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Introduction 

The intent of this paper is to discuss 

language-related decisions made during the design 

of the Stanford Public Information REtrieval 

System (SPIRES), and to express personal opinions 

derived from that design experience. SPIRES II 

(i, 2, 3) has become a generalized interactive 

information storage and retrieval system. After 

selecting a data base, an authorized on-line user 

can i) iteratively retrieve and display records 

from the data base, 2) insert, delete, or update 

records, and 3) revise the definition for the 
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need for at least three language decisions--a 

translater-writer-system for the user interface, 

a data definition language for the data base 

interface, and a programming language for the 

computer interface. We will discuss these three 

decisions below, in each case describing the 

functional needs, the reasons for rejecting a 

proposed solution, and the features of the 

adopted solution that weigh in its favor. In 

conclusion, we will draw parallels to natural 

language communication and summarize the SPIRES 

design philosophy. 
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data base or enter the definition for a new data 

base. Conceptually, the language interface, via 

the computer, brings the user and data base into 

contact. 

In 1967, when the prototype system (SPIRES I) 

was being designed (4, 5), the programmers thought 

there was just one programming language decision 

to make, and that their choice of PL/I (with 

recourse to assembly language) settled the mat- 

ter. By 1969, when the operational system 

(SPIRES II) was being designed, we recognized the 

The user interface 

The SPIRES II target population was the 

Stanford academic community. We expected most 

users to be students, research personnel, and 

secretaries. Since the system was to run on the 

Computer Center's Campus Facility, we felt that 

most users would have access to IBM 2741 terminals 

and be conversant with Stanford's WYLBUR text 

editor system (6). Rather than create an entirely 

*This work was supported in part by National Science Foundation Grant GN830. 
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new data base editing language, we chose to have 

SPIRES recognize all WYLBUR commands. Our over- 

riding concern was to develop an efficient and 

flexible system--one that fit nicely into an 

existing community and could easily be changed 

in response to user feedback (7). 

During the design of SPIRES I, the need for 

some formal description of the user interface was 

recognized, and limited parsing tables were in- 

corporated. Unfortunately, they were an after- 

thought, and much of the user interface language 

remained buried in the PL/i code. With SPIRES II, 

we sought to gather the entire user interface 

language together and to build the rest of the 

system around it. Since McKeeman, Horning, and 

Wortman (8) had recently developed a compiler 

writing language, we examined it in light of the 

SPIRES requirements. There are a number of 

reasons we decided not to use their bottom-up 

parsing scheme. Bottom-up parsers look for a 

limited class of primitive tokens, and use tables 

to determine whether or not arrangements of 

tokens are legal. When a legal combination is 

recognized, semantic routines are called. While 

it may be true of computational languages that a 

limited class of tokens can be arranged in many 

ways, it is not true of interactive information 

retrieval languages. With retrieval languages, 

an immense variety of takens fit together in very 

limited ways. Each command begins with a dis- 

tinctive word and is followed by a few parameter 

values. Therefore the most efficient parsing 

scheme is top-down--having recognized the command 

name, look for the appropriate parameter values. 

With bottom-up parsing, it is hard to vary the 

scanning rules as the context varies. In some 

instances we wanted hyphens to be treated like 

letters (e.g., school year 1972-73) and in others 

to be treated like special characters (e.g., 

1972-73 = 1899). Finally, with bottom-up parsing, 

there is no way to leave gaps for filling in at 

run time. We wanted the data base definition to 

form a part of the user interface language--FIND 

BILL JONES should mean one thing when attached to 

a purchase order data base having an element named 

BILL, and another thing when attached to a biblio- 

graphic data base having a default search element 

named AUTNOR. 

We chose to write the command language in a 

modified form of BNF, to be used in conjunction 

with a top-down parser (9). The right part of a 

BNF production is treated like a list of calls 

upon scan routines, semantic routines, and other 

productions. While the modified BNF is similar 

to list-processing languages, tests for determin- 

ing whether or not to proceed along a list are 

made after returning from a call rather than 

before executing it. The modifications to the 

BNF allow for calls to be optional or required; 

singular or multiple (loop until failure is re- 

ported); ordinary (pass control along the right 

part if the call is successful, to the next right 

part if not successful) or lookahead (abandon the 

entire production if the call is successful, pass 

control to the next right part if not successful). 

Since calls upon semantics can be interspersed 

with syntax and the semantics can interrogate the 

data base definition, parsing of input can be 

influenced by the data base definition. Not only 

can languages be written that are compact and 

flexible, but the languages can be tested out 

before most of their semantic routines have been 

written. We have found that by writing the SPIRES 

user interface language in modified BNF, changes 

to the language can easily be viewed from the 

perspective of the total language, and can be 

incorporated without upsetting other parts of the 

system. 

