TOWARDS AN EXPERT SYSTEM FOR BIBLIOGRAPHIC RETRIEVAL:
A PROLOG PROTOTYPE

C.R. Yatters and M.A. Shepherd
Dept. of Mathematics, Statistics, and Computing Science
Dathousie University
Halifax, Mova Scotia, Canada B3H 3J5

W. Robertson
School of Computer Science
Technical University of Hova Scotia
Halifax, Hova Scotia, Canada B3J 2X4

ABSTRACT

A prototype Prolog system has been developed
for online bibliographic retrieval. Most online
bibliographic retrieval systems may be character-
ized by queries based on the occurrence of key-
words and by databases consisting of possibly
millions of records. Such systems have very fast
response times but generally lack any deductive
reasoning capability.

An expert system for online biblioaraphic
retrieval, developed in Prolog, would provide
enhanced retrieval capabilities through the
application of deductive reasoning. Such a
system would permit knowledge-type queries to
be asked in addition to the traditional keyword-
type of queries.

A concern with using Prolog to perform an
online search of a million-record data base is
that the response time would be unacceptable.

In order to overcome this drawback two altern-
atives are examined: a snecial-purnose hardware
device and an extended Prolog capability.

1. INTRODUCTION

A project has been undertaken to develop
a bibliographic retrieval system based on
predicate calculus using Prolog as both
programming language and data language. A
Prolog-based system would provide a deductive
reasoning capability not normally available in
bibliographic retrievai systems. The project
is planned as four stages: prototype retrieval
natural language interface, techniques to handle
large databases, and study of faceted indexing
schemes as the basic construct of the knowledge
base for such a system.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and / or specific permission.

© 1987 ACM 089791-232-2/87/0006/0272—75¢

Traditional oniine bibliographic systems
tend to be based on either the Boolean or the
vector-space model of retrieval (Salton and
McGill, 1983) and may access databases containing
millions of documents. In both of these models,
the documents are retrieved by matching terms of
the gquery with keywords occurring in the records
of the database.

In order to nrovide fast response time,
biblioaraphic retrieval systems are usually based
on inverted files, although they can be imple-
mented through a DBMS (Crawford, 1981; Macleod
and Crawford, 1983; Shenherd and Watters, 1985a).
As these systems are based on the occurrence of
keywords and not on the relationships between
concepts, the systems lack any deductive reasoning
canability.

A Prolog-based system may pnrovide the deduc-
tive reasoning canability reauired of an expert
biblioaraphic retrieval system. £/n examnle of
such a system is TUGA (Coelho, 1982) in which the
database consists of documents in the area of
Artificial Intelliaence and each document is
classified according to an Artificial Intelligence
system of cateaories. TUGA nermits the user to
retrieve information about the document collection
and about the classification system. The data-
base, however, consisted of only 46 documents each
indexed according to an a priori classification
scheme.

The applicability of predicate calculus for
the implementation or modelling of the domain of
information retrieval has been discussed elsewhere
(Watters et al, 1986). Although it may be an
appropriate medium for the manipuiation 6f biblio-
graphic information, two difficulties arise: the
definition of the knowledge base for deduction,
and online resnonse with large bibliographic
databases.

The knowledge base for use in a deductive
system must combine both the data structures for
containing the concepnts covered in a given data-
base and the rules for manipulation of that
knowledge (Rich, 1983). A knowledae base must
reflect the contents of a given database and the
structure of each knowledge base must be able to
expand and accept new relationshins as the data-
base exnands. :

A concern with a predicate calculus approach
to retrieval is the speed of the depth-first
search strategy used in Prolog implementations.

It is 1ikely that solutions for providing adequate
access times can be found using either hardware

or software techniques. First a special-purpose
hardware device is proposed that, given an initial
query, scans the disk-based Prolog database and
returns to the main computer a subset of predi-
cates relevant to the query. This set of predi-
cates may then be used to resolve the user query
in the normal Prolog manner. A software solution
is also proposed to reduce the size of the problem
space of any given Prolog search by introducing a
function that produces a reduced probiem space
(set of predicates) by using variables stored in
predicates to select records from a direct access
file where the records of such a direct access
file contain predicates.

