
Handling Multiple Data Bases in Document Retrieval

Inn A. Macleod
Department of Computing and Information Science

Queen's University
Kingston, Ontario K7L 3N6.

ABSntACT
There is no such thing as a standard document.
Bibliographic information comes in a wide var/ety of
formats. Existing retrieval systems handle different
document styles either by creating an artificial docu-
ment type or by providing different and independent
data bases. Neither approach seems satisfactory. In
this paper we describe a data model which we feel is
more appropriate for document representation and
show it can handle the multiple document type prob.
lem quite na~rally.

1. INTRODUCTION
Existing retrieval systems normally can handle only
one type of document at a time. They handle dif-
ferent document types either by defining a "stan-
dard" document format and constraining individual
documents to flit inside this format or by providing
independent data bases. Related information held in
separate data bases cannot be combined within the
context of the retrieval system environment, not
even when all that is wanted is common information
such as a list of titles.

It would obviously be advantageous to be able to
retrieve common information from documents which
are otherwise dissimilar. For example, in libraries
there are many different types of document: books,
reports, maps, journals and so on. We normally go to
a library to collect information, not a particular type
of document. Another example is in "people" files.
File folders in filing cabinets do not, in general, con-
tain documents of the same type. Indeed, the con-
tent of a file may itself be a file. What they contain
is a number of physically quite different objects.
What relates them is their" content rather than the/r
s t ruc ture .

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

© 1985 ACM 0-89791-159-8/85/006/0026 $00.75

In some ways current approaches to data organisa-
tion have evolved from a rather idealistic view of
data. Traditional data proceming techn/ques grew
around the view that data could be organlsed into
clean well structured files. Data was constrained to
this form. Data models evolved to aid in the manage-
ment of related tiles. What they reflect is a bias
towards modelling of data suited for a computer
rather than the real world data that exhts in people's
Ubraries and offices. The information here suffers
from never having been cmnputerised, or, at best,
computerhed in a variety of ad hog ways, as for
example, can be seen in the case of current docu-
meat retr/eval systems. The work descr/bed here is
premised upon the bel/ef that a data modelling
approach to document rctr/eval is a good one. We
give an abbreviated descr/ption of a data model
which we feel ls approw/ate for document represen-
tat/on and show it can handle the multiple document
type problem quite naturally.

2. DATA MOD~Lq
There are generally assumed to be three "classic"
data models, the h i e r a r c h i c , network and relational
models. However, this is slightly misleading. A
model can be more appropriately defined as consist-
ing of a logical data structure, or structures, and a
set of operators to access and manipulate the data
structure. In this l/ght, it is perhaps more correct to
refer to the three classic models as generic types of
model. Specific instances of models are usually
based on one of these types but there are often
s/gnificant differences among instances of the same
type. For example, the relational calculus and rela-
tional algebra models are quite different although
they arc based on the same underlying concept [3].
SQL, another relational system, differs from both of
these and, indeed, there are several SQL variants [2].
There are even some models which are not based on
one specific generic type. Daplex is a particular
example [I0].

In the context of document retrieval it is interesting
to briefly look at the more obvious relevant proper-
ties of the three generic models. The h/crarch/c
model is based on the assumption that all data can
be represented within a single hierarchy. The "pure"
hierarchic model allows only one-to-many

26

relationships, although variations permit more than
one hierarchy and allow interconnections between
different hierarchies. This model is obviously not
totally inappropriate for document organisation.
Libraries, for example, almost invariably classify
their contents in a hierarchic fashion. The network
model permits, in principle, many-to-many relation-
ships which, as well as permitting hierarchies also
allows data to be shared among hierarchies. (Since
some of the variant hierarchic models permit • simi-
lar sharing, IMS is a classic example [$], it is
apparent that the classification of a particular data
model into one of the generic types is not always
straightforward.) The network concept is also
relevant to document collcctinus. One useful appli-
cation would be in permitting different logical organ-
isations to coexist , as they do in most real libraries,
where the same document can appear in a variety of
different types of catalogue.

