
LANGUAGE DECISIONS MADE WHILE DESIGNING

AN INTERACTIVE INFORMATION RETRIEVAL SYSTEM*

Thomas H. Martin and Richard L. Guertin

Stanford University

Introduction

The intent of this paper is to discuss

language-related decisions made during the design

of the Stanford Public Information REtrieval

System (SPIRES), and to express personal opinions

derived from that design experience. SPIRES II

(i, 2, 3) has become a generalized interactive

information storage and retrieval system. After

selecting a data base, an authorized on-line user

can i) iteratively retrieve and display records

from the data base, 2) insert, delete, or update

records, and 3) revise the definition for the

USER

NEEDS

2741

TERMINALS

need for at least three language decisions--a

translater-writer-system for the user interface,

a data definition language for the data base

interface, and a programming language for the

computer interface. We will discuss these three

decisions below, in each case describing the

functional needs, the reasons for rejecting a

proposed solution, and the features of the

adopted solution that weigh in its favor. In

conclusion, we will draw parallels to natural

language communication and summarize the SPIRES

design philosophy.

ORVYL

IBM 360/67

DATA

BASE

i

I CDC 23121

DISK STORAGE

data base or enter the definition for a new data

base. Conceptually, the language interface, via

the computer, brings the user and data base into

contact.

In 1967, when the prototype system (SPIRES I)

was being designed (4, 5), the programmers thought

there was just one programming language decision

to make, and that their choice of PL/I (with

recourse to assembly language) settled the mat-

ter. By 1969, when the operational system

(SPIRES II) was being designed, we recognized the

The user interface

The SPIRES II target population was the

Stanford academic community. We expected most

users to be students, research personnel, and

secretaries. Since the system was to run on the

Computer Center's Campus Facility, we felt that

most users would have access to IBM 2741 terminals

and be conversant with Stanford's WYLBUR text

editor system (6). Rather than create an entirely

*This work was supported in part by National Science Foundation Grant GN830.

86

new data base editing language, we chose to have

SPIRES recognize all WYLBUR commands. Our over-

riding concern was to develop an efficient and

flexible system--one that fit nicely into an

existing community and could easily be changed

in response to user feedback (7).

During the design of SPIRES I, the need for

some formal description of the user interface was

recognized, and limited parsing tables were in-

corporated. Unfortunately, they were an after-

thought, and much of the user interface language

remained buried in the PL/i code. With SPIRES II,

we sought to gather the entire user interface

language together and to build the rest of the

system around it. Since McKeeman, Horning, and

Wortman (8) had recently developed a compiler

writing language, we examined it in light of the

SPIRES requirements. There are a number of

reasons we decided not to use their bottom-up

parsing scheme. Bottom-up parsers look for a

limited class of primitive tokens, and use tables

to determine whether or not arrangements of

tokens are legal. When a legal combination is

recognized, semantic routines are called. While

it may be true of computational languages that a

limited class of tokens can be arranged in many

ways, it is not true of interactive information

retrieval languages. With retrieval languages,

an immense variety of takens fit together in very

limited ways. Each command begins with a dis-

tinctive word and is followed by a few parameter

values. Therefore the most efficient parsing

scheme is top-down--having recognized the command

name, look for the appropriate parameter values.

With bottom-up parsing, it is hard to vary the

scanning rules as the context varies. In some

instances we wanted hyphens to be treated like

letters (e.g., school year 1972-73) and in others

to be treated like special characters (e.g.,

1972-73 = 1899). Finally, with bottom-up parsing,

there is no way to leave gaps for filling in at

run time. We wanted the data base definition to

form a part of the user interface language--FIND

BILL JONES should mean one thing when attached to

a purchase order data base having an element named

BILL, and another thing when attached to a biblio-

graphic data base having a default search element

named AUTNOR.

We chose to write the command language in a

modified form of BNF, to be used in conjunction

with a top-down parser (9). The right part of a

BNF production is treated like a list of calls

upon scan routines, semantic routines, and other

productions. While the modified BNF is similar

to list-processing languages, tests for determin-

ing whether or not to proceed along a list are

made after returning from a call rather than

before executing it. The modifications to the

BNF allow for calls to be optional or required;

singular or multiple (loop until failure is re-

ported); ordinary (pass control along the right

part if the call is successful, to the next right

part if not successful) or lookahead (abandon the

entire production if the call is successful, pass

control to the next right part if not successful).