The final part of the current study is to
study the applicability of indexing or classifi-
cation schemes for encapsulating the concept
information required in such a knowledge base.

2. PHASE ONE - DEDUCTIVE MODEL FOR RETRIEVAL

A prototype expert retrieval system has been
developed in Prolog to illustrate the feasibility
and range of capabilities that can be provided in
a system based on predicate calculus. An expert
bibiiographic retrieval system should be able to
expand both the query formats available to the
user and the capabilities of responses from the
system to the user. In addition to Boolean
combinations of keywords retrieving copies of
database records, the prototype system provides
responses to a variety of information needs that
include the following:

(a) What journals should I be reviewing?

(b) In what journals should I publish this
article?

(c) Who is active in my research area?

(d) What areas are currently active in
programming languages?

(e) What are the sub-areas of research in

A.1.?

The prototype, PROBIB-2, was written entirely
in Prolog, which is an implementation of predicate
calculus. Prolog has been used both as the
programming language and as the data storage
language.

2.1. Prototype Database.

The database contains bibliographic descrip-
tions of items that are represented by document
predicates. The knowledge base contains two
subcomponents: subject contents of items and
concept inter-relationships, and user profiles.
These subcomponents are represented by the subject
and user predicates.

The documents in the database are represented
by the predicates defined as:

Doc({<docnum>, <title>, <author>, <source>,
<date>, <subject>)
where

273

- <docnum> is a constant that uniquely identifies
the document

- <title> is a list of terms representing the
title

- <author> is a Tist of terms representing the
author(s)

- <source> is a constant that identifies the
Jjournal/proceedings/monoqraph where the item
can be Tocated

- <date> is a constant that identifies the
month/year of publication

- <subject> is a list of terms and relationships
representing the subject content of the item.

The subject predicates define the terms and
the relationships between the terms used in
classifying or describing the subject content of
the documents represented in the database. The
subject predicates, taken all together, make up a
faceted classification that represents the content
of the database. In the prototype only one
relationship, the hierarchical relationship, was
used. The subject predicate, Subject, has been
defined as:

Subject{<major concept>, <subconcept>)
where
- <major concept> is a term that identifies a
single subject concept

- <subconcept> is a list of terms that identify
those subject facets occurring in the database
that are directly subordinate to the major
concept.

Each user profile is represented by one or
more predicates of the form:
User(<user-name>, <subject>)
where
- <user-name> is a constant that uniquely
identifies a user

- <subject> is a list of terms and relationships
that represents the area(s) of subject interest
of a user.

2.2. Prototype Retrieval

Retrieval is performed by application of
deduction ruies to the database components.
Prolog searches for solutions to query statements
by means of a mechanical theorem proving technique
called resolution. The predicates used in Prolog
are all Horn clauses, where a Horn clause has the
form

A :- B,C,D
which can be read as
IF (B and C and D) THEN A.

A query is a Horn clause with an empty left side
of the form

? :~ E,F,G
which can be read as
Find x such that E and F and G are all true.

The retrieval functions are defined as Horn
clauses and instantiated with values from the
query and database to process a user's query.

An example of a deduction rule for retrieval is

Interest{_user, _item) :- User(_user, _about),
Doc(_item, _about).
where x indicates an uninstantiated variable.

This rule can be read as

IF (a user is interested in topic x)
AND (an item is about topic x)
THEN (the user is interested in the item).

The prototype identifies the user through a
password and accesses a previously established
user profile of interests of that user. Any
additional subject areas may be introduced by the
user for the current session.

The user interacts with the system usfng a
domain-specific natural language interface,
described below.

For example a user may ask:

> What articles were printed after 19847

> Where can I get them?

The retrieval process at all times uses
information related to the user's search interest
and to the history of the current search session.
In this way requests can be nested and dialoag
can be less repetitive. As an example of nested
searching consider the following search segment
for user called 'John' whose user profile
indicates an interest in 'information retrieval’:

Probib >John are you still interested in
information retrieval?
User >yes

User >find me references on logic.
User >get me those on prolog'

User >which of these are before 1982.

