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ABSTRACT
Learning to Rank (LtR) is an effective machine learning me-
thodology for inducing high-quality document ranking func-
tions. Given a query and a candidate set of documents,
where query-document pairs are represented by feature vec-
tors, a machine-learned function is used to reorder this set.
In this paper we propose a new family of rank-based features,
which extend the original feature vector associated with each
query-document pair. Indeed, since they are derived as a
function of the query-document pair and the full set of can-
didate documents to score, rank-based features provide ad-
ditional information to better rank documents and return
the most relevant ones. We report a comprehensive evalu-
ation showing that rank-based features allow us to achieve
the desired effectiveness with ranking models being up to 3.5
times smaller than models not using them, with a scoring
time reduction up to 70%.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Search process
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1. INTRODUCTION
The problem of ranking documents in response to a user’s

query is particularly challenging in Web search. Hence most
of the search engines exploit document ranking pipelines
based on Learning-to-Rank (LtR) techniques [4, 9]. In a LtR
framework, a machine learning algorithm is used to derive a
model from a training set of labeled documents [12]. Search
engines usually exploit LtR models within a two-stage rank-
ing architecture: (i) candidate retrieval and (ii) candidate
re-ranking. The first stage retrieves from the inverted index
a set Cq of (possibly relevant) candidate documents match-
ing a user query q, where |Cq| � k and k is the number of
relevant url’s to include in the return page. This prelimi-
nary filtering is usually achieved by a simple and fast base
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ranker, e.g., BM25 plus some document features. In the sec-
ond stage, the LtR model is used to score and re-rank the
documents in Cq. Finally, the top k documents in Cq are
returned to the user.

In this scenario, the efficiency of the second LtR-based
stage is crucial. It clearly impacts on the response time of
the system. In addition, a more efficient ranker allows us to
score more candidate documents: this is a very important
property, since when larger sets of candidate documents are
retrieved during the first step, we observe a better recall and
a better overall quality of the final result list [10].

The efficiency of machine-learned rankers have recently
attracted increasing interest, since state-of-the-art LtR al-
gorithms induce models that are indeed very complex and
expensive at scoring time, and may become a bottleneck in
a two-stage ranking pipeline [4, 14, 16, 15, 1, 2]. Most of the
work published so far focused primarily on the optimization
techniques that can be adopted to make the second-stage
ranker faster. Our approach is orthogonal to such optimiza-
tion techniques. Indeed, we address the problem of improv-
ing the efficiency of a ranking model by extending the feature
set used to represent a query-document pair with additional
rank-based features. Since they are a function of the query-
document pair and the full set of candidate documents Cq,
rank-based features provide additional information to better
score documents. We show that these rank-based features,
when used to extend the original feature vectors, are able to
improve the learning process and achieve the desired ranking
quality with learned models of reduced complexity.

Specifically, we propose to extend the feature set associ-
ated with each document in Cq as follows. For each original
feature considered, we add four rank-based variants, named
Dist-Min, Dist-Max, Rank, and Rev-Rank. The goal of rank-
based features is to provide additional information about
some ordering properties of a document compared with the
others in Cq. For example, given a feature f ∈ F , where F
is the feature set characterizing a generic document c ∈ Cq,
its Rankf variant is equal to the rank of c in Cq, where Cq
is ordered in decreasing order of f . Indeed, each rank-based
feature turns out to be a function of the query and the full
candidate results set, rather than just of a query-document
pair, thus providing a richer information.

We focus on the two state-of-the-art rankers, i.e., Gradient-
Boosted Regression Trees (GBRT) [7] and λ-MART [3], as
they have been proved to be the most effective in the re-
cent Yahoo! learning to rank challenge [5]. We experimen-
tally show that the use of rank-based features can reduce the
number of regression trees generated by gradient boosting
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Table 1: A small example of golden set for learning
to rank.

q1 q2 q3
rel BM25 PR rel BM25 PR rel BM25 PR
1 .80 .20 1 .60 .50 1 .65 .45
1 .75 .15 1 .60 .47 1 .67 .40
0 .65 .05 1 .50 .45 0 .60 .35
0 .65 .05 0 .45 .40 0 .40 .15

approaches up to 3.5 times and they provide a scoring time
reduction up to 70%.