In the relational model, the basic data type is a rela-
tion or table. In the "pure" model, a relation is basi-
cally a set of tuples where each tuple is equivalent to
a data record. All tuples within a relation are of the
same type. In most actual instances of relational
implementations, sets are replaced by tables where
duplicate entries and orderings are permitted. A
fundamental difference between the relational view
and the other two model types is that all relation-
ships are established dynamically. That is, when
related information appears in two or more different
tables, it is brought together by linking the informa-
tion through the values of the data attributes in the
table. In the tree and hierarchic views, the relation-
ships are static and arc implemented by explicit
pointers. In the relational model we tend to build
new information from existing information while in
the others we tend to navigate through the database
using the preassigned pointers. Thus the concept of
a s c A e ~ is fundamental to the tree and hierarchic
approaches. A schema is a mechanism for describing
the structure of the database. As a consequence the
basic query languages associated with relational
models tend to be extremely powerful high level
languages. The other two models have simple query
languages which are almost procedural in nature and
which are mainly concerned with moving through
the data base. It is this dynamic aspect of the rela-
tional model which makes it attractive in a document
management environment. At the same time it
should be noted that the representation of docu-
ments and document organisations as tables is not
necessarily an ideal approach.

3. THE ARRAY MODEL
Meat work involving the application of data models
to document retrieval has centred on the relational
model. This is obv/ously because of the inherent
attractiveness of the associated query languages and
the conceptual simplicity of the model. Unlike
hierarchic and network environments, users do not

have to be aware of any underlying schematic
deseription of the database before they ~ it. At
the same time there has been an increasing aware-
hess that there are a number of problems associated
with the model and this has prompted a great deal of
research into var/ations of the relational concept and
not just in the area of document retrieval [4], [9],
[l l] , [6]. The work described hero is an example.

The array model was first suggested sumc years ago
u a generaiisation of APL [8]. We have adapted
some of Here 's ideas application in • data base
management environment. Details of the model are
provided elsewhere [6,7], so we will descr/be only the
major features here, mainly through examples. In
this model, the bas/c information structure is a non-
homogeneous array where each element of the array
may be a basic data type such as an integer or a
string or it may itself be an array. Thus an array is a
h/crarchical object. (We use the tetrminolo~ "array
model" to distinguish the model from the clasaic
hierarchic model and also to reflect the fact that we
borrow many concepts from More's array theory.)
For example a paper consisting of a title, a list of
authors, a list of fields, each of which had associated
with it a list of index terms, would be represented as:

In our model, a data structure of the type illustrated
above ls declared by a statement of the form:

Papers: ARRAY
(Title, Journal, (Authors), (Fields, (Terms)))

Here the hierarchic levels are specified by nesting of
parentheses. The basic assumption in our model is
that information is made of composite objects which
may include lists of objects and may be arranged
hicrarrehically. This seems to be a valid assumption
for many of the objects found in hibliographie data
bases. We call the object specified in this way an
array type or, simply, an array. A pa~icular set of
data conforming to the structure of the array type
and stored in it is called an array instance. The fol-
lowing is a potential array instance of type "Papers".

(data and information, sigir, (sm/th browne)
(title (data information)
abstract (database interactive retrieval))

In our examples, user defined terms begin with a sin-
gle upper case letter, data is in lower e a ~ and words
of the data definition and query language are all in
upper case.

While the basic data structure is a hierarchical one,

27

our model differs from the classic hierarchic model
in a number of fundamental respects. Most impor-
tantly we permit independent hierarchies. That is, a
particular data base will generally consist of a collec-
tion of arrays where there is no expl/cit linkage
among the different array types. In this respect the
model is analogous to the relational model. Also,
and again there is an obvious analogy to the rela-
tionai model, we permit new array types to be
created dynamically. Thus, not surprisingly, there is
a certain similarity between our proposed query
language and that of SQL which is probably the best
known relational query language.

