
Versioning a Full-text Information Retrieval System

Peter G. Anick and Rex A. Flynn

Digital Equipment Corporation

111 Locke Drive, LM02-1JD12

Marlboro, MA. 01752

ABSTRACT

In this paper, we present an approach to the incorporation of ob-

ject versioning into a distributed full-text information retrieval

system. We propose an implementation based on “partially ver-

sioned’ index sets, arguing that its space overhead and query-

time performance make it suitable for full-text IR, with its heavy

dependence on inverted indexing. We develop algorhhrns for
computing both historical queries and time range queries and
show how these algorithms can be applied to a number of prob-
lems in distributed information management, such as data repli-
cation, caching, transactional consistency, and hybrid media re-
positories.

1 Introduction

Versioning has been an object of study in the fields of database

and code management for many years, e.g., [DITI’RICH88,

STONEBRAKER87, KENT89, SNODGRASS90]. Perhaps be-

cause most research in Information Retrieval has been done on

static data, this topic has received relatively little attention to

date in the IR communi~. However, with the increasing interest

in dynamic information environments, such as help-desk sys-

tems, in which textually represented knowledge is constantly be-

ing updated and augmented, the need for maintaining versioned

data within IR systems may soon be growing considerably. fn

thm paper, we show how the constraints of the full-text informa-

tion retrieval task suggest a different solution from those em-

ployed so far for traditional structured database environments.
We present an approach in which inverted indexes are aug-
mented by delta change records such that “contemporary” que-
ries suffer minimat performance degradation relative to an un-
versioned database and the performance of historical queries

varies in proportion to the distance traveled back in time. More-

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Aaaociation for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
15th Ann Int’1 SIGIR ‘92/Denmark-6/92
@1992 ACM O-89791 -52~0/92/0006/0098 ...$l .50

over, we show that the space impact of versiorting indexes can
be significantly reduced by using “partially versioned” index
sets. We also explore how versioning can be exploited on behalf
of a number of tasks required in a distributed, object-oriented
IR system like AI-STARS [ANICK91]. Such tasks include the
maintenance of transactional integrhy, metadata evolution, data
replication, cache management, and retrieval over hybrid media
repositories.

This paper is organized as follows. We begin by motivating our

interest in incorporating versioning into a dynamic help-desk en-

vironment and lay out our solution to the challenge of support-

ing temporal information within the space/time constraints typi-

cally imposed by full-text information retrieval applications.

Next we explore how such versioning can be generalized to a

distributed IR system like AI-STARS, which provides a layer of

abstraction for querying and data replication above the level of

physical repositories. We illustrate a number of applications

that can be supported using our representation of temporal in-

formation - metadata evolution, data replication, transactional

consistency, caching, and distributing temporal information

across hybrid storage media. Fintdly, we compare our implem-

entation with other approaches and discuss aspects of the

problem which we have yet to explore.

2 Motivation and goals for versionh?g

In the corporate help-desk environment, problem-solving knowl-

edge accumulates daily as new problems are solved and old

remedies prove inadequate or obsolete. As a consequence, the
on-line information base is constantly in flux; not only ae new
articles entered, but existing articles may be edited, annotated,or
deleted. It can be useful in certain circumstances to know what
information a customer may have received at some earlier date.
Historical accessto versioned data is one way to satisfy this re-
quirement.

Also subject to change is the system’s metadata. In applications

like AI-STARS, which support the dynamic declaration of

classes of information objects, class definitions may evolve over

time in response to new administrative or retrieval needs. The

need to support the graceful evolution of this metadata, allowing

instances of old classes to coexist (at least temporarily) with im

stances of the new classes, particularly in a distributed environ-

ment where changes propagate through the network at finite ve-

locities, suggests a solution in which metadata is versioned as

well.1

Such considerations, in addition to a number of other potential

applications of temporal information in distributed information

bases (see section 3), led us to investigate the incorporation of

versioned objects into an information retrieval system. Our pri-

mary functional goals in extending our system with versioning

were threefold:

● the ability to access historical versions of a given object,

● the ability to perform historical queries based on a “snapshot”

of the database at some given point in time, and

. the ability to perform historical queries ranging over a speci-

fied time span.

There ae other kinds of goals for versioning systems, as well as

other kinds of goals for historical queries, which we are not try-

ing to address:

. CAD/CAM and CASE tools have a very different notion of

versioning [KATZ84, DI’ITRICH88]. These have to do,

usually, with allowing multiple competing simultaneous

views of the same dat~ and these views are usually explic-

itly generated by the users of the system. Tracking histori-

cal data, on the other hand, allows for “implicitly generated

views,” by specifying a particular time, but onfy one such

view at any time.

. Other historical databases [STONEBRAKER87, ROWE87]

promote the ability to query along the time dimension to

equal status with the rest of the system capabilities. Al-

though we want the capability for historical queries, our

primary goal is to add this without impacting the perform-

ance of the typical “contemporary” query (which will con-

tinue to constitute the bulk of query activity in, for exam-

ple, help-desk applications.)

Our performance goals are therefore as follows:

● There should be no (or minimal) additional cost for doing

“contempormy” queries.

. The cost for doing historical queries (either “snapshot” or

“time range”) may be proportional to how far back in time

the query goes.

● The space cost required should be proportional to the

amount the data changes. If an object is added to the sys-

tem, but is never modified, the space overhead for version-

ing should be minimal.

The last point is perhaps an important differentiator between a

versioned information retrieval system and other kinds of ver-

sioned systems. Any individual article or metadata object, while

subject to the possibility of extensive modification, is neverthe-

less in practice not likely to change very frequently or to a very

great extent. Indeed, some of the collections in the AI-STARS

application are essentially static, or disallow modifications to

their members. We chose, therefore, to optimize performance

for the most common cases - contemporary queries and “rela-

tively” stable information objects.

We believe we have attained these goals in this design. An in-

crease in code complexity as a result of versioning is inevitable.

But we do not believe this translates to a significant increase in

computational overhead.

In versioning a full-text information retrieval system, in addition

to versioning the information objects, the index must be ver-

sioned as well. Since the notion of versioning objects is not

new, most of our work has centered on designing an efficient

versioned index scheme. For the purposes of this discussion, we

will assume that the index contains only object set membership

information, not concordance data. (However, we believe that

versioned concordance data can also be handled within the pro-

posed framework.)

2.1 Versioning the objects

Our algorithm for versioning the objects is essentially borrowed

from [STONEBRAKER87]. Each version contains a timestamp

identifying the time that the version was created. This times-

tamp serves (for us) as the version number. Only one version is

stored in its entirety; the other versions store only the changes

(i.e., difference or “delta” records) necessary to enable recon-

structing the various time-based views of an object.

One minor difference with Stonebraker’s model is that we pro-

pose allowing these “delta changes” (i.e., the versions which are

only partiafly represented) as being able to proceed back in time

(as well as forward in time) from the completely represented

version. Since the latest view of the data is the one accessed

most of the time, it normally makes sense to store the latest ver-

sion completely and store delta changes backwards (but see sec-

tion 3.7 below). This involves slightly more work at update time

(existing blocks must be overwritten), but less work at retrieval

time.