Data base interface 

We suspected that a community as hetero- 

geneous as the Stanford academic community would 

want to store, update, and access data bases 

containing widely varying types of records (i.e., 

bibliographic citations, survey data, full text 

documents, time-dependent medical records, and 

personnel data). A data base definition language 

had to allow for fixed and variable length ele- 

ments, singular and multiply occurring elements, 

as well as elements consisting of groupings of 

lower level elements. We had to find a forrm~lism 

in which to express recognition, validation, con- 

version, file inversion, and display rules for 

widely varying elements without either the user 

or staff having to program each new rule from 

J. 
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scratch. 

During the design of SPIRES I, the need ~for 

/some formal description of the data base inter- 

face language was recognized and limited tables 

were developed. Standard lists of data elements, 

index types, and exclusion words were maintained. 

The file manager was expected to go down the 

lists checking the appropriate boxes. The staff 

found itself constantly embroiled in revising 

the lists and writing code to handle special 

cases. For example, a user might want element B 

to occur in a record whenever element A did not 

occur, and to provide a defaultvalue for B in 

case the person entering the record did not. At 

the time we were writing the data base defini- 

tion language (DBDL) there was no obvious candi- 

date to consider first. Today we surely would 

consider the CODASYL data definition language 

(i0). Since we were already using modified BNF 

for the user interface, we also attempted to use 

it for the DBDL. There were a number of reasons 

why it turned out to be inappropriate. A data 

base definition is predominantly semantic. Ele- 

ment names need to be unique, the links binding 

together elements from different files need to 

have similar names, parameter values need to be 

given values only when they deviate from de- 

fault presumptions, and parameters do not need 

to be entered in a specific order. We found that 

we could almost do without syntax: within the 

hierarchy of a definition almost all infor- 

mation could be represented as parameter names 

followed by parameter values. 

An exception to this generalization involved 

the processing rules for recognizing, validating, 

and transforming values. Many different "actions" 

had to be strung together in a specific order. 

Even in this case the syntax was not important-- 

slashes could separate the actions and each 

action could be written as a code number, then 

a flag indicating what to do in case test con- 

ditions were not met, and finally values for up 

to three parameters. Once again we found the 

semantic aspects predominating. 

The solution we adopted was to write the 

DBDL as if it were a data base definition itself. 

Information in a definition is presented in out- 

line form with parameter names preceding para- 

meter values. DBDL processing rules are used to 

make sure required parameters are given values, 

that values which should match values from a 

predefined list in fact match values from the 

list, and that numeric values fall within the 

proper limits. Since the processing of defini- 

tions is usually more complex than the process- 

ing of typical records, we use a special defini- 

tion compiler to transform a validated defini- 

tion into what we call the characteristics of the 

data base. The compiler is driven by processing 

rules stored in the DBDL. The decision to imple- 

ment the DBDL in this manner led to many un- 

foreseen consequences. The entire security 

structure for SPIRES easily fell into place. 

User account numbers became keys pointing to 

data base characteristics. Any restrictions 

limiting access to a file could be stored with 

the account numbers. Another index could con- 

tain names used for accessing data bases accom- 

panied by text describing the contents of the 

data base. The major disadvantage of this 

approach is that definition compiling became a 

two-step process--first entering the definition, 

and then having the definition inverted into the 

system access files. 

It should be apparent from the preceding 

discussion that the processing rules are the 

bridge connecting the data base interface to the 

user interface. When an element name is recog- 

nized during searching, a semantic routine calls 

upon the search processing rule for the element. 

For example, FIND (assume TOPIC) EARTHQUAKES IN 

CALIFORNIA is broken down by TOPIC's processing 

rule as follows: first call upon an action to 

change all commas, periods, and semicolons and 

colons into spaces, next call upon an action to 

break the value into multiple values using 

spaces as delimiters, then call upon an action to 

remove final s's, next call upon an action to 

remove common words from the list of values, and 

finally call upon an action to insert logical 

ANDs between the remaining values. Thus the 

request becomes FIND TOPIC EARTHOUAKE AND TOPIC 

CALIFORNIA. We have developed about two hundred 

different actions, with no action having more 

than three parameters (the final parameter may 

have multiple values), and feel that this set 
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provides us with all the flexibility needed for 

most definitions. 

Computer interface 

Since SPIRES has to share the IBM 360/67 

with almost all other academic applications at 

Stanford, the code in core at any time must 

occupy the minimum amount of space possible. 

ORVYL (ii), the Campus Facility time-sharing 

monitor, makes a sharp distinction between the 

read-only pages of subprocessor code and the 

read-write pages of user data. The techniques 

we developed for handling the user and data base 

interface languages made it essential that we 

have more flexible data structures than found in 

most programming languages. In particular, the 

programming language had to provide for super- 

imposing structure upon data regardless of 

storage location. 

We naturally looked to IBM's PL/i, since it 

had been used to implement SPIRES I. After much 

consideration we decided to use another language. 

Not only is it hard in PL/i to separate code from 

data storage, but too often compiled code takes 

up excessive space and is slow to execute. Our 

interface languages required heavy use of point- 

ers, yet too frequently we encountered restric- 

tions limiting use of pointers. One thing we did 

not figure out how to encode in PL/I was the 

technique of branching into semantic routines 

via semantic routine numbers. PL/i also re- 

quired use of OS Supervisor Calls which ORVYL 

does not allow. 