2. RANK-BASED FEATURES
To introduce the new set of rank-based features, let us

consider the example in Table 1. The table illustrates a
small training set of query-document feature vectors. It is
made up of three queries with four candidate results each.
For each document associated with a query, a binary rel-
evance label rel and two well-known features – BM25 and
PageRank (PR) – are listed. During learning, a tree-based
algorithm should find the rules that best separate relevant
from irrelevant results. A simple decision stump – i.e., a tree
with one node and two leaves – is not sufficient in this case,
since a “minimal” classification tree with perfect accuracy is
the following:

if BM25 ≥ .75 then 1 else

if PR ≥ .45 then 1 else

if BM25 ≥ .67 then 1 else 0

Simpler but still effective trees can be obtained if we enrich
the feature set associated with each pair (q, c), c ∈ Cq, with
new rank-based features. In our toy example, an optimal
decision tree that achieves perfect accuracy is the one that
classifies as relevant the documents with a PR score being at
most 0.05 less than the best PR score in the same candidate
set, that is:

if Dist-MaxPR ≤ 0.05 then 1 else 0

where Dist-MaxPR measures the difference between each value
of PR and the largest value assumed by PR in Cq. This last
classifier does not improve the quality of the first one. On
the other hand, it is much simpler and its evaluation requires
much less time if rank-based features are available.

We propose four construction strategies to build new rank-
based features for a given feature f ∈ F , occurring in the
feature vector representing each pair (q, c), where c ∈ Cq:
• Rankf . Feature Rankf ∈ {1, 2, . . . , |Cq|} corresponds to

the rank of c after sorting Cq in descending order of f .
• Rev-Rankf . The same as Rankf , but Cq is ordered in

ascending order of f .
• Dist-Minf . Feature Dist-Minf ∈ R is given by the ab-

solute value of the difference between the value of f
and the smallest value of f in Cq.
• Dist-Maxf . The same as Dist-Minf , but we consider

the difference with the largest value of f in Cq.
We expect that these new features can improve the scor-

ing ability of the learned models since they contribute to
give information about the whole set of candidates Cq, while
other features give information limited to the single pairs
(q, c) with respect to the entire collection of indexed docu-
ments. We claim that they can capture relatively better or
relatively worse concepts over the current candidate set. It
is worth noting that Rankf and Rev-Rankf are not mutually

exclusive. If higher values of f are better, the former could
promote good documents, while the latter should demote
bad documents. Moreover, the proposed rank-based features
are orthogonal to other meta-level features and query-level
normalization techniques, as some rank-based features can
be built on top of normalized ones. We also compared
rank-based features against query-level z-score normaliza-
tion, with the latter showing very poor performance. Due
to space constraints, these experiments are not reported.

Rank-based feature generation. It is possible to apply
the four rank-based feature construction strategies to every
feature f ∈ F . This would multiply by five the size of the
input dataset, making the learning process very expensive.
In order to save space and time, we apply our feature con-
struction methodology to a limited subset of the original
features, using this subset to generate the new ranked-based
ones. Specifically, we adopt a greedy approach exploiting a
feature evaluation technique to choose which subset of fea-
tures to enrich with the new rank-based ones:

1. We train a ranker on a given training dataset (golden
set) by exploiting the full feature set F .

2. We run a feature ranking method, aiming at identify-
ing the 10 best performing features.

3. We create a new dataset, where the original features F
are accompanied by 40 additional features, generated
by applying the four rank-based construction strategies
to the best 10 features. The resulting feature set is
denoted by F+40.

4. A new ranker is trained on the new data, and the F+40

feature are evaluated and ranked as above.
5. Finally, we create an smaller dataset that contains all

the original features F , but only the best 10 rank-
based features found in the previous step. The result-
ing dataset is denoted by F+10.

We show that the rankers derived using F+40 or F+10 can
improve over the ranker built on the original feature set F .