The other difference with Stonebraker’s model is that we intend

(under normal circumstances) to physically append the delta

changes to the complete object representation. We rely on an

underlying disk allocation scheme (segment-based), and disk 1/0

capabilities which will bring in a varying number of blocks in a

single 1/0. Appending the delta changes to the object therefore

increases the transfer time from disk, but otherwise incurs no

other overhead, so long as the delta changes are not accessed in

memory.

Thus, the computational cost required to reconstrttct an historical

view of an object is proportional to how far back in time one

wants to go (how many delta change records are applied to the

latest view). Our informal experience with this approach so far

is that the cost of “rolling back” an object to its historical view is

not significant. This method also satisfies the space overhead

goal; the additional overhead from versioning, when an individ-

ual object only has a single version, is a timestamp stored with

1 ,AHLSEN841 offers ~ ~~dar rationale for versiming metadatain a distributed object-oriented database

r.
.,

it. This timestamp is arguably useful anyway (as it encodes the

creation date). With a good difference algorithm, as long as the

changes to objects are small, the size of delta change re-

cords ought to be small.

The algorithm for constructing an historical view of an ob-

ject is as follows:

. Start with the most current view of the object.

. For each delta change record following the object, which

has a timestamp greater than the tirnestamp for the re-

quested view (in descending time order), apply the differ-

ences in the delta change record against the “current view”

of the object, changing the object to the way it looked be-

fore that time.

This algorithm is a form of “rollback.” Historical databases are

sometimes called “rollback databases” [SNODGRASS90], be-

cause, effectively, every single database transaction that ever oc-

curs may be rolled back.

2.2 Versioning the indexes

Unlike most conventional database systems, full-text informa-

tion retrieval systems usually construct fully inverted indexes of

the contents of textual fields to assure adequate retrievaf per-

formance. By assigning object ids in an ascending sequence of

integers, sets of objects can be efficiently represented and ma-

nipulated in memory as bitmaps and also effectively compressed

on disk using a variety of data compression techniques (e.g.,

[BOOKSTEIN90, SALTON89]). It was our goal to preserve

these vafuable properties, while augmenting indexes with ver-

sioning information to support historical queries.

One alternative is to include with each object id in an index its

time span(s) of applicability. However, this “natura~’ represen-

tation is not amenable to bitmap operations, nor is it very space

efficient, considering the number of object ids likely to occur in

each index set. A second alternative, more in line with our ap-

proach to versioning the objects, is to store each index entry as a

bitmap set, indicating the objects that satisfy the index at the

current time, augmented by a set of delta change records that

trace the incremental changes to the index backwards over time.

A delta change record for an index entry would look like the fol-

lowing:

[timestamp, object id, {+/-]],

where the timestamp is the time the change occurred to the index

entry, a “+” indicates that the object id was added to the index

entry at that time, and a “-” indicates that the object id was re-

moved from the index entry.

By the same argument put forth for the storing and retrieval of

versioned objects, the 1/0 overhead for storing index data this

way ought not to be significantly different, and the computa-

tional overhead in constructing an historical view of the index

entry in memory is proportional to how far back in time one

wants to go.

However, there are two problems with this representation. The

first is due to the fact that index entries change far more fre-

quently than individual objects do in an IR system. It is there-

fore the case that the amount of data involved in tracking histori-

cal views of the index entries can be huge. In fact, with this

naive implementation, there is at least one delta change record

for every object that is a member of the set in the index entry,

i.e., the “+” record indicating when the object first becomes a

member of the index set. This naive implementation is therefore

prohibitively costly in terms of space - at least one timestamp

would have to be stored for every object/index entry combina-

tion.

The second problem is that, although such an index representa-

tion works in a fairly obvious way for performing a que~ for a

specific time in the past (one constructs an historical view of

each index entry for each term in the query), the implementation

of a query over specific object versions in a time nznge is not so

obvious.

In the following sections, we will present a variation on this ap-

proach which alleviates the space problem, and show how it can

be used to perform historical queries. We will then show an al-

gorithm for performing time range queries which operates di-

rectly on this representation.

2.3 Partially versioned sets

To meet our performance goal of minimal space overhead for

the case where every object in the database has only a single
version, the representation of an index set under this boundary

condition should contain just the bitmap set of ids and no delta

change records.

This can be accomplished if an index entry is updated according

to the following rules:

. If it is the “first version” of an object that is being indexed,

only update the bitmap, and do not add a (“+”) delta change

record.

● Otherwise, if it is a later version, update the bitmap, and ap-

pend a delta change record indicating how the index entry

changed as a result of the object modification.

Such a representation scheme satisfies our space requirements

well. While the initial addition of an object to a database is

likely to affect perhaps thousands of index entries, any subse-

quent object modification is likely to affect but a few. There-

fore, although delta change records in the index are not nearly as

efficiently represented (given that they have timestamps stored

with them), the number of them ought to be small relative to the

size of the index.

We will call a set constructed according to the above rules a

“partially versioned” set, as it lacks certain categories of

temporal information. If such a set is “rolled back” to an

historical view (by applying the delta change records in re-

verse), the fact that the delta change records for the jirst

versions of objects are missing means that the sets will be

left with objects as members even at times prior to when

the objects had come into existence. Fortunately, the infor-

mation about the times at which objects come into exis-

tence is common across all the index entries, and can there-

fore be stored in a single, separate list. This list can be

100

represented as timestamp/object id pairs, can be sorted in

descending timestatnp order, and can be traversed at the

same time the delta changes for an index entry are trav-

ersed, to eliminate from consideration any objects errone-

ously left as members of the set.

2.4 Versioned database sets

As noted above, the use of partially versioned index sets requires

maintaining a single shared list of information about the objects

in a database. Such a list is independently useful. Dynamic

non-versioned IR systems often maintain a global set of “cur-

rent” database members to distinguish between object ids of cur-

rent objects and those of objects that have been deleted. Global

sets can also be used to subdivide a physical database into logi-

cal subsets within a single id space (see section 3.1.2).

We will use the term “versioned database set” (or simply “data-

base set”) to refer to the analogue of this global set as employed

in our versioned database mechanism. A versioned database

set contains a list of specific object versions that are members of

a database. Like index sets, we represent such a database set as

a contemporary bitmap plus a sequence of delta change records.

The critical difference between the two representations is that

the database set contains “complete” information about version-

ing and can therefore be used on its own, whereas the index en-

try sets do not contain complete information and must be inter-

preted in conjunction with their corresponding databme set, as

described above.

The delta records in a database set (which we will refer to as a

“fully versioned’ set) are of the following form:

[titnestamp, object id, op]

where the timestarnp indicates the time at which the change oc-

curred to the set, the object id indicates the object affected, and

op is an operation on the set. There are three operations:

. “+”, which indicates that the object was sdded to the set at

that time.

● “-”, which indicates that the object left the set at that time.

. “=”, which indicates that the object was a member of the set

before the time, and is still a member of the set after the

time, but a new version of the object occurred at the time.

It is not immediately obvious why the “=” record is re-

quired; we will explain its value later when we consider

the algorithm for performing a time range query.

2.5 Algorithms for versioned set update
and access

In this section, we show how the versioned set representations

described above for the database sets and index sets can be (1)

updated and (2) accessed with respect to a given point in time.