Since calls upon semantics can be interspersed

with syntax and the semantics can interrogate the

data base definition, parsing of input can be

influenced by the data base definition. Not only

can languages be written that are compact and

flexible, but the languages can be tested out

before most of their semantic routines have been

written. We have found that by writing the SPIRES

user interface language in modified BNF, changes

to the language can easily be viewed from the

perspective of the total language, and can be

incorporated without upsetting other parts of the

system.

Data base interface

We suspected that a community as hetero-

geneous as the Stanford academic community would

want to store, update, and access data bases

containing widely varying types of records (i.e.,

bibliographic citations, survey data, full text

documents, time-dependent medical records, and

personnel data). A data base definition language

had to allow for fixed and variable length ele-

ments, singular and multiply occurring elements,

as well as elements consisting of groupings of

lower level elements. We had to find a forrm~lism

in which to express recognition, validation, con-

version, file inversion, and display rules for

widely varying elements without either the user

or staff having to program each new rule from

J.

87

scratch.

During the design of SPIRES I, the need ~for

/some formal description of the data base inter-

face language was recognized and limited tables

were developed. Standard lists of data elements,

index types, and exclusion words were maintained.

The file manager was expected to go down the

lists checking the appropriate boxes. The staff

found itself constantly embroiled in revising

the lists and writing code to handle special

cases. For example, a user might want element B

to occur in a record whenever element A did not

occur, and to provide a defaultvalue for B in

case the person entering the record did not. At

the time we were writing the data base defini-

tion language (DBDL) there was no obvious candi-

date to consider first. Today we surely would

consider the CODASYL data definition language

(i0). Since we were already using modified BNF

for the user interface, we also attempted to use

it for the DBDL. There were a number of reasons

why it turned out to be inappropriate. A data

base definition is predominantly semantic. Ele-

ment names need to be unique, the links binding

together elements from different files need to

have similar names, parameter values need to be

given values only when they deviate from de-

fault presumptions, and parameters do not need

to be entered in a specific order. We found that

we could almost do without syntax: within the

hierarchy of a definition almost all infor-

mation could be represented as parameter names

followed by parameter values.

An exception to this generalization involved

the processing rules for recognizing, validating,

and transforming values. Many different "actions"

had to be strung together in a specific order.

Even in this case the syntax was not important--

slashes could separate the actions and each

action could be written as a code number, then

a flag indicating what to do in case test con-

ditions were not met, and finally values for up

to three parameters. Once again we found the

semantic aspects predominating.

The solution we adopted was to write the

DBDL as if it were a data base definition itself.

Information in a definition is presented in out-

line form with parameter names preceding para-

meter values. DBDL processing rules are used to

make sure required parameters are given values,

that values which should match values from a

predefined list in fact match values from the

list, and that numeric values fall within the

proper limits. Since the processing of defini-

tions is usually more complex than the process-

ing of typical records, we use a special defini-

tion compiler to transform a validated defini-

tion into what we call the characteristics of the

data base. The compiler is driven by processing

rules stored in the DBDL. The decision to imple-

ment the DBDL in this manner led to many un-

foreseen consequences. The entire security

structure for SPIRES easily fell into place.

User account numbers became keys pointing to

data base characteristics. Any restrictions

limiting access to a file could be stored with

the account numbers. Another index could con-

tain names used for accessing data bases accom-

panied by text describing the contents of the

data base. The major disadvantage of this

approach is that definition compiling became a

two-step process--first entering the definition,

and then having the definition inverted into the

system access files.

It should be apparent from the preceding

discussion that the processing rules are the

bridge connecting the data base interface to the

user interface. When an element name is recog-

nized during searching, a semantic routine calls

upon the search processing rule for the element.

For example, FIND (assume TOPIC) EARTHQUAKES IN

CALIFORNIA is broken down by TOPIC's processing

rule as follows: first call upon an action to

change all commas, periods, and semicolons and

colons into spaces, next call upon an action to

break the value into multiple values using

spaces as delimiters, then call upon an action to

remove final s's, next call upon an action to

remove common words from the list of values, and

finally call upon an action to insert logical

ANDs between the remaining values. Thus the

request becomes FIND TOPIC EARTHOUAKE AND TOPIC

CALIFORNIA. We have developed about two hundred

different actions, with no action having more

than three parameters (the final parameter may

have multiple values), and feel that this set

88

provides us with all the flexibility needed for

most definitions.