As previously stated, we focus on two state-of-the-art tree-
based ranking algorithms: namely GBRT [7] and λ-MART
[3]. Both generate large forests of additive regression trees.
Our objective is thus to exploit the feature sets F+40 and
F+10 to reduce the number of trees without hindering the
ranking quality. Feature importance in these rankers can
easily be estimated as described in the following section.

Feature importance evaluation. Several approaches have
been proposed to evaluate the goodness of a feature in a
ranking model [17, 11, 8]. Since both GBRT and λ-MART
rankers are based on boosted regression trees, we borrow
a method for feature evaluation from the original work on
GBRTs by J. Friedman [7]. During the construction of each
tree t in set of trees of the GBRT model T , for each feature
we compute a measure similar to the least square improve-
ment measure proposed in [7]. Since each tree split node
improves the objective function, the gain gi for each fi ∈ F
can be estimated by summing up the gains across all the
split nodes n ∈ t for all the trees t ∈ T where feature fi is
used. We thus have:

gi =
∑
t∈T

∑
n∈t

î2n 1(vn = fi)

where vn is the splitting feature used in node n, 1() is the

indicator function, and î2n is the empirical improvement in
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Figure 1: Features importance averaged over 5 folds
of the MSN dataset: F (above) and F+40 (below).

the squared error as a result of the split. More specifically,
according to [7], we have:

î2n =
nlnr

nl + nr
(yl − yr)2

where nl (nr) is the number of instances in the left (right)
child of the splitting node n, and yl (yr) is the mean value
assumed by the relevance label in the left (right) child of n.

Note that gi measures exactly the improvement provided
by fi on the basis of the squared error reduction that was
observed in the training set.

3. EXPERIMENTS
In our experiments we use the MSN learning to rank1

datasets. It consists of vectors of 136 features extracted
from query-url pairs. This dataset is partitioned into five
subsets for five-fold cross validation. For each fold, we em-
ploy the validation set to fine-tune the number of trees of
the generated models to avoid overfitting. In the follow-
ing, we denote these folds by MSN/Fold i, i ∈ {1, 2, 3, 4, 5}.
The MSN dataset provides relevance judgment labels rang-
ing from 0 (irrelevant) to 4 (perfectly relevant). We use
RankLib2, an open-source implementation of the GBRT and
λ-MART algorithms to learn our models. We then evaluate

1
http://research.microsoft.com/en-us/projects/mslr/

2
http://sourceforge.net/p/lemur/wiki/RankLib/

Figure 2: Effectiveness with features sets F+40, F+10,
and F on MSN/Fold 1.

the effectiveness of the ranking models by using NDCG@k,
k ∈ {10, 25, 50, 100}.
Assessment of feature importance. Feature importance
is measured by gain gi as defined above. We report results
regarding the MSN dataset, averaged over 5 folds, on which
we trained λ-MART rankers by optimizing NDCG@50. The
results achieved at different NDCG cut-offs show a similar
trend. Figure 1 plots the importance of the top-20 fea-
tures according to gain gi (log scale) for λ-MART trained
on F+40. Our experiments confirm that a few features con-
tribute to the largest part of the cost function optimization.
This motivated our choice of applying the proposed feature
construction strategies to the best 10 features of F only,
thus obtaining the new feature set F+40. Figure 1 shows
that the most important feature in F+40 is a rank-based
one, and that 12 out of the top-20 features are rank-based.

We also notice that in most cases the rank-based features
become more important than the original one. Consider
for example feature f = PageRank: it was the 11th most
important feature in F , but its variant Dist-Maxf is the 4th

and precedes in F+40 the original feature f .
We conclude that GBRT and λ-MART models largely use

the new rank-based features as they were considered more
informative than others. We also find out that rank-based
features are not a replacement of original features, but they
rather provide complementary information.

Efficiency of learned models. Figure 2 illustrates the
quality in terms of NDCG of the λ-MART models trained on
MSN/Fold 1 by using F , F+40, and F+10. We report the
values of NDCG@50 obtained on the test set of MSN/Fold 1
as a function of the number of trees of the generated model.
Note that the three curves stops in correspondence of a dif-
ferent number of trees: this is because the validation set is
used to choose the number of trees in the final model.