2.5.1 Updating the database set

Once the decision to update a database has been made, the algo-

rithm for updating the database set is as follows. There is one

case corresponding to each of the delta change record operation

types. Note that for databases for which object membership is

based on satisfying some content-based filter, any one object

may go “in” and “out” of the database multiple times, as succes-

sive versions of the object satisfy or fail to satisfy the filter that

defines the database.

. If an object version is to become a member of the database

and the object is not currently a member, add its id to the

set of object id’s for the database, and add a delta change

record to the front of the set of delta change records, using

the timestamp for the object version, and the “+” operation

indicator.

● If an object version is to become a member and the prior

object version is currently a member, make no change to

the set of object id’s, and add an “=” delta change record.

. If an object leaves the database, remove the object from the

set of object id’s, and add a “-” delta change record indicat-

ing the time the object leaves.

2.5.2 Accessing the database set
historically

A view of the database set as of any particular time may be re-

constructed as follows:

. Make a “working copy” of the set of object id’s represent-

ing the latest view of the database set.

. (Working through the delta change records in decreasing

temporal order) for each delta change record whose times-

tamp is greater than the desired time of access, update the

working copy as follows:

if it is a “+” record, remove the object id from the

working copy.

if it is a “-” record, add the object id to the work-

ing copy.

if it is an “=” record, ignore it.

2.5.3 Updating an index entry set

U@ating index entries can be performed by m indexer

process reacting to changes in the object versions. The in-

dexer process must deal with a number of different situ-

ations:

. If an object is becoming a new member of the database, all

index entries which the object’s content satisfies must be

updated to include the object as a member.

. If an object is already a member of the database, the in-

dexer need only change those index entries that are affected

by the change. (Recall that “=” records never need to be

stored in the partially versioned index entries.) The indexer

thus needs to calculate what is the “same” and what has

changed. This can be done either by examining the delta

change records in the object, or by running an indexing

pass over the old version of the object, in memory, and over

101

the new version of the object, in memory, and only updat-

ing indexes based on the differences.

. If an object is leaving membership in the database, then all

index entries that refer to the object as of its most recent

prior version must be updated. These can be identified by

running an indexing pass over the most recent prior version

of the object, in memory.

With respect to the updating of any one individual index entry,

there are three possible circumstances:

.

●

✎

If the object is being added to the index entry and to the da-

tabase at the same time, add the object to the set of object

id’s for the index entry (but do not create a delta change re-

cord).

If the object is being removed from the index entry

(whether or not it is also being removed from the database

at the same time), remove the object from the set cf object

id’s for the index entry, and add a “-” delta change record

for the change.

If the object is being added to the index entry but was al-

ready a member of the database set, add the object to the set

of object id’s, and add a “+” delta change record for the

change.

As mentioned earlier, two kinds of delta change records are de-

liberately omitted from the index entry sets, as compared with

the database sets. No “=” records are stored; and no “+” records

are stored when an object is being added to the database simulta-

neously to being added to the index entry. Eliminating the need

to store such records for all index entries results in considerable

space savings.

2.5.4 Accessing an index set

Given a time at which the view of the index set needs to be re-

constructed:

● Construct the view of the database set as of that time (in the

reamer described above).

. Make a copy of the latest set of object id’s in the index en-

try.

● For each delta change record in the index which has a

timestamp greater than the desired time of access:

If the delta change record indicates a “+”, remove the

object from the copied set of object id’s.

If the delta change record indicates a “-”, add the ob-

ject to the copied set of object id’s.

● Restrict the resulting set against the database set con-

structed in the first step. Since no object will be a member

of the database set before it was created, this serves to re-

move erroneously remaining objects from the result set.

2.5.5 Performing an historical query

Given a particular access time at which a query is to be exe-

cuted, historical index entry sek can be reconstructed for that

time (by rolling back the delta changes, as described above) for

each term in the query. Then the standard bitmap Boolean op-

erations can be performed on these reconstructed sets. Note that

the historical database set need only be reconstructed once, and

can be re-used for filtering each index entry.

2.5.6 Performing time range queries

In the scheme above for performing historical queries, it is not

necessary to figure out during the query processing exactly

which object version it is that satisfies the query. In a “snap-

shot” or “rollback’ database, it is sufficient to know that the

query can be accurately calculated for the particular time. The

retrieval of the appropriate object versions, needed, for example,

in displaying a title list, can be carried out subsequently by re-

constructing the objects as of the same historical access time.

Thus, the query processor need only return an object id, not an

object version.

With a query spanning a time range, however, information must

be known about individual object versions, because multiple ob-

ject versions may exist (and may satisfy the query) within the

range. The output of such a query must therefore be, in some

sense, a set of object versions, not just a set of objectsl. As it

turns out, the versioned database set representation is a (com-

plete) representation for a set of object versions. One could, for

example, transform the delta change representation into an

object-centered representation, in which each object version is

paired with the set of time spans for which it is a member of the

database.2 However, we can use the database set and index set

representations in approximately their current form to calculate a

range-based query. Intuitively, one can think of the algorithm

we will propose as a way of re-calculating the query (but effi-

ciently) at every point in time that some event occurred in the

database, within the time range specified.

The result set which this range query algorithm will create

has two components: (1) a bitmap set of object id’s, which

indicates the set of object versions which satisfy the query

at the end of the time range, and (2) a set of delta change

records, which indicate how this set of object versions

changes as one goes back through time to the start of the

time range. We have already solved the problem of creat-

ing the bitmap set, for this task is identical to that of execut-

ing an historical query on the input at the end of the time range.

The algorithm we are about to describe therefore focuses on how

to compute the second component of the result set, the set of

delta change records. In a manner analogous to how a historical

query is performed, the task of generating the set of delta change

records breaks down into two subtasks. The first subtask is re-

constructing the full set of changes that occurred to each index

1 In our defurition of a time range query, a specific object version satisfies the query either completely or not at alt. There are other more complicated

kinds of hme-based queries which we are not addressing in this design. (For example, one might make a query where one object version might satisfy
one clause in the quety, and a different object version might safisfy another clause m the query.)

2 Tfus transformation algorithm Is, however, beyond the scope of this paper.

Ipv

entry set in the input between the end and the start of the time

range, and the second subtask is performing the equivalent of a

Boolean query using the reconstructed index entry changes as

the leaves of the query tree. It may not be obvious that Boolean

operations can be performed directly on a pair of changes sets to

generate another changes set. The next section explains how our

representation makes this possible. In the section following, we

show how the first subtask, that of filling out the set of delta

changes in each index entry, is accomplished.

2.5.6.1 Query processing over delta
change sets

In processing a query using delta change information, we will

assume that the input is in the form of a binary Boolean query

tree with asetofdelta change records at each leaf. Thegoafof

the algorithm is to construct another set ofdelta change records

at the root, this set encoding the set of object versions that sat-

isfy the query at some point within the time range specified.

This task reduces via recursion to the subtasks of performing

(time-extended) Boolean AND and OR operations on a pair of

sets ofdelta change records, and inverting asetof delta changes

for a Boolerut NOT operation.