We eventually decided to use the program- 

ming language PL360 developed by Niklaus Wirth 

(12). While the original PL360 was not intended 

for very large programs, by the time we needed it, 

it had been extended to handle them. PL360 is 

an ALGOL-like language that uses a bottom-up 

parser to translate statements directly into 

IBM 360 machine instructions. The programmer 

has complete control over index registers. Pages 

of code (csects) and pages of data (dsects) are 

treated as distinct units referred to by differ- 

ent index registers. Conceptually a procedure 

contains one csect, any number of dsects, and any 

number of other procedures. If the main csect 

is the top of the hierarchy, a level n csect 

can refer to procedures and dsects at level 

n+l or at any higher level. Procedures and dsects 

can easily be moved around, and new levels can 

be added either at the top or at the bottom of 

the hierarchy. The net result of shifting code 

around is that heavily used general-purpose 

routines eventually shift to the top levels, 

leaving special-purpose routines in the lower 

levels. Thus PL360 in a virtual memory environ- 

ment leads to minimum shifting of pages from 

drum to core. 

The branching from the modified BNF to 

semantics is easily handled by first checking the 

range the number falls into, branching to a 

lower-level csect, and then using an address 

list to translate the number into an address 

within the csect. We have found that coding in 

PL360 has the advantages of efficient execution 

and rapid compilation, as well as the legibility 

and encodability of ALGOL or PL/i. One drawback 

of PL360 is that interfacing with programs 

written in FORTRAN IV or PL/i is tricky (but 

rarely necessary). Overall, we have found that 

our decision to use PL360 made SPIRES an eco- 

nomically viable system. 

Overview 

In retrospect, we feel that it was proper 

to take three different approaches to the language 

decision. The resulting system has a unity of 

design because each system component was develop- 

ed with the other components in mind. The 

command language permits semantics to be mixed 

with syntax, the data base definition language 

permits processing rules to be intermixed with 

declaratory information, and the programming 

language permits data to be kept distinct from 

code. 

While the user interface language is not 

"natural", it has much in common with more 

natural interaction languages. Woods (13) notes 

that natural language translation requires that 

calls upon semantics be intermixed with syntax. 

He discovered a small set of semantic actions 

which process values extracted by the syntax. 

Winograd (14) discovered parsing of natural 
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language requires that some aspects of the data 

be encoded as procedures so that the context of 

discourse can influence syntactic recognition. 

While our notations differ, each of us has dis- 

covered that human communicators use what they 

know about each other, the subject being dis- 

cussed, the environment, and the rules of the 

language to reduce complexity. Ambiguity is of 

little importance because either party can ask 

the other for clarification. Good interactive 

system design, Corbat6 (15) suggests, should seek 

to pare away possibilities until the essential 

components of the system are revealed in their 

simplicity. By keeping the functional needs of 

the Stanford community in mind, by splitting 

the problem into three subproblems, by consider- 

ing alternate solutions to the problems, and by 

designing from the top down, we have sought to 

achieve good design. 
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APPENDIX 

Samples o f  a m o d i f i e d  BNF command language ~rammar, a PL360 
procedure, and a f l l e  d e f i n i t i o n  are nresented on the fol lowin~ 
three pages. I f  the search request 

FIND TITLE CALIF# EARTHOUAKE 

were pa rsed  us lng  the  sample grammar, seman t i c  p r o c e s s e s  wou ld  he 
c a l l e d  in the  f o l l o w l n g  sequence :  

<1> FIND <60> TITLE <62> CALIF# <73> EARTHnUAKE <73> <71> <4> <61> <79>. 

A Sample Commend l.an~ua~e ~rammar (wr i t ten in Modified BNF). 

ICOMMAND LANGUAGEI : : =  (0,HASTER LANOUA~E) <LO~OF~> 
<HASTER LANGUAnE> : : =  <SEARCH> 

I LO~OFF I 
<EXTRA COMMANDS> 

<LO~OFF> : : =  <1> LOG(OFF) (SP) <4> 
<OFF> : : =  OFF 
<EXTRA CO~4MANDS> : : =  <1> SELECT <SP> FILE (SP) <4> <50> 
<SEARCH> : : =  <1> ~IND <SP> <60> (SRCH COMMAND) <79> 
<SRCH COHMAND> : : =  (SRCH-1) <4> <61> 
<SRCH-I> ::= ( (SP)  <65> (2,SRCH-I) 

(SRCH-HNEMONIe) <SRCH-VAI.UE> (2,SRCH-2) 
<SRCH-2> ::= ) (SP) <66> (2,SRCH-2) 

<LOGICAL OP> (2,SRCH-I) 
<SRCH-MNEMONIC> ::= <CHARACTERS> <62> (SP) 
<SRCH-VALUE> ::= <VALUE> (0,VALUE) <71> 
<VAI.UE> : : =  ITERMINATORI 

<CHARACTERS> <73> (SP) 
<TERMINATOR> : : :  ) 

<LOGICAl. OP> 
<LOGICAL OP> : : =  AND <SP> <67> (NOT) 