Computer interface

Since SPIRES has to share the IBM 360/67

with almost all other academic applications at

Stanford, the code in core at any time must

occupy the minimum amount of space possible.

ORVYL (ii), the Campus Facility time-sharing

monitor, makes a sharp distinction between the

read-only pages of subprocessor code and the

read-write pages of user data. The techniques

we developed for handling the user and data base

interface languages made it essential that we

have more flexible data structures than found in

most programming languages. In particular, the

programming language had to provide for super-

imposing structure upon data regardless of

storage location.

We naturally looked to IBM's PL/i, since it

had been used to implement SPIRES I. After much

consideration we decided to use another language.

Not only is it hard in PL/i to separate code from

data storage, but too often compiled code takes

up excessive space and is slow to execute. Our

interface languages required heavy use of point-

ers, yet too frequently we encountered restric-

tions limiting use of pointers. One thing we did

not figure out how to encode in PL/I was the

technique of branching into semantic routines

via semantic routine numbers. PL/i also re-

quired use of OS Supervisor Calls which ORVYL

does not allow.

We eventually decided to use the program-

ming language PL360 developed by Niklaus Wirth

(12). While the original PL360 was not intended

for very large programs, by the time we needed it,

it had been extended to handle them. PL360 is

an ALGOL-like language that uses a bottom-up

parser to translate statements directly into

IBM 360 machine instructions. The programmer

has complete control over index registers. Pages

of code (csects) and pages of data (dsects) are

treated as distinct units referred to by differ-

ent index registers. Conceptually a procedure

contains one csect, any number of dsects, and any

number of other procedures. If the main csect

is the top of the hierarchy, a level n csect

can refer to procedures and dsects at level

n+l or at any higher level. Procedures and dsects

can easily be moved around, and new levels can

be added either at the top or at the bottom of

the hierarchy. The net result of shifting code

around is that heavily used general-purpose

routines eventually shift to the top levels,

leaving special-purpose routines in the lower

levels. Thus PL360 in a virtual memory environ-

ment leads to minimum shifting of pages from

drum to core.

The branching from the modified BNF to

semantics is easily handled by first checking the

range the number falls into, branching to a

lower-level csect, and then using an address

list to translate the number into an address

within the csect. We have found that coding in

PL360 has the advantages of efficient execution

and rapid compilation, as well as the legibility

and encodability of ALGOL or PL/i. One drawback

of PL360 is that interfacing with programs

written in FORTRAN IV or PL/i is tricky (but

rarely necessary). Overall, we have found that

our decision to use PL360 made SPIRES an eco-

nomically viable system.

Overview

In retrospect, we feel that it was proper

to take three different approaches to the language

decision. The resulting system has a unity of

design because each system component was develop-

ed with the other components in mind. The

command language permits semantics to be mixed

with syntax, the data base definition language

permits processing rules to be intermixed with

declaratory information, and the programming

language permits data to be kept distinct from

code.

While the user interface language is not

"natural", it has much in common with more

natural interaction languages. Woods (13) notes

that natural language translation requires that

calls upon semantics be intermixed with syntax.

He discovered a small set of semantic actions

which process values extracted by the syntax.

Winograd (14) discovered parsing of natural

8~

language requires that some aspects of the data

be encoded as procedures so that the context of

discourse can influence syntactic recognition.

While our notations differ, each of us has dis-

covered that human communicators use what they

know about each other, the subject being dis-

cussed, the environment, and the rules of the

language to reduce complexity. Ambiguity is of

little importance because either party can ask

the other for clarification. Good interactive

system design, Corbat6 (15) suggests, should seek

to pare away possibilities until the essential

components of the system are revealed in their

simplicity. By keeping the functional needs of

the Stanford community in mind, by splitting

the problem into three subproblems, by consider-

ing alternate solutions to the problems, and by

designing from the top down, we have sought to

achieve good design.

REFERENCES

i. SPIRES Staff. Requirements for SPIRES II.

Stanford University, Stanford, California,

April 1971. (ED 048 747)

2. Parker, Edwin B. SPIRES 1970-71 Annual Report.

Stanford University, Stanford, California,

1971.

3. SPIRES Staff. SPIRES User's Manual. Stanford

Computation Center Campus Facility, Stanford,

California, October 1972.