The benefit of our rank-based features shows up very early
in the learning process. First, we note that the new feature
sets F+40 and F+10 always produce models that are more
effective than the one obtained by using the original feature
set F at smaller ensemble sizes. More importantly, the max-
imum quality of the model trained on F requires a number
of trees that is about three times larger than the number
of trees of the models trained on either F+40 or F+10 to
obtain the same NDCG@50. This behaviour is very signif-
icant, since the number of trees directly impacts ranking
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Table 2: Scoring time performance at the best NDCG@50 provided by F .

λ-MART GBRT
Dataset Features # Trees Time µs. ∆ Time NDCG@50 # Trees Time µs. ∆ Time NDCG@50

MSN / Fold 1
F 1163 29.337 0.5640 833 21.094 0.5581

F+40 500 14.529 -50% 0.5651 300 9.533 -54% 0.5605
F+10 500 13.464 -54% 0.5640 300 8.303 -60% 0.5608

MSN / Fold 2
F 898 22.717 0.5645 708 17.971 0.561

F+40 400 12.031 -47% 0.5656 400 12.031 -33% 0.5623

F+10 400 11.468 -49% 0.5652 300 8.303 -53% 0.5614

MSN / Fold 3
F 750 19.020 0.5659 915 23.142 0.5623

F+40 400 12.031 -36% 0.5678 300 9.533 -58% 0.5646

F+10 400 10.634 -44% 0.5675 300 8.303 -64% 0.5637

MSN / Fold 4
F 1420 35.757 0.5648 942 23.816 0.5613

F+40 400 12.031 -66% 0.5657 400 12.031 -49% 0.5629
F+10 400 10.467 -70% 0.5657 300 8.469 -64% 0.5613

MSN / Fold 5
F 581 14.799 0.5705 990 25.015 0.5696

F+40 300 9.533 -35% 0.5715 400 12.031 -51% 0.5703

F+10 300 8.304 -43% 0.5715 400 10.967 -56% 0.5717

efficiency. Document scoring requires in fact the traversal
of all the trees of the model, and its cost is thus linearly
proportional to their number.

In order to evaluate the benefits of the proposed models
at scoring time, we have to consider both the time needed to
generate the rank-based features, and the time for traversing
the forest of trees. In fact, the use of rank-based features
should reduce the number of trees at least as much as to
cover the cost of generating them.

Table 2 reports the scoring time of the best GBRT and λ-
MART model in terms of NDCG@50 built with F . We also
measured the quality of the models exploiting rank-based
features by adding 100 trees at a time, and we selected the
smallest forest of trees achieving at least the same quality as
the best model build using the original feature set. For such
model, we also measured and reported the per-document
scoring time, which includes the feature generation time.

It is apparent that the rank-based features allows to achieve
the same or better performance than using F , with a much
smaller number of trees, thus resulting in a significantly
smaller scoring time. We observe that the scoring time can
be reduced up to a 70% factor. The time needed to extract
the rank-based features is thus rewarded with a strongly re-
duced scoring time. For the sake of completeness, we mea-
sured the quality of the complete forests (results are not
reported here) and we observed a statistically-significant im-
provement in NDCG with both proposed features sets with
a p-value always smaller than 0.01 under randomization test
with 100, 000 permutations [13].

4. CONCLUSIONS AND FUTURE WORK
We proposed a novel feature construction strategy to en-

rich a feature set with new rank-based features in a learning-
to-rank framework. The exploitation of rank-based features
allows us to generate significantly faster rankers, i.e., with
less trees, without any quality loss. Experiments proved that
our proposed features can reduce the number of regression
trees generated by gradient boosting approaches up to 3.5
times and they provide a speed-up in the scoring time up
to 70%. In addition, results shown that rank-based features
can provide statistically-significant improvements in the ef-
fectiveness of the generated ranking models.

We envision several open research directions. We apply
the rank-based feature construction only to a subset of the
whole set F . We intend to study the impact of feature selec-

tion techniques for rank-based feature enhancement. More-
over, we will investigate the impact of our rank-based fea-
tures on other, non tree-based (LtR) algorithms. We also
intend to study the performance of a multi-stage ranking
pipeline [6, 4] exploiting our rank-based features.
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