OR <SP> <68> 
<NOT> ::= NOT <SP> <69> 
(CHARACTERS) ::= 0 ,1 ,0 ,40, ( )  
(SP) ::= 0,1,1,40 

E x p l a n a t i o n s  f o r  S e l e c t e d  Terms In R l ~ h t  Pa r t s  o f  the  Sample P r o d u c t i o n s ,  

FIND 
<60> 
<CHARACTERS> 
(SP) 
(0,VALUE) 
(2,SRCH-2)  
ITERMINATORI 

0 , I , 0 , 4 0 ,  ( )  

R e q u i r e d  c a l l  on the  c h a r a c t e r  s t r i n g  scanne r  f o r  FIND. 
R e q u i r e d  c a l l  on seman t i c  p rocess  60. 
R e q u i r e d  c a l l  on p r o d u c t i o n  CHARACTFRS. 
O n t l o n a |  call on p r o d u c t i o n  SP. 
Repeat  c a l l  on p r o d u c t i o n  VALUE u n t l l  f a l l u r e .  
T r a n s f e r  o# c o n t r o l  to  p r o H u c t i o n  SRCH-2. 
Lookahead c a l l  on p r o d u c t i o n  TERMINATOR. I f  TEPMINATOR 

succeeds then VALUE f a l l s .  
Scan f o r  (O=no maxlmum) 1 o r  more c h a r a c t e r s  no t  (O=not )  

l l k e  b l a n k s  ( h e x l d e c l m a l  40) o r  p a r e n t h e s e s .  
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The seman t i c  processes would c a r r y  out the f o l l o w i n g  operations: 

<I> 
<60> 
<62> 

<73> 
<71> 

<4> 
<61> 

<79> 

Read a u s e r t s  command, 
I n i t i a l i z e  for a "FINn" command, asslEn core, etc. 
Look up the value parsed hy <SRCH-f~NEHONIC> 

in the f l | e t s  search charac te r i s t i cs .  I f  the 
v a | u e  does not  match an access name and no 
d e f a u l t  access name Is In e f f e c t ,  the seman t i c  
process reports f a i l u r e  to  the Parser. 

Save the narsed v a l u e  f o r  l a t e r  n r o c e s s l n ~ .  
App ly  Search P rocess ln~  Pules ( i f  any)  to  the v a l u e s ,  

S to re  the f l n a l  v a l u e s  In the search command s t a c k ,  
LoGica l  o p e r a t o r s  a re  a l s o  s t o r e d  in the s t a c k ,  

I nsu re  t h a t  a l l  the command has been pa rsed .  
Perform the required search based on the Information 
saved In the command stack. 

Clean up, release core assIEned hy <60>. 

A Samnle Search Procedure (wr i t ten In PL360). 

GLOBAL PROCEDURE SEARCH (R14); 
IIEGIN COMMENT-- PROCEDURES 'OOSEARrH', 'RAnPARFNS t 

tlNITSEARCHV, ANn tABORT t ARE NOT SHONN J-;  

#UH~qY BASE PSI COMHENT - -  SEARCH r~SECT - - ;  
SHORT INTEGER PARENDEPTH, ~NEHONICTYPE; 
ARRAY 30 INTEISER COH~ANDSTACK; 
BYTE OPERATOR, PETURNSWITCH; 
BYTE FIND~'LA~, ERRORI-'LA~; 

CLOSE BASE; 
c OUATE ERPORCODE SYN 100, OROP SYN 1, 

ANDOP SYN 2, ANDNOTOP SYN 3; 

COMHENT - -  SAMPLE SE~ANTlC RRANCHINO TECHNIOUE - - ;  
R7 := R7 - 6n SHLI. 2; 
RR := BSECTAnDRESS; 
~ALR(R3,R0);  BRANCH(B3(R7÷4)); 

GOTO SEN60; 
~OTO SEN61; 
~OTO SEN62; 

COHMENT - -  SAMPLE SEMAf'ITIC PROCESSES - - ;  

SEN63: COHNENT - -  <63> UPDATE PARENTHESIS DEPTH - - ;  
R2 := 1 + PARENDEPTH; PARENDEPTH := R2; GOTO EXIT; 

SEN62: COMMENT - -  <62> CHECK <CHARACTERS> A~AINST THE ~II.E~S 
SEARrH CHARACTERISTICS TO nETERHINE IP IT IS 
A VALID SEARCH MNEMONIC - - ;  ~OTO EXIT; 

SEN61: COHMENT - -  <61> PROCESS PARSEr SEAR?H COF4HAND - - ;  
IF ZERO 4= PARENDEPTH THEN ~ADPARENS; 
IF OPERATOR = 0 AND ZERO = MNEMONICTYPE 

AND "ERRORFLA~ THEN DOSEARCH ELSE 
BEGIN RZ := EPRnRCODE; ABORT; 
END; ~OTO ~XIT; 

SENG0: COMMENT - -  <60> SETUP FOR ~IND COMNANn - - ;  
INITSEARCH; SET(FIND~LAQ); 
OPERATOR := OROP; 