4. THE QUERY LANGUAGE
Superficially, the basic select operation resembles the
equivalent operation in the relational model as
represented by SOL. For example, to retrieve all
titles by Smith we would write:

SELECT Title
FROM Papers
WITH "smith" IN Authors

The general structure of queries is similar to this
one. We specify which attributes we want, where
they are coming from and what conditions must be
satisfied by the array instances containing them. A
number of operators can appear in conditions, but
"IN" is probably the most useful and the only one we
need in subsequent examples. Basically, it tests to
see if its first operand is contained within the list
specified by the second operand.

Conditions can be applied to any attribute of the
array and the usual Boolean connectives can appear
with multiple conditions as in:

SELECT Title
FROM Papers
WITH "smith" IN Authors
AND "abstract" IN Fields

However, because we are retrieving from a hierar-
chy, questions of context arise. For example, it is not
immediately obvious what the following query might
mean:

SELECT Title
FROM Papers
WITH "abstract" IN Fields
AND "database" IN Terms

Do we mean a paper containing an abstract where
the abstract contains the term "database", or do we
mean a paper with an abstract and also containing
the term "database" though not necessarily in the
abstract? In fact the query would be interpreted as
meaning the latter. Conditions are applied indepen-
dently of each other within a particular array
instance unless specific provision is made to establish
a context. Context is established by a "WITH" con-
nective. For example:

SELECT Title
FROM Papers
WITH "abstract" IN Fields
WITH "database" IN Terms

Here the second condition is applied in the context
established by the preceding condition. That is, we
would look for the term "database" in the array of
terms associated with the "abstract" field.

Also the meaning of the following query is not obvi-
otis:

SELECT Title
FROM Papers
WITH "database" IN Terms

An array of terms is associated with each field
instance. In a typ/cal instance of "Papers" there will
not be one list of terms, but rather a list of lists of
terms. The question arises then as to what it means
when an operand is a list of lists. Again we need to
establish context and where there are multiple con-
texts we need to quan:i/y which if any contexts are
to satisfy the condition. The correct version of the
above query is:

SELECT Title
FROM Papers
WITH ANY Fields
WITH "database" IN Terms

In our query language operands, other than atomic
values and simple lists, are augmented with
quantiflers. The most important of these are ALL,
the universal quantifier, and ANY, the existential
quantifier. If no quantifier is explicitly provided,
ANY is assumed. In this case the meaning of the
example is obvious. Had we wanted to require the
term "database" to appear twice we would have writ-
ten "ANY 2", and if we had wanted it to appear in
every list of terms we would have replaced "ANY"
with "ALL".

Because of the frequent occurrence of this type of
query, the first form is automatically interpreted as
being equivalent to the second. Strictly speaking,
the query should have been written as:

SELECT Title
FROM Papers
WITH Papers
WITH ANY Fields
WITH "database" IN Terms

However the "WITH Papers" is obviously redundant
and would not normally be supplied except in the
case where we are retrieving from more than one
array as shown in later sections.

A more complex example illustrating context and
quantification is the following where we want to find
all titles by "sm/th" or "browne" contain/ng the
terms "model" and "data" in the field "keywords".
'I'his can expressed as:

28

MYDATA: SELECT Title
FROM Papers
WITH ANY <"smith", "browne"> IN Authors
AND "keywords" IN Fields
WITH ALL <"data","model"> IN Terms

The optional name preceding SELECT is the name
given to the retrieved data. The result of a select
operation, is itself an array, so it too can participate
in later selections.