4. Parker, Edwin B. SPIRES 1967 Annual Report.

Stanford University, Stanford, California,

December 1967. (ED 617 294) '

5. Parker, Edwin B. SPIRES 1968 Annual Report.

Stanford University, Stanford, California,

January 1968. (PB 184 960)

6. FaJman, R. and Borgelt, J. "WYLBUR: An Inter-

active Text Editing and Remote Job Entry

System," CACM, 16:5 (May 1973), pp. 314-

322.

7. Martin, Thomas Hi.; Parker, Edwin B. "De-

signing for user acceptance of an inter-

active bibliographic search facility." In

Walker, Donald E., ed. Interactive Biblio-

graphic Search: The User/Computer Inter-

face. AFIPS Press, Montvale, New Jersey,

1971, pp. 42-52.

8. McKeeman, W.M.; Horning, J.J.: Wortman, D.B.

A Compiler Generator. Prentice Hall,

Englewood Cliffs, New Jersey, 1970.

9. Martin, Thomas H. "Action Controlled Trans-

lation: A New Approach to BNF." In SPIRES

Staff, General Design Document for SPIRES II,

Stanford University, August 1971, pp. A-134

through A-152.

i0. CODASYL Data Base Task Group. April 1971

Report. ACM, New York, April 1971.

ii. Fajman, R. and Borgelt, J. ORVYL User's Guide.

Campus Facility, Stanford University Com-

puter Center, Stanford, California, 1971.

12. Wirth, Niklaus. "PL360, A Programming Language

for the 360 Computers," JACM, 15:1 (January

1968), pp. 37-74.

13. Woods, W.A. "Transition Network Grammars for

Natural Language Analysis," CACM, 13:10

(October 1970), pp. 591-606.

14. Winograd, T. Procedures as a Representation

for Data in a Computer Program for Under-

standing Natural Language, M.I.T., MAC-84,

1971.

15. Corbat6, F.J.; Saltzer, J.H.; Clingen, C.T.

"Multics--The First Seven Years." In AFIPS

Spring Joint Computer Conference 1972 Pro-

ceedings. Vol. 40, pp. 571-583, 1972.

90

APPENDIX

Samples o f a m o d i f i e d BNF command language ~rammar, a PL360
procedure, and a f l l e d e f i n i t i o n are nresented on the fol lowin~
three pages. I f the search request

FIND TITLE CALIF# EARTHOUAKE

were pa rsed us lng the sample grammar, seman t i c p r o c e s s e s wou ld he
c a l l e d in the f o l l o w l n g sequence :

<1> FIND <60> TITLE <62> CALIF# <73> EARTHnUAKE <73> <71> <4> <61> <79>.

A Sample Commend l.an~ua~e ~rammar (wr i t ten in Modified BNF).

ICOMMAND LANGUAGEI : : = (0,HASTER LANOUA~E) <LO~OF~>
<HASTER LANGUAnE> : : = <SEARCH>

I LO~OFF I
<EXTRA COMMANDS>

<LO~OFF> : : = <1> LOG(OFF) (SP) <4>
<OFF> : : = OFF
<EXTRA CO~4MANDS> : : = <1> SELECT <SP> FILE (SP) <4> <50>
<SEARCH> : : = <1> ~IND <SP> <60> (SRCH COMMAND) <79>
<SRCH COHMAND> : : = (SRCH-1) <4> <61>
<SRCH-I> ::= ((SP) <65> (2,SRCH-I)

(SRCH-HNEMONIe) <SRCH-VAI.UE> (2,SRCH-2)
<SRCH-2> ::=) (SP) <66> (2,SRCH-2)

<LOGICAL OP> (2,SRCH-I)
<SRCH-MNEMONIC> ::= <CHARACTERS> <62> (SP)
<SRCH-VALUE> ::= <VALUE> (0,VALUE) <71>
<VAI.UE> : : = ITERMINATORI

<CHARACTERS> <73> (SP)
<TERMINATOR> : : :)

<LOGICAl. OP>
<LOGICAL OP> : : = AND <SP> <67> (NOT)

OR <SP> <68>
<NOT> ::= NOT <SP> <69>
(CHARACTERS) ::= 0 ,1 ,0 ,40, ()
(SP) ::= 0,1,1,40

E x p l a n a t i o n s f o r S e l e c t e d Terms In R l ~ h t Pa r t s o f the Sample P r o d u c t i o n s ,