~ X I T :  R13 := R13 - -  #01000040; L M ( R l , P 0 , B 1 3 ) ;  
END; 
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r~ % , ,  - 

When s e m a n t i c  p rocess  <71> c a l l s  upon the  search  p rocess . l nn  ,. 
r u l e  f o r  T ITLE,  the  ~ o l l o w l n ~  o n e r a t l o n s  wou ld  he c a r r i e d  o u t :  

A45, Rreak the  v a l u e  I n t o  m u l t l p l e  v a l u e s  u s i n g  h1ahks ~ ' '  
as d e l l m e t e r s .  ~MDs a re  l n s e r t e ~  between r a i l ,  s.  -~' 

A14,# I f  a value ends wlth a pound sl~n, I t  Is r e m n ~ :  I ' 
and a switch Is set indicating that a l l  nolnters 
for access recoras he~Innlng wlth thls stem shoul# 
he ORed to~ether. 

A Sample Fi le Def lnl t lo~ (wlth Fxplanaterv Hotes In the"Pl~ht Column). 

FI LE X123. SAHPLE; 
RECORD ROOK; 

KEY BOOK-UUMBER; 
ELEM TITLE;  

OCC 1; 
ELEM AUTHOR; 

RECORD AUTHOR; 
KEY LAST-MAHE; 
CLEM NAMES; 

TYPE STR; 
STPUCTURE NAMES; 

KEY FI RST-HAME; 
ELEH POINTER; 

TYPE PTR; 
RECORD TI TLE; 

KEY IVORD ; 
ELEM POINTER; 

TYPE PTR; 

LINKAGE ROOK; 
REFERENCE POINTER; 

MAHE ROOK; 
PASSPROC A170; 

ACCESS AUTHOR; 
NAME AUTHOR, A; 

PASSER AUTHOR; 
PASSPROC A166/ A38; 
SPCPROC A38/ AI4,#; 

IN NAHES; 
MAME NULl.; 

PASSPROC A165; 
RETRIEVAL POINTER; 

ACCESS TITLE;  
NAME TITLE,  T; 

PASSER TITLE;  
PASSPROC A166/ A45,; 
SRCPROC Ah5,/ Alh,#; 

RETRIEVAl. POIHTER; 
SUBFILE BOOKS; 

GOAL ROOK; 
ACCT PUBF.; 

The name o f  the  ~ ILE.  
The maln RECORDs o~ the  F.IL~ 

a re  keyed on ~OOK number.  
w l t h  a TITLE (whtc:h. . ls  . r e s t r l c t e d  
to  o c c u r  o n l y  once ) ' ,  
and m u l t t n l e  AUTHORs. 

The AtITHOP Index r e c o r d s  a re  
keyed on the  AUTHOR's l a s t  name. 

The AUTHOPls first name Is the key 
of a multI~ly occllrrlnE structHre 
containing POINTERs back to the 
ROOK records. 

The TITLE Inaex records are 
keyed on Indlvldual TITLE words 
with POIHTERs hack to the 
nOOK records. 

The nOOK r e c o r d s  a re  " l l n k e d "  tO 
the  Indexes  by the  PQINTEPs. 

The AUTHOR records are used to 
access the nOOKs when a search 
mnemonlc refers to AUTHOP or A. 

The f i l e  I n v e r s i o n  and sea rch  
p r o c e s s i n g  r u l e s  a l l o w  
truncated surname s e a r c h l n ~ .  

The author's flrst names are handled 
hy the structure portion of the 
AUTHOR Index records. 

The TITLE records are used to 
access  the  ROOKs when a s e a r c h  
mnemonic r e f e r s  to  TITLE o r  T. 

The PASSPRnC and 3RCPROP rules 
allow truncated (word stem) 
searchlng. 

The ROOK records constltute the 
p r i m a r y  ( o r  GOAl) r e c o r d s ,  
and a re  o u b l t c l y  a c c e s s ! h l e .  
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QUESTIONS 

Harry Lotis: 

Were there quite a bit of similarities that caused you to reach a decision to break the data base 
into three parts? I am just wondering how you actually separated it? 

Guertin: 

What I said was that the system is broken into three parts, not the data base. What I mean by that 
is we have a data base definition in which we declare how these data elements are to interact and be 
handled. The code for handling that is inside the SPIRES system in these 150 semantic processes which 
can be combined together, depending on the particular data base. The first split is between the code and 
the data base. The second split is between the code and the user through the command language. The 
command language services the user with the information in the data ba§e, and the programming language 
in between only accomplishes the work. The translation between what the user wants and what the file 
contains is done by the BNF on one side and the file definition on the other. The result is a three 
phrase structure: command language, semantic processes and file definition. 

Robert A. Landau: 

Can you give us some insights into the power of the system in terms of the number of simultaneous 
ports available and the size of the data base in millions of characters? 

Guertin: 

The size of the data base differs depending on which one you are using. We have complete structural 
depth capability, i.e., a record can contain a data element, which is a structure which contains data 
elements, and some of those can be structures which contain data elements. What was that first 
question again? 