It is at this point that the need for the “=” delta records in fully

versioned sets is manifested, for it is the case that the set of delta

change records for a leaf node (even with the “+” records which

were deliberately dropped from the index sets reinserted) is in-

sufficient for performing the binary Boolerm operations. As an

example, assume that no changes have occurred to one index en-

try in the time range, but in another index entry, a particular ob-

ject left membership of the index entry set within the time range,

and that the Boolean operation being performed on the two sets

is an OR:

index entry 1 (delta changes in time range only): (none)

index entry 2 (delta changes in time range only): [tirnestanp t,

object id x, -]

It is impossible to determine whether the result of the Boolean

operation should include this object beyond the time of its

change or not, without examining membership in the first index

entry. If the object was a member of the first index entry

throughout the range, the “event” of the object leaving member-

ship of the second would be immaterial to the result. On the

other hand, if it was not a member of the first index enhy in this

time range, the object would leave the result set at the same time

that it left index entry 2.

It is in order to deaf with this ambiguity that “=” delta change re-

cords have been introduced. We must guarantee that if the ob-

ject had been a member of index entry 1, there would have been

a corresponding record in the delta changes for index entry 1, as

follows:

index entry 1 (delta changes in time range only): [tirnestamp t,

object id x, =]

In other words, the object’s version has changed, but it remained

a member of the database. On the other hand, if there is no cor-

responding record in the delta changes for the timestamp t/object

id x combination, that indicates that the object was not a mem-

ber of the index entry at that time.

Since we order the delta changes in the same way (by times.

tamp, by object id) for every set, bimmy Boolean operations may

proceed stepwise through any two sets of delta changes, as fol-

lows:

.

●

Start with the first delta change record in each set.

Attempt to perform a comparison between two delta change

records at a time, as follows:

If two delta change records are being compaed and

they do not correspond (i.e., neither tirnestamp nor ob-

ject id matches),

* pick the later/higher object id of the two

* assume, from the absence of a complementary

delta change record in the other set, that the ob-

ject was not a member of that set before the

change, and is still not a member of the set after

the change. We represent this case in our dia-

grams as a “<>” record, even though such a re-

cord does not physically exist in the set represen-

tation.

* perform the appropriate Boolean comparison

against the virtual “<>” record (see figure 1 be-

low).

* move to the next location in the set with the

later/higher id delta change record, and perform

the next comparison.

If the two delta change records do correspond,

* perform the appropriate Boolean comparison

against both records,

* move to the next location in both sets, and per-

form the next comparison.

If one of the lists is exhausted

* assume a “<>” delta change record for the corre-

sponding timestamp/object id combination, as be-

fore.

* perform the appropriate Boolean comparison

against the imaginary “<>” record, as before.

* move to the next location in the set with more

values, and perform the next comparison.

For each of the binary operations, there are sixteen possible

combinations of circumstances in the comparison, and four pos-

sible outcomes, if we consider one of the outcomes (the “<>”

case) as being the decision not to generate a corresponding delta

change record for the result set. It is easiest to consider the

Boolean operations as tables (shown in figure 1 below). The

computation can be conceived as separately performing the

Boolean operation on membership both before and after the

“change.” Every delta change operation corresponds to exactly

one combination of before/after membership, shown in paren-

theses to make the computation clearer.

103

It is not possible to interpret a unwy NOT outside of a context.

It makes no sense, for example, when an object has been added

to an index entry, and the object has been added to a database at

the same time, to convert the “+” record into a “-” record under a

NOT operation. The inverse in this case is that the object did

not become a member of the index entry, i.e., “<>”. We there-

fore re-cast every unary NOT as a binary AND NOT operation

against the set of database delta change records for the same

time range (i.e., database set AND NOT negated set). We there-

fore show the table for the Boolean AND NOT operation as

well. Notice that a number of the circumstances in this table can

never actually show up (these have been marked by *‘s), l_x-

cause the index set delta change records must have been created

in the context of the database set.

2.5.6.2 Computing fully versioned delta
change sets for index entries

Recall that, while the previous algorithm requires fully ver-

sioned sets, the index sets initially at the leaf nodes of the query

tree are only partially versioned sets. Fully versioned sets can

be generated for each index entry by using a combination of the

delta changes for the database set in the time range, the delta

changes for the index entry set in the time range, and a copy of

the set of object members in the index entry at the end of the

time range. (The latter set must be constructed anyway, for the

historical query at the end of the time range.)

Every delta change record in the index entry set within the time

range of the query has a corresponding delta change record in

the database set, since initial membership and every version

change is recorded in the versioned database set. The converse

is, however, not true. So the task of this algorithm is to “fill in”

some of the occasions where a corresponding index delta change

record is missing.

The possible combinations of circumstances are enumerated in

figure 2. We will continue to use the virtual “<>” operator for

clarity, although such records need not be physically included in

the set.

There are two situations where “<>” delta change information

causes ambiguity. The first is when an object becomes a mem-

ber of the database. It may or may not become a member of the

index set at the same time. The second is when the object ver-

sion changes, but there is no corresponding effect on the index

entry (it does not leave or enter membership of the index entry

set). In this case, it may “remain” either a member, or not a

member of the index entry. Finally, there is one situation where

the “actually missing” information causes no ambiguity the ob-

ject leaves membership of the database. If it does not leave

membership of the index set at the same time, then it must not

have been a member of the index set (and it still is not, since the

index entry is defined on the database).

AND + (01) - (lo) = (11) <>(00)

+ (01) + (01) <>(00) + (01) <>(00)
- (lo) <>(00) - (lo) - (lo) <>(00)
= (11) + (01) - (lo) = (11) <>(00)
<>(00) <>(00) <>(00) <>(00) <>(00)’

OR + (01) - (lo) =(11) <>(00)
+ (01) + (01) = (11) = (11) + (01)

, t
- (lo) 1= (11) 1- (lo) 1= (11) p (lo)
= (11) = (11) = (11) = (11) = (11)
<>(00) + (01) - (lo) = (11) <>(00)’

,,

AND NOT + (01) - (lo) =(11) <>(00)
r

1+ (01) <>(00) + (01)’ <>(00)’ + (01)
,- (lo) - (lo)* <>(00) <>(00)’ - (lo)
~=(11) - (lo) + (01) <>(00) = (11)
1<>(00) <>(00)’ <>(00)’ <>(00)’ <>(00)’

Each delta change record type is fol-

lowed by parentheses indicating mem-

bership in the set respectively before

and after the delta change record was

encountered. For example, “+” is fol-

lowed by (01), meaning that the corre-

spon~lng object was not a member of
the set before this delta change record,

but is afterwmds. The “<>” is a place-

holder indicating that no matching re-

cord exists, and the object was not a

member of the set before or after this

time.

The AND NOT table is used to process

UIWY NOT operations against the set of
delta changes in the database. It reads

as if the database set were represented

in the row heads, and the negated set is

represented in the column heads, Imp-

ossible combinations are mmked with
~ !!*!!.

Figure 1. Boolean operations on “matching” delta change records.

104

Database set change Index entry set Entry Explanation

type change type missing?

+ <> yes Theobjectbecarne amemberof thedatabme at this time, but

not a member of the index set

+ + yes The object became a member of the database at this time, and a-

member of the index set

= <> yes The object was already a member of the database, but a new

version of it still is not a member of the index set

= + no The object was already a member of the database, and a new

version of it caused it to be added to the index set.

= = yes The object was already a member of the database, but a new

version of it is still a member of the index set.

= — no The object was already a member of the database, and a new

version of it caused it to be removed from the index set.