In this search segment each request narrows the
reference space starting with the space defined
by the user's profile as follows:

information retrieval

information retrieval - logic

information retrieval - logic - prolog

information retrieval - logic - prolog - before 1982.

In order to allow the user to follow an
iterative (i.e., nested) search dialog, sets of
temporary predicates satisfying the current goal
are created. These temporary sets of predicates
can then be used in satisfying further goals as
requested by the user.

3. PHASE TWO - NATURAL LANGUAGE INTERFACE

The second phase of the prototype development
was to incorporate a natural language interface

between the user and the retrieval system. The
natural language used is a subset of Enalish
restricted to the domain of biblioarabhic
querying.

The parser, acting on a context-free grammar,
was written in Proloa following the outline
described by Clocksin and Mellish (1984). The
parser searches for a complete sentence from the
input, where acceptablie sentences are defined by
the grammar shown in Figqure 1. Fiqure 2 presents
sample sentences defined by this grammar. Each
of these sentence structure definitions forms a
path that the parser follows in trying to match

- the input words. During execution the parser

follows one path at a time, with backtracking,
trying to exhaust the 1ist of input words.
Figure 3 is an example of a parse tree for an
acceptable sentence. The range of sentence
structures and breadth of vocabulary can both be
easily expanded.

The parser returns a set 6f goals to the
retrieval module, as shown in Figure 3. The
parser instantiates these goal predicates that

" “are ‘used by Prolog to process the query.

-4, PHASE THREE - HANDLING LARGE DATABASES

‘ The prototype retrieval system described in
this report has a very smal}l database of 40
references and 10 user profiles. As long as the
predicates can be kept in memory response time
is satisfactory. When predicates are stored in
a file, however, and accessed only as needed,
the response time degenerates greatly. Since
bibliographic databases can be expected to be

-very large other access methods must be

considered to provide acceptable response times.

4.1, Hardware Approach

As an alternative to building a Prolog
machine, a special-purpose hardware device is

. proposed that, given an initial query, scans the

disk-based Prolog database and returns to the
main computer a subset of predicates relevant to

. the query and/or the user profile.

The Special-Purnose Prolog- Controlier {SPPC)
has been designed and simulated to operate at the
word serial transfer rate of a disk controller.
The device is synchronized by the Direct Memory
Access (DMA) Controller of the host computer.
This requires a specific format, described in
Appendix A, for the records on the disk. It is
assumed that the Prolog interpreter (or compiler)
conforms to this format. The matching discussed
in this paper is for the presence of instantiated
variables in specific field positions of the
predicates.

The SPPC scans the entire database and
returns a set of predicates related to the query.
This set of predicates may then be used to resolve
the user gquery in the normal Prolog manner. This
model is similar to that developed by Watters
(1986) to perform a fast sequential scan of very
large but unindexed bibliographic databases. The
result of the fast hardware scan was an index to
the set of potentially relevant documents upon
which traditional online retrieval could then be
performed.

Figure 1. Partial Grammar Definition

(illegal sentences)

- $verb,$adverb,$noun,nounphrase,verbphrase.

Rule Rule Definition

No. Name

1 sentence - single-word commands.

2 sentence :- verbphrase,nounphrase.

3 sentence -~ verbphrase.

4 sentence - nounphrase,verbphrase.

5 sentence :- catch-all,error.

6 verbphrase :- $verb,$adverb,nounphrase,verbphrase.
7 verbphrase

8 verbphrase. - $verb,$adverb,$noun,nounphrase.
9 verbphrase :- $verb,$adverb,nounphrase.

10 verbphrase :- $verb,$adverb.

11 nounphrase

:- $adjective,$noun,preposition-phrase.
:- $determiner,$adjective,$noun,preposition-phrase.

12 nounphrase

13 nounphrase :- preposition-phrase.

14 nounphrase :- $determiner,$adjective,$noun.

15 nounphrase :- $adjective,$noun.

16 preposition-phrase :- prep-and-sub.

17 prep-and-sub :- $preposition,$subject,prep-and-sub.
18 prep-and-sub :- $preposition,$subject.