Robert A. Landau: 

You didn't quite answer the second. I am interested in knowing the number of simultaneous users that 
can access the system and the largest possible data base that the system can handle. I would not 
consider i00,000 records, for instance, a very large data base. 

Guertin: 

SPIRES is a twin of another system called BALLOTS. The BALLOTS and SPIRES are separate processors 
that share the same computer. SPIRES has an average of about 40 sessions per day, ranging in length 
from 15 minute to a half hour. We have tried loading SPIRES with 50 terminals, and there doesn't seem 
to be any degradation other than the normal degradation you would expect from having 50 people trying to 
access the same data base simultaneously, i.e., disc tie-ups, channel interference. With the paging 
system such as the IBM 370 uses, the load is really not that high since SPIRES is contained in 25 pages 
of 4,000 bytes each, to which is appended approximately three pages of user specific information. 

Martin Dillon: Is there a HELP for data definition? 

Guertin: That is being worked on right now. 
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Martin Dillon: 

Suppose you do not want to go to the trouble of doing your own file definition, and you want to use 
one of the 75 that already exists? Is that possible? 

Guertin: 

Oh yes, if the file owner wishes to make his file public or semi-public, he needs to change only 
one thing in the file definition. 

Thomas Martin: 

I would like to add that while it takes only about four hours to define a file, it certainly should 
be understood that people are never quite satisfied with the first crack at file definition and it 
is possible to revise things quite a bit before one needs to scratch all that he has done previously. 
Also, in terms of the file structure that we use, Knuth would call it an n-way binary tree. It has the 
property of never forcing you to give up and rebuild the entire structure from scratch. 

Richard E. Nance: 

In terms of the BNF definition of the command language, how much input came from the user community 
in defining the command language? 

Guertin: 

A SPIRES I system existed prior to the current system, and the experience with that taught us what was 
needed. At least so we thought, After we had begun our simple set of commands for SPIRES II, we found 
that the user community was not satisfied with it. We began to effect changes in the command language 
based on the user needs, and we periodically review the command language by monitoring the user's 
session at the terminal (if he so desires, since he is informed that our monitoring is being done). We 
do not render existing commands inoperable, but we seek to modify them to develop alternate paths. 

Martin: 

Let me also respond to that. I think this comes out most clearly when you implement a command and 
find that it just doesn't work the way you thought it should. We had such an example in the update area 
Actually, we have done this on a number of commands. 

Martin Dillon: 

How many people know what PL 360 is? (The answer is over half of the audience.) Good, I have always 
wondered why computer companies didn't come out with more languages of the PL 360 type instead of 
assembly languages. It seems to me that what assembler is to octal, PL 360 is to assembler. I just 
don't understand why it hasn't been accepted as a realized advance over assemblers. 

Guertin: 

We wanted to use PL 360 because of its portability, at least among IBM 360 installations. We found 
that it took at least i0 times the amount of time in assembler as it did with PL 360. Also with the PL 360, 
we did not have to operate under OS. 

Gerard Salton: 

I have a question, since you brought up PL 360, and I don't feel that you really rationalize this in 
the paper. In fact, there seems to be a contradiction somehow, for you say, when you discuss the design 
of SPIRES II: 

We examined a compiler writing language in light of the SPIRES requirements...unfortunately 
that language is a bottom-up parser and bottom-up parsers have certain well known problems. 

And then a few pages later you go on to say, 

We use PL 360, which is an ALGOL-like language with the bottom-up parser, that has statements 
corresponding directly to IBM 360 machine instructions. 

And my question is either you like PL 360 or you don't, which is it? Surely the reason you use PL 360 
is not because of the parser but for something else. 
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Martin: 

The problem • is that we were thinking about two different things there. Bottom-up parsing does not 
work well at all in the interactive command language, but it'works beautifully in the implementation of 
the semantics. 

Guer t in: 

Recall that the system exists in three phases: the command language, the semantics, and the file 
definition. ~ The~bo6~m~up:ip~a~rser does not work well at all for the command language, but it does work 
quite we!~ for a comp~e~'~dlsimilar uses, such as our semantic processes. 

Na~ib A" Badre: ~ ~ ~' ...... 

My impression is that you can do anything with bottom-up parsing that you can do with top-down 

parsing. 

Thomas L. Martin: 

It's the same sort of business if you are thinking of top-down parsing llke you are thinking of 
transition networks. We were using the augmented transition networks. In the work that Woods has done, 
there is quite a diffe~ence~tween transition networks. What we couldn't do with bottom-up Parsing 
was this blend of spreading out the information about the data base between the command language, the 
semantic processes and the file definition. The top-down parsing approach allowed us to blend these 
things in a very nice way. 

Top-down gave us the capability to place calls among semantic processes wherever we desired; 
conversely, bottom-up parsing says it limits you to doing semantic processing only after you have 
finished production. 

Unidentified questioner: 

Could you amplify on how you do the processing between the command language and the rest of the system? 