— <> yes The object left the database, but was not a member of the index

set.

. — no The object left the database, and left the index set.

~igure 2. Completing the index entry delta changes.

rhis table shows the possible combinations of circumstances that can occur between any two “matching” delta chang

ecords, one in the index entry and one in the database set. The “<>” change record type again is used as a placeholdc

rhe second column describes what the index entry would contain, if the delta changes had been completed. The thir

:olumn indicates whether this delta change record would actually be missing in a partially versioned set of dell

:hanges.

Both ambiguous situations can be resolved by looking at if the index delta change record is a “-” record,

the set of members of the index entry calculated for the

time of the database set delta change record. However,

rather than recomputing this set each time the ambiguity is

encountered, the set of members in the index entry can be

calculated efficiently at the same time the delta change re-

cords are traversed. Here, then, is the algorithm, starting

with the set of delta change records for the database set in

the time range, the set of delta change records for the index

entry set in the time range, and the set of members of the

index entry at the end of the time range. The assumption is

that both delta change sets are in descending times-

tamp/object id orde~

For each successive delta change record in the database set,

look at the next delta change record in the index set.

● If they correspond (have the same timestamp/object

id), update the set of index entry members as follows:

add the object id to the set.

if the index delta change record is a “+” record,

remove the object id from the set.

● If they do not correspond (one is missing from the in-

dex entry delta changes set):

if the database set delta change record is a “-” re-

cord, do nothing (conceptually, add in a “<>” re-

cord).

if the database set delta change record is an “=”

record,

* if the object is a member of the index entry

set, insert a corresponding “=” record into

the index list.

* if the object is not a member of the index en-

try set, do nothing.

if the database set delta change record is a “+” re-

cord,

* if the object is a member of the index entry

set, insert a corresponding “+” record into

the index list.

* if the object is not a member of the index en-

try set, insert a corresponding “=” record

into the index list.

At the same time, remove the object id from the

member set.

Once this is done, the updated delta change record list for

the index entry is “fully versioned”.

2.5.6.3 Review of the range query
algorithm
This section summarizes the steps involved in the range

query algorithm. It assumes a previously constructed query

tree of Boolean nodes, a time range of validhy, a database

for the context of the query, and index entries for the data-

base at each leaf of the query tree.

1.

2.

3,

4.

5

6,

Perform an historical query using the tree of

Boolean nodes, as of the end of the time range for

the query. Save the output as the bitmap portion of

the result set. Also save copies of each index bit-

map set that was rolled back in the computation of

the historical query.

Extract the subset of delta change records that oc-

cur in the database set between the end and start

times of the query time range.

Extract the subsets of delta change records that oc-

cur in each index entry set between the end and

start time of the query time range.

Turn each index entry’s subset of delta change re-

cords into a fully versioned set by stepping through

the previously extracted change records from the

database set, and updating the copy of the index

entry set saved in the first step (as described in sec-

tion 2.5.6.2).

Compute a new fully versioned set of delta change

records for each successively higher node in the

query tree, starting at the leaves (as described in

section 2.5.6.1).

Append the delta changes to the bitmap result set

computed in the first step.

3 Applications of temporal
versioning in distributed Information

Retrieval

In this section, we introduce the architecture for distributed

information retrieval that we are implementing in AI-

STARS, and show how the incorporation of temporal ver-

sioning may be applied to a number of problem areas.

3.1 Al-STARS

The ALSTARS project is an on-going research program at

Digital Equipment Cor~ration, investigating methods for

improving enterprise-wide fill-text information retrieval

for Digital’s Customer Support organization. The practical

demand for very rapid access to data combined with limita-

tions in network speed and reliability dictate that highly

used data be replicated locally. Thus, our target environ-

ment must mix distributed access to data with partial data

replication. To respond to these information needs, the AI-

STARS architecture incorporates (1) a self-describing

meta-model, in which user-defined classes of information

are themselves represented as information objects to better

accommodate heterogeneous databases. schema evolution

and data dis~ibution, and (2) a level of database abstraction

for querying and replicating data above the level of physi-

cal repositories.

3.1.1 The Al-STARS data model

Specialists utilize a wide variety of types of information in

their problem solving, from bulletin board notices and

symptom-solution articles chronicling previous experience

to crash dump summaries and software problem reports.

Rather than force all articles in the database into a single

format (thereby losing the ability to query on specialized

fields), AI-STARS supports a heterogeneous database in

which new classes of information objects can be defined on

the fly. As in SMALLTALK [GOLDBERG83], the data

model is self-describing; fields and classes are themselves

full-fledged data objects. In this way, database admink.tra-

tors can query and browse the metadata just like any other

data. Furthermore, in a distributed system in which data is

replicated on multiple sites, the distribution of meta.

information can be carried out in exactly the same manner

as for any other information object.

3.1=2Collections

One of the problems that inevitably arise once an informa-
tion retrieval system begins to make a large volume of dis-

tributed information available is that, without a useful parti-

tioning of the information space, the user may be at a loss

as to which databases to open to satisfy an information
-..

need. In the WAIS [KAHLE91] and Project Mercury

(CMU) distributed retrieval systems, users can choose from

a menu of available sources, where these sources corre-

spond to physical repositories of data, each typically repre-

sentative of some area of interest. In many corporate envi-

ronments, however, organizing the retrieval space afong the

lines of physical repositories is inappropriate, since the way

106

that data is partitioned for the pttrposcs of administration may be

quite different from the way that data should bc organized for re-

trieval. Moreover, even if the physical databases do conform to

some useful conceptual classification, it is rare that any one clas-

sification scheme can account for afl the ways that users would

like to carve up the information space. In order to overcome this

limitation, the ,4-STARS architecture incorporates the construct

of a “collection” as a virtual aggregation of information objects

defined by either (1) explicit inclusion or (2) the (recursive) ap-

plication of a query filter to the union of other collections.

We will use the term “repository collection” to refer to a physi-

cal database, comprising all the objects created and maintained

at a specific site. Taken together, all the repository collections

in a dktributed application form a partition of the set of objects

available to that application. We will use the term “computed

collection” to refer to a set of objects assembled by the applica-

tion of a query to a domain composed of one or more collec-

tions. There can be any number of computed collections and the

same object may be a member of more than one of them.

Computed collections must do more than just calculate their

contents. They must also present “virtual” index entries, so that

a query can be performed over them as if they were “real data-

bases. ” This can be accomplished in a straightforward manner

once the “collection set” has been computed. One can recur-

sively look up the index entries in the collections from which

the computed collection is derived, union these together, and use

the collection set to eliminate any objects from the result which

are not also members of the computed collection.

It is also pssible to physically store computed collections, repli-

cating the virtual database, so as to avoid the need to “go back to

the source” of the data at query time. Such replication would

normally be done when the data is distant, and the cost of com-

puting the collection at query time would be prohibitive. ‘I’he

obvious way of doing this is storing what is computed. This in-

cludes

● the objects

. the index entries

. the “set of objects” that are part of the collection.

As this data is identical to what needs to be stored for a reposi-

tory collection, retrieval and update on a replicated collection

need be no different from retrieval and update on a repository

collection.