19 prep-and-sub :- $preposition,special-phrase.

Terminals (preceeded by $ above)

- logic, bibliographic,full-text,recursion,etc.

20 special-phrase - [...phrase...].

21 noun - journals,proceedings, etc.
22 verb :- have,wrote,published,etc.
23 preposition - after,on,before,during,etc.
24 subject

25 adjective - full,complete,etc.

26 determiner - the, this,a,etc.

27 adverb - again,etc.

4.1.1. Hardware Design

The SPPC has been designed to operate at the
word serial transfer rate of a disk controller.
The device is synchronized by the Direct Memory
Access (DMA) Controller of the computer with
which it is designed to co-operate. This approach
requires that the memory address normally supplied
by the DMA Controller be superceded by the SPPC
to eliminate unwanted records by overwriting them
in the main memory buffer. It is assumed that a
complete file is normally transferred to the
memory buffer under DMA control, and that a 16 bit
word is available from the disk when the DMA

controller makes a request for a CPU cycle. The

275

SPCC operation is synchronized to the DMA cycle
request and picks up each word transferred to
memory to check it against the appropriate word
in the SPPC buffer. A block schematic of the
SPPC is shown in Figure 4.

The SPPC operation can be described by the
following "hardware” pseudocode, which can be
converted into a circuit implementation. In this
pseudocode, each bracketed number is associated
with a state of the algorithmic machine (ASM).

As the ASM must check each word before the next
word becomes available the clock of the ASM is
synchronized to the disk bit rate. The variables
upon which decisions are made in the pseudocode

remain stable during a state. An Immediate action controlled by such an action, is therefore,
(I) is completed before the end of the state in available for decision makina in the subsequent
which it is invoked; any new data indirectly state.

(1) IF NOT start THEN (1)
ELSE Reset Buffer-Pointer(I) : (2);
(2) IF DMA-Request THEMN
Latch-Word {Word consists of Hi-Byte,Lo-Byte}:
Latch Memory-Address(I):
(3) {To check SOR/EQD }
ELSE (2);
(3) IF (Lo-Byte=SOR) OR (Hi-Byte=SOR) THEN ,
(4) {To check Word tokens against Buffer-Token}
ELSE
IF (Lo-Byte=EOD) OR (Hi-Byte=EQD).THEN -
(1) {To wait for next initiation}
ELSE (2);
(4) {Check Word tokens against Buffer-Token}
: IF {Buffer-Token=IGNF) THEN
INC Buffer-pointer(I):
{5) {Look at Word for EOF to match IGNF EOF}
ELSE
IF (Lo-Byte=SOR) THEN
(6) {To 1ook for match or m1smatch at Lo-Byte}
ELSE
IF (Hi-Byte=SOR) THEN
(11) {To check for match or mismatch at Hi-Byte}
ELSE - ’ o
(6);

(5) {Look at Word for EQF to match-IGNF EOQF}
IF NOT (Lo-Byte=EQOF) THEN
IF NOT (Hi-Byte=EOF) THEN
(7) {To continue search for EOF at next word}
ELSE {Hi-Byte was EOF: Continue scan at next word}
INC Buffer-Pointer{I): .
(8) {To go tonext field at next word}
ELSE -
"{Lo-Byte was EOF: Next byte to check is in Hi-Bytel
INC Buffer-Pointer(I):
(9) {Check token in Hi-Byte after IGNF EQF};
(6) {Look for match or mismatch at Lo-Byte}
IF NOT (buffer-token=Lo-Byte) THEN {Mismatch 1ook for EOR} -
" Reset Buffer-Pointer(I): :
(13) {Check Hi-Byte for an EQR}
ELSE . : L
{Match at Lo-Byte must be match to date}
INC Buffer-Pointer(I):
(11) {Check Hi-Byte for a match};
(7) {Search Word for EQOF to match IGNF EOF}
IF DMA-Request THEN
Latch-Hord:
(5) {Check Lo-Byte and Hi-Byte for EOF}
ELSE (7):
(8) {Continue scan at next field starting at next Hord}
IF DMA-Request THEN .
Latch-Word:
(4) {To start check of a new field}
ELSE
(8);
(9) {Check token in Hi-Byte after IGNF EOF}
IF (Buffer-token=IGHF) THEN
INC Buffer-Pointer(l):
{12) {Check Hi-Byte for EOF to match IGNF EOF}
ELSE
(11) {Check Hi-Byte for a match};
(10) {Look for an EOR,after a mismatch, starting at next Word}
IF DMA-Request THEN
Latch-Word:
{13) {Check Hi-Byte for an EQR}
ELSE