FIND
<60>
<CHARACTERS>
(SP)
(0,VALUE)
(2,SRCH-2)
ITERMINATORI

0 , I , 0 , 4 0 , ()

R e q u i r e d c a l l on the c h a r a c t e r s t r i n g scanne r f o r FIND.
R e q u i r e d c a l l on seman t i c p rocess 60.
R e q u i r e d c a l l on p r o d u c t i o n CHARACTFRS.
O n t l o n a | call on p r o d u c t i o n SP.
Repeat c a l l on p r o d u c t i o n VALUE u n t l l f a l l u r e .
T r a n s f e r o# c o n t r o l to p r o H u c t i o n SRCH-2.
Lookahead c a l l on p r o d u c t i o n TERMINATOR. I f TEPMINATOR

succeeds then VALUE f a l l s .
Scan f o r (O=no maxlmum) 1 o r more c h a r a c t e r s no t (O=not)

l l k e b l a n k s (h e x l d e c l m a l 40) o r p a r e n t h e s e s .

91

The seman t i c processes would c a r r y out the f o l l o w i n g operations:

<I>
<60>
<62>

<73>
<71>

<4>
<61>

<79>

Read a u s e r t s command,
I n i t i a l i z e for a "FINn" command, asslEn core, etc.
Look up the value parsed hy <SRCH-f~NEHONIC>

in the f l | e t s search charac te r i s t i cs . I f the
v a | u e does not match an access name and no
d e f a u l t access name Is In e f f e c t , the seman t i c
process reports f a i l u r e to the Parser.

Save the narsed v a l u e f o r l a t e r n r o c e s s l n ~ .
App ly Search P rocess ln~ Pules (i f any) to the v a l u e s ,

S to re the f l n a l v a l u e s In the search command s t a c k ,
LoGica l o p e r a t o r s a re a l s o s t o r e d in the s t a c k ,

I nsu re t h a t a l l the command has been pa rsed .
Perform the required search based on the Information
saved In the command stack.

Clean up, release core assIEned hy <60>.

A Samnle Search Procedure (wr i t ten In PL360).

GLOBAL PROCEDURE SEARCH (R14);
IIEGIN COMMENT-- PROCEDURES 'OOSEARrH', 'RAnPARFNS t

tlNITSEARCHV, ANn tABORT t ARE NOT SHONN J-;

#UH~qY BASE PSI COMHENT - - SEARCH r~SECT - - ;
SHORT INTEGER PARENDEPTH, ~NEHONICTYPE;
ARRAY 30 INTEISER COH~ANDSTACK;
BYTE OPERATOR, PETURNSWITCH;
BYTE FIND~'LA~, ERRORI-'LA~;

CLOSE BASE;
c OUATE ERPORCODE SYN 100, OROP SYN 1,

ANDOP SYN 2, ANDNOTOP SYN 3;

COMHENT - - SAMPLE SE~ANTlC RRANCHINO TECHNIOUE - - ;
R7 := R7 - 6n SHLI. 2;
RR := BSECTAnDRESS;
~ALR(R3,R0); BRANCH(B3(R7÷4));

GOTO SEN60;
~OTO SEN61;
~OTO SEN62;

COHMENT - - SAMPLE SEMAf'ITIC PROCESSES - - ;

SEN63: COHNENT - - <63> UPDATE PARENTHESIS DEPTH - - ;
R2 := 1 + PARENDEPTH; PARENDEPTH := R2; GOTO EXIT;

SEN62: COMMENT - - <62> CHECK <CHARACTERS> A~AINST THE ~II.E~S
SEARrH CHARACTERISTICS TO nETERHINE IP IT IS
A VALID SEARCH MNEMONIC - - ; ~OTO EXIT;

SEN61: COHMENT - - <61> PROCESS PARSEr SEAR?H COF4HAND - - ;
IF ZERO 4= PARENDEPTH THEN ~ADPARENS;
IF OPERATOR = 0 AND ZERO = MNEMONICTYPE

AND "ERRORFLA~ THEN DOSEARCH ELSE
BEGIN RZ := EPRnRCODE; ABORT;
END; ~OTO ~XIT;

SENG0: COMMENT - - <60> SETUP FOR ~IND COMNANn - - ;
INITSEARCH; SET(FIND~LAQ);
OPERATOR := OROP;

