l set of
faceted relationships that w i l l increase the
richness of the subject-statement of a database
entry. Coupled with this is the research and
development of a more f lexible hardware device
and/or a software approach to provide response
times suitable for online retrieval.

7. REFERENCES

Coelho, H. 1982. Man-machine co~unication in
Portuguese: A friendly l ibrary service system.
Information Systems. 7(2), 163-181.

Dahl, V. 1982. On database systems development
through logic. ACM Transactions on Database
Systems. 7(I) , 102-123.

Crawford, R.G. 1981. The relational model in
information retrieval. Journal of the American
Society for Information Science. 32(I), 51-64.

Callaire, H. 1981. Impacts of logic on data
bases. Proc. of the Seventh International Conf.
on Very Large Data Bases. Cannes, France. 9-11
Sept. New York, IEEE. 248-259.

Macleod, I.A. and R.G. Crawford. 1983. Document
retrieval as a database application. Information
Technology: Research and Development. 2, 43-60.

Ranganathan, S.R. 1967. Prolegomena to Library
Classification. 3rd ed. New York. Asia Publishing
House.

Salton, G. and M. McGill. 1983. Introduction to
Modern Information Retrieval. New York, McGraw-
Hi l l Book Company.

Shepherd, M.A. and C. Watters. 1985a. A common
interface for accessing document retrieval systems
and DBMS for retrieval of bibliographic data.
Information Processing & Management. 21(2), 127-
138,

Shepherd, M.A. and C. Watters, 1985b. Implementa-
tion of facet-based retrieval using a relational
database management system. Proc. of the Inter-
national Conf. on Ranganathan's Philosophy:
Assessment, Imnact and Relevance. Edited by
T.S. Rajagopalan. l l -14 Nov., New Delhi. New Delhi,
Vikas Publishing House Pvt Ltd., 649-658.

Smith, P.J., Chignell, M. and D.A. Krawczak. 1984.
Development of a knowledge-based bibliographic
information retrieval system. Proceedings of the
1984 IEEE International Conference on System ~,
Man and Cybernetics. IO-12 October, Halifax,
Canada. 222-225.

Warren, D.H.D. 1981. Eff icient processing of
interactive relational database queries expressed
in logic. Proc. of the Seventh International
Conf. on Very Large-Data Bases. Cannes, France.
9Lll Sept. flew York, IEEE. 248-259.

Watters, C.R. 1986. Extended Sequential Search
Model for Hardware Based Information Retrieval.
Doctoral Thesis. School of Computer Science.
Technical University of Nova Scotia.

Watters, C.R., Robertson, W., and Shepherd, M.A.
"Prolog for bibliographic retr ieval." 3rd
International Conference on Systems Research,
Informatics, and Cybernetics. Baden-Baden. August
19-24, 1986.

APPENDIX A

Predicate Formats

For the present application, each predicate
has a name f ie ld and up to f iveother constants
whre each constant is a term or a nested term
(i .e . , a l i s t) . A nested term may be nested to a
depth of 3 per term. The proposed implementation
relies upon control codes to delineate the terms
and nested terms, therefore the record buffer
length is the l imit ing factor on both the number
of fields and the nesting depth. The predicate

structure is:

name {optional f ields}
where a f ie ld x is:

string x, or

(stringxl stringx2 {stringx3..stringxm})-
For example, the following are valid predicate
formats:

name;

name c] ;

name c I c 2 . . Cm;

name (C l l (c12 . . Cln) c 2 . . Cm;

name (C l l (c121 . . Cl2n)) c 2 . . Cm;

name (C l l (c121(c1211 . . Cl21q) . . c12 n)
c13) c 2 . . Cm;

280

Predicate Formats on Disk

Each record of the disk f i l e contains a
single predicate. Upon making a request for the
transfer of a data base segment, a buffer in the
SPPC must be loaded with a predicate image accord-
ing to a defined format. The control codes used
to designate specific term and l i s t boundaries
are :

(BBB) Blank as required to align EOR or EOD to
Hi-Byte of a word

(EBC) End of Bracketed Constant

(EOD) End of Data

(EOF) End of Field

(EONF) End of Name Field

(EOR) End of Record

(EOS) End of String

(SBC) Start of Bracketed Constant

(SOD) Start of Data

(SOR) Start of Record .

Using these control codes, t hes i x valid
predicate formats given above would be stored on
the disk as •follows (spaces and new lines, are
used forreasons of c la r i t y only):

SOD

SOR name EONF EOR

SOR name EONF string] EOS l {BBB} EOR

SOR name EONF string I EOS l EOF l

string2EOS2EOF 2 ..

{BBB} EOR

SOR name EONF SBC] str ingl] EOSll

str ingl2 EOSi2 ..

stringln EOSln

EBC I EOF 1

string 2 EOS 2 EOF 2 ..

string m EOS m EOF m

{BBB} EOR

SORname EONF SBC l s t r ing l i EOSii'

• SBCii str ingl2] EOS121..

string12 n EOSi2 n

EBCii
EBC I EOF I

string 2 EOS 2 EOF 2

• string m EOS m EOF m

{BBB} EOR

SOR name EONF SBClstringliEOSll

SBCl]string121EOS12 l

SBCl2strin~211EOSI211""

string121qEOS121q

EBCi2 ..

string]2 n EOSI2 n

EBCii

string]3 EOSi3

EBC l EOF l

string 2 EOS 2 EOF 2

string m EOS m EOF m
{BBB} EOR

{BBB} EOD

Upon ~king a request for the transfer of a
data base segment, a buffer ~n the SPPC must be
loaded w~th a query predicate in the above format.
However, as there may be f ields of which the
contents are of nointerest an additional control
code, Ignore Next Field (IGNP), is required. For
example, using a "-" to represent a f ie ld that is
of no interest to the current query, the following
is a valid query:

(name V l - V 3 --)

This query predicate would be stored in the buffer
in the following format:

SOR name EONF vstring I EOS l EOF l

IGNF EOF 2

vs t r ing 3 EOS 3 EOF 3

IGMF EOF 4

IGNF EOF 5

EOR

SOD and EOD are not inserted• in the SPPC record
image buffer.

281