276

(1)

(12)

(13)

(14)

(10);
{Check token in Hi-Byte for a match}
IF NOT({buffer-token=Hi-Byte) THEN {Mismatch at Hi-Byte}

Reset Buffer-Pointer(I):

(13) {Check Hi-Byte for an EOR}

ELSE
IF (Buffer-token=EOR) AND (Hi-Byte=EQR) THEN
Pass-Record-Along: Reset Buffer-Pointer(I):
(2) {Wait for new record}
ELSE {Match to date}
INC Buffer-Pointer:
(14) {Continue scanning present record};
{Check Hi-Byte for EQF to match IGNF EQF}
IF NOT (Hi-Byte=EOF) THEHN

(7) {Look for EOF, to match IGNF EOF, from next word}
ELSE

INC Buffer-Pointer(1):

(8) {Wait for next field};

{Check Hi-Byte for an EOR}
IF NOT (Hi~-Byte=EOR) THEN
IF (Lo-Byte=EOR) THEN
Error-Interrupt {EOR's are in Hi-Byte only}: (1)}
ELSE
(10) {Look for EOR, after mismatch, from next word}
ELSE {Overwrite the mismatching record}

?S;oad (I) DMA's next address with (Memory-Address)-1:
{Match to date at Hi-Byte; continue scanning in present record}
IF DMA-Request THEN

Latch-Word:

(6) {Look for match or mismatch at Lo-Byte}

ELSE
(14);

Figure 2. Sample Input Sentences

Get me references on logic.
What are the journals on logic.
Which proceedings are after 19807
I need journals during 1980.
Which ones of these are published after 1980?
Let me have journals on bibliographic retrieval after 1980.
What proceedings are published on logic after 19807
Let me have all journals on logic and prolog published during 1982.
Get me the complete records.
1 need those references on logic for information retrieval.
Which ones of these are on prolog?
Where can | find them?
Who wrote these articles?
Tell me who wrote them.
Where can | find references after 1980 on logic?

277

Figure 3. Mapping of Parser Output to Logic Rules

sentence (*2)

verbphrase(#9)

nounphrase(#11)

verb | nounphrase(*15) ﬂ\

adj. noun preposition-phrase(*16)
adverb
adj. noun prep-and-sub(*17)
prep. subject prep-and-sub{#18)
prep subject
Get Il 1y me full references on logic after 1981
MAPPING
Logical Rules
4 N
complete-rec() €<—
noun-found(references) ¢ .|
sub-found(logic) <
prep-found(after) <
sub-found(1981) ¢
_)

4.2. Software Approaph

Until special-purpose hardware is a reality,
database designs must be considered that will be
able to process inferences on large databases
quickly. A software alternative to special-
purpose hardware is suggested wherein the database
records are indexed, as suggested by Warren (1981),
but only the higher level of indices are kept in
memory as predicates. The rest of the predicates
can be stored as direct access records in a disk
file, as shown in Figure 5. The indexing predi-
cates contain the direct access record numbers as
variables and can thereby be used to generate
subsets of predicates for Prolog search as needed.
In this way, problem spaces can be kept small for

278

searching in the Prolog depth-first manner.

5. PHASE FOUR - DESIGN OF KNOWLEDGE STRUCTURE FOR
BIBLIOGRAPHIC DATABASES

In the prototype, a simple hierarchical set
of relationships is defined between the various
components of the subject of each document. The
same relationships are user to define the users’
interests.