Guertin: 

If you look at the appendix to our paper, you will see that the command language is shown as a BNF 
language. Imbedded in that are angled brackets with numbers. The numbers are indications of semantic 
calls, i.e., calls on the semantic processors for work to be done. A PL 360 program is used to drive 
down the BNF in order to parse the user's query. A semantics routine is then called. A branch is made 
to the proper semantics processor from this routine based on what the parsing of the user's command 
has produced. Information gleaned from the data base and placed in core is then examined to see 
whether the semantics will succeed or fail. The semantics routine will then return control to the parser 
indicating whether it has been able to succeed in its task or something is wrong. Failure causes the 
attempt to try alternate routes in the BNF. This process can be repeated several times until finally 
a complete indication of task completion is given by the semantics routine, and at that time a search 

is effected. 

Robert Gaskill: 

I am quite interested in the tools that are used in the implementation systems such as SPIRES. I 
believe you mentioned that it took the two of you something llke two years. You further indicated that 
the basic reasons were that you used a high level language, PL 360, and then you gave a couple of others. 
I submit, at least for your comment, that maybe you left out one of the most important reasons, and that 

is that there were only two of you. 

Martin: 

There were also some additional contributing factors and they were the availability of all the other 
things at Stanford. These included an efficient, capable text editor, the various on-line debugging 
techniques, etc. Also, to be honest, the second person is actually a third person who is not here. 
There were other people on the staff who contributed also, but perhaps 90% of the work was done by 

these two people. 

Guertin: 

By the way, I have broken down for you the division by language of the code for SPIRES II. Note that 
there are 2,000 bytes of •assembly language, 4,000 bytes in BNF, and the remainder, 86,000 bytes, in 

PL 360. 
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Bill Carlson: 

What do you do to help users keep bad data out of their data bases? Are people expected to edit a 
sequential file before they enter it into your system? 

Martin: 

Once again in terms of our input processing rules, the User can construct his added records at a 
terminal and then we can submit those to all the validation tests the user has specified before entering 
them in his data base. Acceptance of the record actually means its entrance into~What we call an 
overnight queue. ~The record is actually entered at this point, but the updatihg of the inverted files 
is done only at night, so that the inverted file version of the record will be available only after the 
updating at night. 

Guertln: 

This process of deferred updating means that we can do the updating for a series of records at one 
time rather than having to do each one individually. 

Bill Carlson: 

And the semantic structures for this editing and valldatlon are contained within your 150. Still, 
you do not find that you need to assist users in doing this? 

Martin: 

I £hlnk it's fair to say that he who is defining his file had better go through an individual who 
really understands the file definition process. It is not a simple process. 

Leo Bellew: 

I am still confused as to the processing between the semantic routines and the data base. Could you 
clarify this? 

Martin: 

(The following is a severely edited version of Martin's reply.) The user's query stimulates a series 
of calls upon semantic processes that eventually terminate with a reference to the file definition. 
Within the file definition are contained those terms that are present in an inverted file. This process 
then returns to the semantic routine with the information as to whether the terms constructed in the 
parsing of the query are contained in the inverted file. If there, the result is a success; if not, 
a failure. 

Guertin: 

There is a multi-level here in that what you see in the paper is coded PL 360. One of the semantic 
processes that can be called contains rules for search procedures. These rules may differ depending on 
particular data bases. All the rules are also coded in PL 360, but the user does not see that from the 
BNF level. Note that the data base contains not only the data but also the rules as to how the data can 
be used and how different data elements are related. Does this answer the question? 

Unidentified questioner: 

The question is why are you doing that? Are you actually going out to the data base while you are 
doing all those things? 

Martin: 

The answer is "No". 

Unidentified questioner: 

(This question related to the file definition usage in the SPIRES system. Unfortunately the 
questioner did not use a mlcrophone, so it was impossible to determine the exact wording of his question.) 

Martin: 

When a file is selected, brought into the user's area is a portion of the file that is related to file 
definition. This portion of the file definition includes both needed information for searching and for 
file updating. These tables created by the file definition portion are then called upon by the semantic 
processing routines. Imbedded in these tables are the rules to which we have referred several times. 
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Guertin: 

When you have completed the parsing, a search routine physically accesses the data base. 
Consequently, the data base is physically accessed only when the parsing is completed, but file 
definition information, stored in core, is accessed during the parsing process. 

Bernard Plasman: 

How does your system handle the relations between more than one data base, and can the system 
establish work areas for treating subfiles within two or more data bases? 

Martin: 

We have not done that. It can be done only by working with one data base and storing the results as 
a temporary file, then working with the second data base and storing its results as a temporary file 
before trying to bring the two together in any sense. 

Bernard Plagman: 

Then the responsibility would be with the user to keep account of what is happening in his work area? 

Martin: 

That is correct. 

Unidentified Questioner: 

Does the appendix to the paper show actually how the file definition procedures work? 

Martin: 

Yes. That is the intent of the appendix. In an attempt at clarification, think of both the BNF and 
these processing rules and as strings of calls on small programs resulting in an interpretive type 
system. 