3.2 Mets-data evolution

As noted above, in the AI-STARS data model, classes and fields

are themselves objects. As such, a database administrator can

augment the schema for an application interactively, without the

need for recompiling and/or relinking software. Typically, such

metadata is maintained in one or more metadata collections; the

new field and class objects are simply distributed as data wher-

ever these collections are replicated across the WAN. As [AHL-

SEN84] points out, versioning of metadata is useful in dktrib-

uted object oriented databases to allow for the graceful evolution

of the schema, since it permits instances of an old class version

to be updated to the new class definition over time rather than all

at once. In fact, instances of the old version need never be up-

dated, as both the new and old class definitions remain available

to interpret instances.

In AI-STARS, instances are linked to their class definitions via

an instance_of field, whose value contains both the object id of

its class and the timestamp of the class version. This ensures

that when the object is accessed, it can be interpreted (e.g., dk-

played) with respect to the proper class version. It also allows

the query engine to retrieve afl instances of a class, regardless of

the version of the class, or, alternatively, only those objects that

are instances of a specific class version. By using the set differ-

ence operation, a database administrator can identify the set of

instances of the class that have not yet been updated to the new

class version, a useful way to check on the status of an evolving

database, in which updating instances may take time and effott

3.3 Computed collections

A computed collection abstraction can be built on top of the pre-

viously described historical amd time range algorithms:

●

●

✘

The set of object members in the collection cart be cak:u-

lated, either for a particular time, or over a time range, by

executing the query that defies the collection appropri-

ately.

Any index entry for a collection may be calculated by un-

ioning the corresponding index entries for the domain col-

lections together, and restricting the result against the set of

objects in the computed collection. As with the set of ob-

ject members in the collection, the index entry maybe cal-

culated at a particular time (by doing recursive historical

lookups), or it may be calculated for a time range, by doing

recursive time range lookups, and using the extended time

range Boolean operations to perform the appropriate unions

and restrictions.

Finally, a view of any object version in the collection can

be presented by looking through the domain collections for

one collection that has the object version as its member,

and retrieving the object version recursively from that col-

lection.

3.4 Replicated collections

In AI-STARS, we must replicate collections to provide the kind

of response time and reliability that help-desk clients expect.

Replication, however, comes at a cost in addition to the storage

cost involved in replicating data, the replicated data may be out

of date. 1 Our replication scheme is based on a schedule, i.e., pe-

riodically a background process is initiated which will check

1To see why this is so for our architecture, one must consider what the alternative would be; whenever an object is added or modified in a

repository, it would have to be tested for membership against the queries in all of the replicated collections that might include it, to see if

the corresponding replications should be updated.

107

against the sources for a particular collection and copy any rele-

vant changes over. It turns out that updating data on approxi-

mately a nightly basis is acceptable to most AI-STARS users,

although the replication scheme as we specify it has greater

flexibility.

There are two ways that collection replication cart proceed. A

paticular repository where a collection is replicated (we call this

replicated collection an “incarnation” of that collection) may go

to another collection incarnation that is more up-to-date, and

find the changes that have occurred; this is no more than the set

of delta changes that have been stored in the collection set for

the source incarnation, between “now” and the last time the

check occurred. Alternatively the collection incarnation may

compute the changes by going to sources for the domain collec-

tions over which its query is recursively defined. Our time

range query algorithm provides the solution to this; the query is

applied over the time between now and the last checked time.

Since we have subscribed to being able to perform distrib-

uted queries ‘in this system, both of the methods described

may operate without requiring additional data distribution

channels, if the schedule is kept with the repository associ-

ated with the replicated collection, and a process fired up

by that repository performs the network retrieval. In other

words, a “pull” model of data distribution fits nicely with

our distributed architecture.

One problem with replicating collections on a schedule is

that, depending on where the replication process goes to

perform its query, the degree that the data is out-of-date de-

pends not only on the periodicity with which the local proc-

ess is fired up, but also the periodicity with which the data

in its “source” is updated. As a consequence of this, we

have the database administrator specify, not how frequently

the data in a replicated collection incarnation is checked,

but how out-of-date the data in that incarnation is allowed to

get.1

Subscribing to a degree of “out-of-dateness” is far more

useful to an AI-STARS user than a frequency of checking.

For example, we are planning on allowing the user to spec-

ify as part of a query how “out-of-date” the query is al-

lowed to get. With this information, the system can go out

to the database and try to find the closest incarnation of a

collection which satisfies the user’s requirements.

3.5 Transactional consistency

One of the concerns of most database management systems

is to preserve a consistent view of the database for the time

span of a transaction. The purpose, in a system where mul-

tiple users may update the database simultaneously, is to

ensure that the user work with a view of the database that is

unaffected by the changes of other users. In a temporal da-

tabase like N-STARS, one can achieve transactional con-

sistency by choosing a time at which to start the transaction

and then viewing the database as of this time for the dura-

tion of the transaction. The natural place to start a transac-

tion is the start of a query. If this is done, the title list, the

objects that are displayed, any query reformulation and any

interobject traversal all use the same view of the data as the

initial query.

Transactional consistency is greatly complicated by having

to deal with different collection incarnations which are out-

of-date to differing degrees. Since collections may be re-

cursively defined on other collections, it is quite possible

(and invisible to the querier) that a particular computed col-

lection ends up being based on two different collection in-

carnations that overlap in their contents, but with different

temporal views (because of differing out-of-dateness) of the

overlapping data.

Versioning our collections provides us with opportunities for

solving this problem that would be unavailable otherwise. The

simplest solution is to find the latest time that is shared among

the source data at the start of the transaction. If the querier has

specified an “out-of -dateless” requirement for the query, as de-

scribed in the previous section, (and the system has found incar-

nations which satisfy the requirement,) the latest shared time

will satisfy the querier’s requirements. The transaction is then

defined as accessing the database at this time, and the data will

be viewed at this time for the duration of the query.2

3.6 Collection caching

One of the motivations for developing the concept of a com-

puted collection is that the results of computing a collection are

identicaf for multiple queriers, and may therefore be usefully

cached. These caches may reside on collection “compute serv-

ers” which compute the results of one or more collections, have

lots of memory and horsepower, and are available on the net-

work as a shared resource.

From a client perspective, accessing a compute server for a col-

lection is no different than accessing a replicated collection via a

setwer. In fact, collection replication is a form of disk caching,

and some of the same algorithms can be used to implement both.

The principal difference is that, in a cached collection, some of

the data is not kept locally (and the subset in the cache may

vary.) The cache equivalents to the collection replication algo-

rithm are as follows:

● Somehow it is determined that the cache is out of date,

1 Algorithms to enforce tfus are necessarily apprommate. However, the failure modes are a matter of degree, can be detected, and can be incorporated into

any decision-matdng,

2 We have also explored alternatives where we relax the consistency requirement, so that the querier can see the “latest view available” of parts of the data,

even if other parts are not valrd urrul the same tmre. Our versiorrirrg scheme can handle this, by allowing the transaction to spectiy multiple access trmes,

each valid for a subset of the data considered in the transaction.

3 as an alternative to our originat notion of a “stored que~” [ANICK9 1].

108

● A time range query is made against the domain collections

to find the changes that have occurred since the last time

the “database” was checked,

● The returned results (which will be a list of delta changes)

are used to invalidate object versions in the cache that have

changed.

In an historical database, the format of cache invalidation turns

out to be somewhat different from that in traditional databases.