The fourth phase of this project is to inves-
tigate structures for the knowledge base that are
perhaps better suited to this problem space.
Faceted schemes appear to have promise and may
provide those tools needed to define the concents

CPU I COMMAND AND DOWNLOAD INTERFAGE DMA

8US REQ

LATcH . sWord | Start | CLOCK
WORD CLocK [SPPC BUFFER |
R —+— Address —in
el [Token tatch kK LATOH -
ADDRESS
INCBP Address - O
RESETB
{Buffer — token =)

IGNF

ITO=->r

__>ERROR — INTERRUPT
PROGRAMMABLE *INCBP (BUFFER PTR)
LOGIC ARRAY L, RESETBP

. 11 L, LATCH — ADDRESS
NEXT STATE ll:: LATCH — WORD
PRESENT STATE CLOCK RELOAD - ADDRESS

Figure 4 A Block Schematic of the SPPC

Figure S. Use of Direct Access File for Indexing

p . :
rolog DB memory direct access file

pred 7] — -
pred(.ptr..)

67 r__’} pred

279

and relationships that are actually present in a
given database.

The relationships between components of a
subject may be expressed through a fully faceted
indexirg scheme (Ranganathan, 1967). Shepherd and
Watters (1985b) demonstrated that a document data-
base, where each document is fully described by a
faceted scheme, can be mounted in a relational
DBMS and retrieval performed using the facets in
addition to keyword occurrences. In a system that
is essentially a faceted system, Smith et al
(1984), were able to map domain-specific surface
structures found in the indexing of the Chemical
Abstracts into a set of deep structures or infor-
mation classes., From these mappings- it was
possible to develop a relational database where
the attribute fields were based on the information
classes. In addition, the relationship between
logic and relational DBMS has been described by
Gallaire (1981) and Dahl (1982).

6. SUMMARY

A four-phased project exploring the applica-
tion of predicate logic to information retrieval
has been described.

A Prolog-based prototype system has been
introduced that has the potential of providing a
deductive reasoning capability for large biblio-
graphic databases. Continuing research is
directed towards the integration of a full set of
faceted relationships that will increase the
richness of the subject statement of a database
entry. Coupled with this is the research and
development of a more flexible hardware device !
and/or a software approach to provide response
times suitable for oniine retrieval.

7. REFERENCES
Coelho, H. 1982. Man-machine communication in

Portuguese: A friendly library service system.
Information Systems. 7(2), 163-181.

Dahl, V. 1982. On database systems development
- through logic. ACM Transactions on Database
Systems. 7(1), T02-123.

Crawford, R.G. 1981. The relational model in
information retrieval. Journal of the American
Society for Information Science. 32(1), 51-64.

Callaire, H. 1981. Impacts of logic on data
bases. Proc. of the Seventh International Conf.
on Very large Data Bases. Cannes, France. 9-11
Sept. New York, IEEE. 248-259.

Macleod, I.A. and R.G. Crawford. 1983. Document
retrieval as a database application. Information
Technology: Research and Development. 2, 43-60.

Ranganathan, S.R. 1967. Prolegomena to Library
Classification. 3rd ed. New York. Asia Publishing
House.

Salton, G. and M. McGill. 1983.
Modern Information Retrieval.
Hi1l Book Company.

Introduction to
New York, McGraw-

280

Shepherd, M.A. and C. Watters. 1985a. A common
interface for accessing document retrieval systems
and DBMS for retrieval .of bibliographic data.
Information Processing & Management. 21(2), 127-
138.

Shepherd, M.A. and C. Watters, 1985b. Implementa-
tion of facet-based retrieval using a relational
database management .system. Proc. of the Inter-
national Conf. on Ranganathan's Philosophy:
Assessment, Impact and Relevance. Edited by

T.S. Rajagopalan. 11-14 Nov., New Delhi. New Delhi,
Vikas Publishing House Pvt Ltd., 649-658.

Smith, P.J., Chignell, M. and D.A. Krawczak. 1984.
Development of a knowledge-based bibliographic
information retrieval system. Proceedings of the
1984 IEEE International Conference on Systems,
Man and Cybernetics. 10-12 October, Halifax,
Canada. 222-225.