Guertin: 

The whole system, too, is recursive in itself. That is, the BNF analyzer has BNF that drives it, and 
you can analyze the BNF to get a new BNF analyzer. The PL 360 compiler is written in PL 360 so that you 
can change the compiler in its own language. And the file definitions are written as a file which is a 
file definitions file. Consequently, the whole system is totally recursive and can be boot-strapped at 
any point. The system is portable in every extent except that small part which is written in the 
assembly language. This represents the interface with the operating system and consequently would 
differ among implementations. 

Bill Malthouse: 

What is the interface between PL 360 and IBM supplied macros? For example, when advances are made in 
the IBM macros, can you get at these easily through PL 360? 

G~ertin: 

The decision was made not to use any macros in PL 360. 
remain independent of any operating system. 

Bill Malthouse: 

This decision was prompted by the desire to 

Then PL 360 provides in itself some sort of macro capability? 

Guertin: 

It will. The University of Alberta has just developed a macro capability in PL 360. I received a 
tape last week, but have not had the opportunity to examine it. Let me say that I do not think that the 
absence of the macro capability inhibited our efforts at all. 

Martin: 

Perhaps an addendum is necessary at this point, since we should note that Dick Guertin had complete 
control of the PL 360 compiler during our efforts. If he found something in the compiler that he didn't 
like, he simply changed the compiler. 
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Willard Draisin: 

Perhaps you should mention some of the weaknesses in the system, for I think that they would be as 
useful to us as the strengths that have been emphasized. 

Martin: 

I could provide some of these. There is such a great deal of flexibility in the data definition 

capability that you get widely differently appearing files. On the other hand, all of the messages are 
at the system level so that it becomes quite difficult for a file manager to communicate with his users 
about problems specific to a particular file. 

Guertin: 

We need file associated assistance and diagnostic routines. These HELP and error diagnostics should 
be particular to a data base. 

Martin: 

Because there is so much flexibility in the data definition area, a user has to rely on one or two 
individuals who can keep many of the details in mind because they are constantly creating files for 
other users. A user cannot at present define a file from scratch. 

Guertin: 

This is something that we hope to remedy with our automatic file definition compiler. 

Steven R. Roman: 

Could you co~mnent on restrictions on the length of the record or the size of the file? 

Guertin: 

There are no limitations on the size of the data elements. We have fixed length area of records, and 
we have required record areas whose entries may be multiple or single and may be fixed or variable in 
length. Then there are optional elements that may or may not occur. Two bytes are used to process any 
data element that is a fixed length or fixed occurring. As we have said beforej a data element may be a 
structure, and a structure may have fixed or variable occurring or length characteristics. You can go 

i0 deep in structures, so that there is little overhead required by the system. The last statistics I 
saw on the MARC data base indicated that 80% of the file was being used for actual data. 

Martin: 

I don't believe we have answers to some of these questions. Under ORVYL there can be only nine data 
sets so that we could have at one time only seven indexes or inverted files. We circumvent this 
restriction by defining what we call a combined index for the type of element that occurs rarely but you 
still wish to use in searching. In that case we sort of create a mini-index that is a record in and of 

itself. There is a separate record in that combined index for every type of data element that you will 
be treating in that way. The size of the record is no longer limited by the size of the data set, and 
as a practical matter the size of the file in limited by the number of disks we have at Stanford. 

Leo Bellew: 

How difficult would it be to enter a foreign file, perhaps contained on 200 tapes? 

Martin: 

We would begin by writing a BNF description of what the file looked like. As a practical matter, we 
have not had any gigantic files, in the neighborhood of millions of records, built on the system at this 
time. I am sure that files of this size would cause problems in the way storage is maintained in the 
current Stanford system. 

Alan Beals: 

I understand from your discussion that you enter the data record in an updating context at the time 
that the data record is defined, but the indexes are not changed until a later point in time. Since the 
only way one can get at the data record is through the indexes, why bother to add it at all at that time? 

Guertin: 

The reason we do not do on-line updating is that, for example, changing the title of a record might 
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mean unindexing a lot of different index terms and indexing on a lot of new ones. Perhaps 17 or 20 
new index records could be affected by changing this particular data record. This produces a wider 
window of time during which, if the system fails, we will have an incomplete updating process. Also, we 
found that a user in updatinE a record may make several changes in a short period of time, for example, a 
day. Thus we shall defer updating until the record is, in the user's opinion, of the form that he 
wishes. Also, we make a comparison of the updated record with the original and change only those records 
that have been altered. 

Mart in: 

The stimulus for this procedure with regard to updating was the desire for a very high system 
reliability by the BALLOTS people. They felt that high reliability was a prime characteristic. 

Guertin: 

By the way, the "overnight" updating process can be done interactively on-line by those users who 
wish to run that risk. 

Alan Beals: 

There seems to me that in some instances and in some applications a very gross error could be made by 
referencing a data element whose key value has been changed but that change has not been made. 
For example, consider the case in a bank where an account balance although changed has not been noted. 

Martin: 

Yes, I agree there are applications where our procedures are not suitable. We have just not been 
dealing with that dynamic an environment. 
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