~ X I T : R13 := R13 - - #01000040; L M (R l , P 0 , B 1 3) ;
END;

92

r~ % , , -

When s e m a n t i c p rocess <71> c a l l s upon the search p rocess . l nn ,.
r u l e f o r T ITLE, the ~ o l l o w l n ~ o n e r a t l o n s wou ld he c a r r i e d o u t :

A45, Rreak the v a l u e I n t o m u l t l p l e v a l u e s u s i n g h1ahks ~ ' '
as d e l l m e t e r s . ~MDs a re l n s e r t e ~ between r a i l , s. -~'

A14,# I f a value ends wlth a pound sl~n, I t Is r e m n ~ : I '
and a switch Is set indicating that a l l nolnters
for access recoras he~Innlng wlth thls stem shoul#
he ORed to~ether.

A Sample Fi le Def lnl t lo~ (wlth Fxplanaterv Hotes In the"Pl~ht Column).

FI LE X123. SAHPLE;
RECORD ROOK;

KEY BOOK-UUMBER;
ELEM TITLE;

OCC 1;
ELEM AUTHOR;

RECORD AUTHOR;
KEY LAST-MAHE;
CLEM NAMES;

TYPE STR;
STPUCTURE NAMES;

KEY FI RST-HAME;
ELEH POINTER;

TYPE PTR;
RECORD TI TLE;

KEY IVORD ;
ELEM POINTER;

TYPE PTR;

LINKAGE ROOK;
REFERENCE POINTER;

MAHE ROOK;
PASSPROC A170;

ACCESS AUTHOR;
NAME AUTHOR, A;

PASSER AUTHOR;
PASSPROC A166/ A38;
SPCPROC A38/ AI4,#;

IN NAHES;
MAME NULl.;

PASSPROC A165;
RETRIEVAL POINTER;

ACCESS TITLE;
NAME TITLE, T;

PASSER TITLE;
PASSPROC A166/ A45,;
SRCPROC Ah5,/ Alh,#;

RETRIEVAl. POIHTER;
SUBFILE BOOKS;

GOAL ROOK;
ACCT PUBF.;

The name o f the ~ ILE.
The maln RECORDs o~ the F.IL~

a re keyed on ~OOK number.
w l t h a TITLE (whtc:h. . ls . r e s t r l c t e d
to o c c u r o n l y once) ' ,
and m u l t t n l e AUTHORs.

The AtITHOP Index r e c o r d s a re
keyed on the AUTHOR's l a s t name.

The AUTHOPls first name Is the key
of a multI~ly occllrrlnE structHre
containing POINTERs back to the
ROOK records.

The TITLE Inaex records are
keyed on Indlvldual TITLE words
with POIHTERs hack to the
nOOK records.

The nOOK r e c o r d s a re " l l n k e d " tO
the Indexes by the PQINTEPs.

The AUTHOR records are used to
access the nOOKs when a search
mnemonlc refers to AUTHOP or A.

The f i l e I n v e r s i o n and sea rch
p r o c e s s i n g r u l e s a l l o w
truncated surname s e a r c h l n ~ .

The author's flrst names are handled
hy the structure portion of the
AUTHOR Index records.

The TITLE records are used to
access the ROOKs when a s e a r c h
mnemonic r e f e r s to TITLE o r T.

The PASSPRnC and 3RCPROP rules
allow truncated (word stem)
searchlng.

The ROOK records constltute the
p r i m a r y (o r GOAl) r e c o r d s ,
and a re o u b l t c l y a c c e s s ! h l e .

93

QUESTIONS

Harry Lotis:

Were there quite a bit of similarities that caused you to reach a decision to break the data base
into three parts? I am just wondering how you actually separated it?

Guertin:

What I said was that the system is broken into three parts, not the data base. What I mean by that
is we have a data base definition in which we declare how these data elements are to interact and be
handled. The code for handling that is inside the SPIRES system in these 150 semantic processes which
can be combined together, depending on the particular data base. The first split is between the code and
the data base. The second split is between the code and the user through the command language. The
command language services the user with the information in the data ba§e, and the programming language
in between only accomplishes the work. The translation between what the user wants and what the file
contains is done by the BNF on one side and the file definition on the other. The result is a three
phrase structure: command language, semantic processes and file definition.

Robert A. Landau:

Can you give us some insights into the power of the system in terms of the number of simultaneous
ports available and the size of the data base in millions of characters?