Warren, D.H.D. 1981. Efficient processing of
interactive relational database queries expressed
in logic. Proc. of the Seventh International
Conf. on Very large Data Bases. Cannes, France.
9-11 Sept. Hew York, IEEE. 248-259.

Watters, C.R. 1986. Extended Sequential Search
Model for Hardware Based Information Retrieval.
Doctoral Thesis. School of Computer Science.
Technical University of Nova Scotia.

Watters, C.R., Robertson, W., and Shepherd, M.A.
"Prolog for bibliographic retrieval." 3rd
International Conference on Systems Research,
Informatics, and Cybernetics. Baden-Baden. August
19-24, 1986.

APPENDIX A
Predicate Formats

For the present application, each nredicate
has a name field and up to five-other constants
whre each constant is a term or a nested term
(i.e., a 1ist). A nested term may be nested to a
depth of 3 per term. The proposed implementation
relies upon control codes to delineate the terms
and nested terms, therefore the record buffer
length is the limiting factor on both the number
of fields and the nesting depth. The predicate

- structure is:

name {optional fields}
where a field x is:
stringx, or

(str1ngx] string , {str1ngx3..str1ngxm}).

For example, the following are valid predicate
formats:

name;

name c; ; -

name ¢y C, .. Cps

name (c]] (c]2 .. cln) Cp v Cpi

name (cH (C]Z] .. C]Zn)) Cop v €3

name (cqq (Cqpy(cyapy - €a14) -+ Cy2p)

c]3) Cop v Cp

Predicate Formats on Disk

Each record of the disk file contains a
single predicate. Upon making a request for the
transfer of a data base segment, a buffer in the
SPPC must be loaded with a predicate image accord-
ing to a defined format. The control codes used
to designate specific term and 1ist boundaries
are:

(BBB) Blank as required to align EOR or EOD to

Hi-Byte of a word ‘

End of Bracketed Constant
End of Data

End of Field

End of Name Field

End of Record

End of String

Start of Bracketed Constant
Start of Data

Start of Record .

(EBC)
(EOD)
(EOF)
(EONF)
(EOR)
(EOS)
(SBC)
(sob)
(SOR)
Using these control codes, the-six valid
predicate formats given above would be stored on
the disk as follows (spaces and new lines. are
used for reasons of clarity only):
S0D
SOR name EONF
SOR name EONF
SOR name EONF

EOR

string] EOS] {BBB} EOR
string, EOS1 EOF,
stringZEOSZEOF2 .

{BBB} EOR

SOR name EONF SBC, string,; E0S,
stringlz EOS]2 .o
str‘ing]n EOS

EBC] EOF]

stringz EOS2 EOF2 ..

stringm EOS,, EOF,

In

{BBB} EOR)

SOR name EONF SBC, string,; EOS,,
SBC]] stringlz‘ EOSIZ].,

str‘ing]2n EOS]2n

EBCn

‘ EBC] EOF]

str‘ing2 EOS2 EOF2
.stringm EOSm EOFm

{BBB} EOR
SOR name EONF SBC]string1]EOS]]
SBC]]string]Z]EOSIZ]
SBC]zstring]Z]]EOS]ZI]..
string]Z]qEOS]z]q
EBCy, ..

281

string12n EOS
EBCy;
string]3
EBC] EOF]
string2 EOS2 EOF2
stm‘ngm EOSm EOFm
{BBB} EOR
{BBB} EQOD

12n

E0S, 4

Unon raking a request for the transfer of a
data base segment, a buffer in the SPPC must be
loaded with a query predicate in the above format.
However, as there may be fields of which the
contents are of no interest an additional control
code, Ignore Next Field (IGNF), is required. For
example, using a “-" to represent a field that is
of no interest to the current guery, the following
is a valid query:

(name Vy - Vy -)
This query predicate would be stored in the buffer
in the following format:

~ SOR name EONF vstring, EOS, EOF,
IGNF EOF2
vstring3 EOS3 EOF3
IGNF EOF4

IGNF EOF

5
~ EOR.

SOD and EOD are not inserted in the SPPC record
image buffer.