$. RETRIEVAL FROM MORE THAN ONE
ARRAY
Our examples so far have all shown retrieval from a
single array. However, there is an intrinsic reason
why more than one array may not be involved. The
major restriction is that if a specific sub-array is
being retrieved, it must be common to all the arrays
from which retrieval is taking place. If the retrieved
array is not wholly contained in the source array,
null values will be retrieved for the missing attri-
butes. Any conditional test of a field not contained
in one of the arrays is automatically considered to
have failed. For example, if we had an array
"Books" defined as follows:

Books: ARRAY (Title (Authors) Publisher (Topics))

It would then be possible to felt/eve all the common
information in this array and the "Documents" array
by writing:

SELECT Title (Authors)
FROM Books, Papers

An attempt to select a non-existent attribute from an
array will result in a null value being retrieved. For
example:

SELECT Title Publisher Journal
FROM Books, Papers

Here either Publisher or Journal will be null depend-
ing on from which array we are selecting. Another
example is the following:

SELECT Title
FROM Books,Papers
(WITH Books
WITH "smith" IN Authors)
OR "browne" IN Authors

Here we are selecting any type of document with
"browne" as one of the authors as well as any books
with "smith" as an author. Note the nsc of
parenthesisation here. Conditions are applied left to
right without precedence unless parenthesisation is
used. ALso the first condition shows an example of
an array name being required as a condition since
we need to establish the array "Books" as the con-
text in which the following condition is to be
applied.

This type of retrieval from more than one array is
obv/ously useful. However, a major limitation is that
either common subsets of attributes must be
retrieved or a "pseudo-document" containing

possibly many null attribute values must be created.
An alternative mechanism is that prov/ded through
the use of references.

6. REFERENCES
Another major difference between the array model
and the classic relat/.onal model is the ability to han-
dle indirection in the former. It is often desirable to
be able refer to information, either in whole or in
part, without maintaining a physical copy of the
information. In the array model this ability is pro-
v/ded by reference mechanism. A reference is s/m-
ply a type of pointer which identifies an array
instance.

The simplest use of references is in a SELECT state-
meat, where they can reduce the amount of data
actually retrieved. For example, if we have:

SELECT Title (Authors)
FROM Papers

This would cause a complete copy of the relevant
information to be retrieved. On the other hand, if
we write:

SELECT
FROM Papers

Here only pointers to the data will be retrieved.
Logically, there is no difference from the user's
point of view between a copy and a reference. The
only disecrniblc effect will be that updates to the
original affects references but not copies, which may
or may not be a disadvantage depending on the con-
text.

We can also write the select statement in the form:

SELECT REF at tr ibutename FROM etc.

This retrieves references to a node within an
instance. All attribute values at or below this node
are accessible. For example, we could have:

My_query: SELECT REF Field
FROM Papers
WITH "War and Peace" IN Title

What this effectively does, is make My_query the
name of an array whose contents are all the fields,
terms and positions of this title. We could now
write:

SELECT Terms
FROM My_query
w r r H "abstract" IN Field

This example is somewhat contrived. The main use
of this facility is for nav/gation through a hierarchy
such as a file organisation as shown in the next sec-
tion.

Earlier we gave an example of an array declaration.
It is often dcs/rable to prey/de additional
specifications for attributes regarding sort order,
uniqueness, optionality and so on. This is done by
placing descriptors in the array declaration.

29

Descriptors follow the name of the attribute to
which they apply. A more complete example of the
previous declaration is:

Papers: ARRAY
(Title REO UP; (Author INDEXED)
(Fields DISTINCT (Terms UP DISTINCT)))

Here REO means the attribute must have a value in
each array instance; UP (or DOWN), means the list
of attribute values inside an array instance are main-
tained in ascending (or descending) sorted order;
DISTTNCT means no duplicates are allowed ins/de
each particular instance; INDEXED means a fast
access technique is provided.

An array attribute can be a list of references.
References are specified using the REF data descrip-
tor. Only a reference to another array can be stored
in such data. For example, a file containing docu-
ments of different types might be specified by the
following array:

Topic list: ARRAY
(Topic DISTINCT
(Name DISTINCT (Contents REF)))

Here the array consists of a list of topics. Under
each topic is a list of names and associated with each
of these is a list of references to other array
instances of any type. Examples of the use of this
array are given below.