An object version is never truly “invalid;” rather, it may become

an historical version. This apphes to the collection sets and the

index entry sets as well. The goal with the cache for an histori-

cal database is therefore to mark the information that has been

updated as historical, and let it disappear from the cache in the

same way that any other unreferenced data disappeam. In this

way, historical data is treated identically to any other data in the

cache (and may stay in the cache if it is accessed frequently).

As with collection replication, we plan on the client detecting

the “out-of -dateless.” This can be checked at the start of every

read transaction (see the previous section). Alternatively, if the

information in the cache is within the user’s “out-of -dateless”

requirements, we can avoid performing a check until the next

transaction is initiated where the requirements are not met.

3.7 Hybrid media collections

Within Digital, it is becoming commonplace to collect together

information on a CD-ROM periodically, make many copies of it,

and distribute it. We have been considering such a scenario as

an alternative for distributing data in N-STARS, and as a

mechanism for making AI-STARS data available to queriers

who are not completely connected to our internal electronic net-

work.

The periodicity of distributing CD-ROM’s is likely to be on

the order of once every one or two months. As a conse-

quence, for those collections which are dynamic, we have

been working with the notion of placing any updates to the

CD-ROM collections on a local disk. Access to the collec-

tion would be resolved by considering the CD-ROM and

the disk together. Since the volume of updates should be

small (and would be integrated back into the CD-ROM pe-

riodically), such a scheme might be viable for smaller com-

puter systems.

Our versioning methods provide a natural way of storing

and applying incremental changes; delta change records can

be stored on disk for objects and indices, and can be ap-

plied to the collection on the CD-ROM to “fix it up”, m it is

accessed. The major difference with what we have de-

scribed so far is that the delta changes are changes forward.

Since we are trying to save space on the disk, we would

store only the information necessary to bring a CD-ROM

index entry or object up-to-date (i.e., we would not dupli-

cate information already on the CD-ROM).

The representation and the algorithm for applying delta cha.qges

forward for an object need be no different, and the solution in

this case is identical to Stonebraker’s. Unfortunately, it turns

out that the partial delta change list representation is asymmetri-

cal, and cannot be used as it stands for recording forward delta

changes. This problem is resolved if we never omit storh,g a

“+” delta change record for an index entry. Doing so incurs a

higher overhead for the index entry, but only temporarily so, un-

til the next CD-ROM distribution comes along.l

4 Discussion

4.1 Related work

The principal inspiration for the research presented here has

been the work by Stonebraker et al. on POSTGRES [STONE-

B RAKER87], a relational database with object-oriented exten-

sions. Stonebraker and his colleagues have spent some time

looking at algorithms that are appropriate for versioning indexes

in a temporal database.

The simplest such algorithm appends [Tmin - Tmax] time

ramges to each entry in the index, to record the time validi~

of the entry. For us, this would mean that each object id in

an index entry would have a [Tmin - Tmax] range associ-

ated with it. Such a representation is functionally equiva-

lent to our fully versioned set representation, and all of the

Boolean operations could be performed on it, by urtioning

and intersecting the [Tmin - Tmax] time ranges.

A more sophisticated variation on this is the R-Tree algorithm

[GU’ITMAN84, KOLOVSON89, KOLOVSON90]. R-Trees

are an extension to B-Trees, which cluster data on disk acccJrd-

ing to multiple dimensions simultaneously. Time can be useci as

one of these dimensions. Whereas B-Trees perform node merge

and split operations with respect to data distributed over one di-

mension, R-Trees perform the corresponding merge and split op-

erations according to how data distributes over multiple dimen-

sions. The advantage of clustering data along multiple

dimensions is, for example, that in performing a time range

query, the system need neither consider (traverse) all of the

events that occurred in a particular time range, nor consider

(traverse) all of the time-based events that occurred to a particu-

lar range of objects. The [Tmin - Tmax] representation, by con-

trast, clusters along the object dimension first, i.e., it forces all

time information to be considered for a range of objects. Our

delta change record representation, on the other hand, chrs ters

along the time dimension first, i.e., it forces events to be consid-

ered for all objects in a particular time range, whether or not all

of these events are relevant.

lThere are other more complicated representational alternatives which preserve the space characteristics for the index entries better. Es-

sentially, the problem is that the set of objects in the index entry cannot be updated (on the CD-ROM) dkectly, and it contains informa-

tion that is used in the “rollback” algorithm. So the idea for the solution is to store the required updates on the set as a separate list. This

optimization may, however, not be worth it.

109

Which of these index representations is most attractive depends

on the nature of the application. For instance, a system in which

any one object’s values change a great deal on average, and

where the accessor is equally likely to access historical data as

current data, would not be served well by the indexing scheme

proposed here. In such a system, the space benefit of omitting

index delta change records for the first versions of objects would

disappear, as would the benefit of keeping our delta records in

descending historical time order.

We believe, however, that for a textual information retrieval sys-

tem our versioning representation is much superior. Since in-

dexes take up far more of the total space in an IR system, it is

very expensive to have time ranges associated with every entry

in an index. Furthermore, we believe that, although objects will

change in our database, they will not change very much, and the

vast majority of the index entries will be created with the first

version of every object.

4.2 Computational complexity

So long as we use a bitmap representation for the member sets in

memory, the computational complexity of the historical query

algorithm depends on the following components:

● the number of events in the database set between the “cur-

rent time” and the time of the query. This is the maximal

number of delta change records that need to be considered

for the database set, and for each of the index entry sets.

● the number of leaf nodes in the query tree. This will be the

number of index entry sets that must be considered.

b the number of internal nodes in the query tree. This will

determine the number of Boolean operations performed.

● the size of the bitmaps. In principle, this is the number of

objects in the database.

The number of intemaf nodes and number of leaf nodes in

the query can be considered to be approximately the same.

Therefore, the computational cost is:

0(([# historical events considered] + [# objects in the

database]) * [# nodes in query])

As described previously, as the [# historical events consid-

ered] goes to O, the computational cost becomes the same

as that for a non-versioned Boolean query.

It turns out that the computational complexity of a range

query is no different. To see why this is so, we must break
down the range query into its two components, the histori-

cal query at the end of the time range, and the process of

completing the delta changes in the index entries, and then per-

forming the Boolean operations on the delta changes. The fac-

tors here are the number of historical events in the time range

(used to complete the delta changes, and to determine the size of

each delta change list), and again, the number of nodes in the

query (which represents both the number of steps in the query,

and the number of index entries considered). The cost of a range

query is therefore:

0(([# historical events to end of range] + [# objects in the

database]) * [# nodes in query]) +

0([# historical events in time range] * [# nodes in query])

If these two factors are added together, this is identical to

the cost of an historical query at the beginning of the time

range.

One significant difference in computational complexity be-

tween our algorithms and, for example, the [Tmin Tmax]

versioned set representation is that using bitmaps for

Boolean operations makes the size of the database a considera-

tion, rather than the size of an individual index entry. IR sys-

tems typically make this tradeoff because performing Boolean

operations on bitmap sets is very fast. Our design has been ori-

ented this way, and so long as the number of historical events

considered is not excessive, our historical/time range queries

ought to proceed very quickly also.