7. FILE MANIPULATION
We will now show how the types of operation associ-
ated with typical office file organisations can be car-
tried out within our model and how this is applicable
to retrieving documents from multiple data bases.

Items are added and deleted to an array using a sin-
gle command. Its syntax is:

FILE [REF] [COPY] source
IN array_name
AT target
[WITH conditions]

If a "COPY" is specified, then the array instance is
copied from the source otherwise it is moved from"
the source. If a "REF" is specified then a pointer is
filed rather than the the actual array instance except
that if the array instance is itself a reference, REF
has no effect. The source may be an array name, a
select statement or a literal. The "arrayname" is
the name of the array being updated and the target
is a list of the attributes of this array which are to be
modified. No structural information is required
since this is implicitly supplied by the array name.
The target must be compatible with the source. That
is, the attributes being modified must have the same
structural relationship in both the source and the tar-
get. The target may optionally have conditions
applied to it.

We will now illustrate how the array model features

as they have so far been described can be applied to
managing information in a file organisation. Here
we mean by file management, the type of operations
we would typically perform in an office filing system.

Suppose we want to take our two arrays, Papers and
Books and organise these by topic where, within
each topic, works by the same author are grouped
together. A possible array structure to handle this
organisation is the example, "Topic~ist", specified in
the preceding section. Information can be added to
this array by locating documents in the original
arrays and filing references to them. For example,
to move copies of all of the Books array, we would
write:

FILE COPY
SELECT Topics (Authors (REF Title))
FROM Books
IN Topic_~t

Here the SELECT part of the statement extracts the
individual topics and the authors from the array
"Books". A reference to each "Title" associated
with a particular antfxor is also retrieved. Note that
the information retrieved from "Books" is structured
differently from the original. This reshaping opera-
tion is permitted in any SELECT statement. In
reshapes, duplicate parent nodes are eliminated and
their children are merged. The information is
appended to the array "Topic list".

Next we might want to add to this file, all papers
containing at least one of "Topics" in its "Terms".
First, we select each term and references to papers
containing the term.

Tempe SELECT Terms (Authors ((REF Title))
FROM Papers

Next we file each of these array instances in
"Topic_list ".

FILE Temp
IN TopieJist
AT Topic
WITH Term IN Topic

Now to retrieve, say, the titles of all books about a
particular top/c, "database" for example, we would
write:

SELECT Title
FROM Topic list
WITH Books
WITH "database" IN Topic

This query is again a case where we need to specify
the array name as a condition since there are refer-
ences to array instances of different types within the
array of references "Topic list".

We can also navigate through the file.

Dbase: SELECT REF Name
FROM Topic~ist
WITH "database" IN Topics

This effectively makes "Dbase" a reference to the

30

list of "Names" under this particular topic. If we
have the following query:

SELECT Title
FROM Dbase
WITH "smith" IN Name

This will select all titles about "database" by Smith,
irrespective of the document type. It is also possible
to query lower levels of both document types, as fur
example:

SELECT Title
FROM Dbase
WITH "ACM" IN Publisher
OR "IBM" IN Organisation

In the FILE statement, the source and target may be
in the same array. For example:

FILE SELECT Name FROM Topic_list
WITH "database" IN Topic
WITH "smith" IN Name
IN Top/c_list
AT Name
WITH "operating system" IN Topic

What this statement does is move the instance of
"Name" whose value is "smith" from the topic "data-
base" to the topic "operating system".

8. SUMMARY
Hierarchies are fundamental to the handling of
documents. They occur in at least two contexts.
One is in the structure of the document itself. The
other is in the file structures we create to store and
retrieve documents in an office environment. Both
of these structures can be created and manipulated
in a straightforward fashion in the array model and
linkages between the two can be accomplished quite
naturally through the use of references. Since
hierarchies are themselves created by the use of
internal pointers, it is relatively straightforward to
extend our model to permit the explicit use of these
pointers and this is in fact all that references are.

The array model is in some ways a generalisation of
the relational model to permit the handling of
hierarchies. The model is a view of data and says
little about the underlying file organisations. A
variety of physical implementations are possible. It
would be feasible to "layer" our query language on
top of the relational model, or to use the types of file
structures used to implement either the hierarchic or
network models. We tend to compare our model
with the SOL type of relational model because of
our emphasis on a high level query language with the
property of closure.

As the above examples have illustrated, it is possible
to perform quite sophisticated operations in the
array model using only a few conceptually simple
constructs. Most previous work in th~ area has
involved the use of the relational model which views
the world as being essentially tabular. For example
see, [1]. However it is obvious that this is not a

natural mechanism for handling hierarchic struc-
tures. This has been recognised for some time and
various proposals have been made to extend or
modify the model, [4,9,11]. However, the array
model seems to provide a more realistic view of data
than that offered by the relational model, at least
certainly in the context of handling multiple data
types and h ienrchic file organisatlons.

The efficiency of an implementation will large!y
depend on the underlying physical file structures.
Since we plan to use the types of constructs current
in existing implementations of other models, there
should be no degradation of performance in com-
parison with these. However it is unlikely that an
implementation of the array model will ever be as
efficient in terms of basic performance as a special
purpose document retrieval system of the type in
current use. On the other hand we gain a great deal
in terms of flexibility. The model is currently under
implementation. The underlying file organisatinn has
been implemented and the basic array representation
has been built on top of this. In parallel, a prototype
system is being developed on top of an existing rela-
tional system (IIqGRES), which will permit a rapid
evaluation of the query language constructs.

BIBLIOGRAPHY

[1]. Barnard, D.T. and Maeleod, I.A. "A Methodol-
og3, for the Development of Office Information
Systems", Proceedings of the Canadian ln f ornuulon
Processing Society, pp. 127-134, 1982.

[2]. Chamberfin, D. and Boyce, R. "SEQUEL: A
Structured English Query Language", Proceedings
of the 1974 ACM-SIGMOD Workshop on Data
Description, Access and Control. Ann Arbor,
Michigan, (May 1974), pp. 249-264.

[3]. Codd, E.F. "A Relational Model of Data for
Large Shared Data Banks", Conununlcations of th~
ACM, Volume 13, pp.377-387, 1970.

[4]. Codd, E.F., "Extending the Relational Model to
Capture More Meaning", ACM Transactions on
Database Systems, Volume 4, 1979.

[5]. IBM Corporation, "Information Management
System / Virtual Storage General Information
Manual", IBM Form No. Gh20-1260.

[6]. Macleod, I.A. "A Model for Integrated Informa-
tion Systems", Proceedings of the 9th Conference on
Very Large Data BaJes, pp.280-289, Florence, 1983.

[7]. Macleod, I.A. "AOL - A Query Language for
the Array Model". Technical Report, Department
of Computing & Information Science, Queen's
University, Kingston, Ontario, 1984. (Copies
available on request from the author).

31

[8]. More, T. "A Theory o~ Arrays with Applications
to Databases" Tech. ~lepor~ G320-2106, IBM
Scientific Centre, Camb~dse, Mass., 1975.

[9]. Schek, HJ. and Pistt, r, P. "Data Structures for
an Integrated Data Base Management and Infor-
mation Retrieval System", Proceedings of the
Eighth International Conference on Very Large Data
Bases. Mexico City, (September 1982), pp.197-207.

[10]. Shipman, D.W. "The Functional Data Model
and the Data Langauge DAPLEX" ACM Transoc.
tions on Database System2, Volume 6, pp.140-173,
1981.

[11]. Zaniolo, C. "The Database Language GEM"
ACM $1GMOD Conference Proceedings, pp.207-218,
1983.

32