4.3 Further work

Each of the applications described in section 3 requires more

study and refinement. For example, we do not yet know to what

degree collection compute servers could obviate the need for

physically replicated collections. There are many possible ways

of extending the notion of “out-of -dateless” of replicated collec-

tions/queries to more powerful schemes by which an AI-STARS

user could make the response-time/up-to-dateness trade-off.

And algorithms for enforcing “up-to-dateness” of particular rep-

licated collections will inevitably evolve.

Since the irrforrnation bases currently in use by Digital’s

Customer Support Specialists are not yet versioned, we

have had no direct experience with the practical conse-

quences of versioning over long periods of time. It may or

may not be necessary, for example, to develop disk “vacuuming”

schemes [STONEBRAKER87].

While we have not addressed the issue of versioning concor-

dance information here, this is clearly an issue that merits further

study, as many of the operations expected of a full-text informa-

tion retrieval system depend on concordance data (see, e.g.,

[B URKOWSK192]). Note that even a small change to an object

(such as the insertion of a single word into the text) can have a

significant ripple effect on the concordance. 1

Finally, while we have presented how underlying support for

historical and snapshot querying may be implemented, we have

not yet investigated how best to put these capabilities into the

hands of the end-user. The range of issues to be addressed here

include: how to incorporate time operators in a query language

[GADIA88], how to present a notion of time in the user inter-

face, and how to present a title list for a range query.

1 ~i~ an be mitigated to some ~.tent bY padd@ the n“mencal assignment of concordance kations at stmctural boundaries.

110

5 Conclusions

The trend toward the use of full-text information retrievaf in dy-

namic information envirorunents such as help-desk systems has

motivated us to explore strategies for object versioning that are

sensitive to the time andspace constraints of theinformationre-

trievaf task. Wehavepresented adesign foraversioned IRsys-

tern that adds considerable architectural functionality and flexi-

bility while minimizing the impact on retrieval performance and

storage space. The algorithms for historical and time range

query crmbe applied to a number ofproblems inthe design of

anobject-oriented distributed system in which “logical’’viewsof

distributed data may be computed and stored.

ACKNOWLEDGEMENTS

The evolution of the ideas embodied in AI-STARS and its im-

plementation have been a group effort. Jeffrey Robbins was the

principal designer and implementor of the original STARS sys-

tem. Jeff, along with Bryan Alvey, Norman Lastovica, and

James Wagner, of Digital’s Colorado Springs Customer Support

Center, me collaborating with Intelligent Information Applica-

tions Development Group members Suzanne Artemieff, Jong

Kim, Jim Moore, Clark Wright and the authors on the develop-

ment of AI-STARS. The entire team’s contributions have been

essential for the creation and realization of the ideas presented in

this paper.

REFERENCES

[AHLSEN84] Ahlsen, M. , A. Bjornerstedt, A. Britts, S. Hulten,

and L. Soderlund. An Architecture for Object Management in

01S. ACM Transactions on Office Information Systems, 2(3),

1984.

[ANfCK90] Anick, P. G., J. D. 13rennan, R. A. Flynn, D. R,

Hanssen, B. Alvey and J. M. Robbins. A Direct Manipulation

Interface for Boolean Information Retrieval via Naturaf Lam

guage Query, in Proceedings of ACM/SIGIR ’90, Brussels,

1990.

[ANICK91] Anick, P, G., R. A. Flynn, and D. R. Hanssen. Ad-

dressing the Requirements of a Dynamic Corporate Textuaf In-

formation Base, in Proceedings of ACM/SIGIR ‘91, Chicago,

1991.

[BOOKSTEIN90] Bookstein, A. and S. T. Klein. Construction

of Optimal Graphs for Bit-Vector Compression, in Proceedings

of ACM/SIGIR ’90, Brussels, 1990.

[BURKOWSK192] Burkowski, F. J. An Algebra for Hierarchi-

cally Organized Text-Dominated Databases, to appear in Infor-

mation Processing and Management.

[COOMBS90] Coombs, J. H. Hypertext, Full-Text, and Auto-

matic Linking, in Proceedings of ACM/SIGIR ’90, Brussels,
1990.

[CROFT87] Croft, W. B. and R. T. Thompson. 13R: A New

Approach to the Design of Document Retrieval Systems. Jour-

nal of the American Society for Information Science, 38, 1987,

pp. 389-404.

[DI’ITRICH88] Dittrich, K. R. and R. A. Lorie. Version Support

for Database Systems, IEEE Transactions on Software Engineer-

ing, Vol. 14, no. 4, April 1988.

[GADIA88] Gadia, Shashi K. A Homogeneous Relational

Model and Query Languages for Temporal Databases, ACM

Transactions on Database Systems, Vol. 13, No. 4. Dec. 1988,,

pp. 418-448.

[GOLDBERG83] Goldberg, A. and Robson, D. Smalltafk-80:

The Language and Its Implementation. Addison-Wesley, 1983.

[GUTTMAN84] Guttman, A. R-Trees: A Dynamic Index

Structure for Spatial Searching, in Proceedings of’

ACM/SIGMOD, Boston, 1984.

[KAHLE91] Kahle, B. and A. Medlar. An Information System

for Corporate Users: Wide Area Information Servers, WAIS

Corporate Paper version 3, April 1991.

[KATZ84] Katz, Randy H. and Lehman, Tobin J. Database Sup-

port for Versions and Alternatives of Large Design Files, IEEE

Transactions on Software Engineering, Vol. SE-10, no. 2,

March 1984, pp. 191-200.

[KENT89] Kent, William, An Overview of the Versioning Prob-

lem. in Proceedings of 1989 ACM SIGMOD Conference on the

Management of Data, 1989, pp. 5-7.

[KOLOVSON89] Kolovson, Curtis and Stonbraker, Michael. In-

dexing Techniques for Historical Databases. Memorandum No.

UCB/ERL M89/34, Electronics Research Laboratory, College of

Engineering, University of California, Berkeley, Apr. 1989.

[KOLOVSON90] Kolovson, Curtis and Stonbraker, Michael. S-

Trees: Database Indexing Techniques for Multi-dimensional In-

terval Data. Memorandum No. UCB/ERL M90/35, Electronics

Research Laboratory, College of Engineering, University of

California, Berkeley, Apr. 1990.

[KHOSHAFIAN86] Khoshafian, S. N. and Copelartd, G, P. Ob-

ject Identity. ACM Proceedings of the Conference on Object-

Oriented Programming Systems, Languages, and Applications,

Sept. 1986.

[ROWE87] Rowe, I., and Stonebraker, M. The Postgres Data

Model. Proceedings of the XIII International Conference on

Very Large Databases, Brighton, England, September 1987.

Morgan Kaufman Publishers, San Mateo, CA.

[SALTON89] Salton, G. Automatic Text Processing: the

Transformation, Analysis, and Retrieval of Information by Com-

puter. Addison-Wesley, 1989.

[SNODGRASS90] Snodgrass, Richard (cd.) Temporaf Data-

bases, Status and Research Directions, ACM SIGMOD Record,

Vol. 19, no. 4, Dec. 1990, pp. 83-97.

[STONEBRAKER87] $tonebraker, M. The Design of the

POSTGRES Storage System. Proceedings of the XfJI Intern-

ational Conference on Very Large Databases, September 1987.

Morgan Kaufmann Publishers. San Mateo, CA.

111