Guertin:

The size of the data base differs depending on which one you are using. We have complete structural
depth capability, i.e., a record can contain a data element, which is a structure which contains data
elements, and some of those can be structures which contain data elements. What was that first
question again?

Robert A. Landau:

You didn't quite answer the second. I am interested in knowing the number of simultaneous users that
can access the system and the largest possible data base that the system can handle. I would not
consider i00,000 records, for instance, a very large data base.

Guertin:

SPIRES is a twin of another system called BALLOTS. The BALLOTS and SPIRES are separate processors
that share the same computer. SPIRES has an average of about 40 sessions per day, ranging in length
from 15 minute to a half hour. We have tried loading SPIRES with 50 terminals, and there doesn't seem
to be any degradation other than the normal degradation you would expect from having 50 people trying to
access the same data base simultaneously, i.e., disc tie-ups, channel interference. With the paging
system such as the IBM 370 uses, the load is really not that high since SPIRES is contained in 25 pages
of 4,000 bytes each, to which is appended approximately three pages of user specific information.

Martin Dillon: Is there a HELP for data definition?

Guertin: That is being worked on right now.

~4

Martin Dillon:

Suppose you do not want to go to the trouble of doing your own file definition, and you want to use
one of the 75 that already exists? Is that possible?

Guertin:

Oh yes, if the file owner wishes to make his file public or semi-public, he needs to change only
one thing in the file definition.

Thomas Martin:

I would like to add that while it takes only about four hours to define a file, it certainly should
be understood that people are never quite satisfied with the first crack at file definition and it
is possible to revise things quite a bit before one needs to scratch all that he has done previously.
Also, in terms of the file structure that we use, Knuth would call it an n-way binary tree. It has the
property of never forcing you to give up and rebuild the entire structure from scratch.

Richard E. Nance:

In terms of the BNF definition of the command language, how much input came from the user community
in defining the command language?

Guertin:

A SPIRES I system existed prior to the current system, and the experience with that taught us what was
needed. At least so we thought, After we had begun our simple set of commands for SPIRES II, we found
that the user community was not satisfied with it. We began to effect changes in the command language
based on the user needs, and we periodically review the command language by monitoring the user's
session at the terminal (if he so desires, since he is informed that our monitoring is being done). We
do not render existing commands inoperable, but we seek to modify them to develop alternate paths.

Martin:

Let me also respond to that. I think this comes out most clearly when you implement a command and
find that it just doesn't work the way you thought it should. We had such an example in the update area
Actually, we have done this on a number of commands.

Martin Dillon:

How many people know what PL 360 is? (The answer is over half of the audience.) Good, I have always
wondered why computer companies didn't come out with more languages of the PL 360 type instead of
assembly languages. It seems to me that what assembler is to octal, PL 360 is to assembler. I just
don't understand why it hasn't been accepted as a realized advance over assemblers.

Guertin:

We wanted to use PL 360 because of its portability, at least among IBM 360 installations. We found
that it took at least i0 times the amount of time in assembler as it did with PL 360. Also with the PL 360,
we did not have to operate under OS.

Gerard Salton:

I have a question, since you brought up PL 360, and I don't feel that you really rationalize this in
the paper. In fact, there seems to be a contradiction somehow, for you say, when you discuss the design
of SPIRES II:

We examined a compiler writing language in light of the SPIRES requirements...unfortunately
that language is a bottom-up parser and bottom-up parsers have certain well known problems.

And then a few pages later you go on to say,

We use PL 360, which is an ALGOL-like language with the bottom-up parser, that has statements
corresponding directly to IBM 360 machine instructions.

And my question is either you like PL 360 or you don't, which is it? Surely the reason you use PL 360
is not because of the parser but for something else.

95

Martin:

The problem • is that we were thinking about two different things there. Bottom-up parsing does not
work well at all in the interactive command language, but it'works beautifully in the implementation of
the semantics.

Guer t in:

Recall that the system exists in three phases: the command language, the semantics, and the file
definition. ~ The~bo6~m~up:ip~a~rser does not work well at all for the command language, but it does work
quite we!~ for a comp~e~'~dlsimilar uses, such as our semantic processes.

Na~ib A" Badre: ~ ~ ~'

My impression is that you can do anything with bottom-up parsing that you can do with top-down

parsing.

Thomas L. Martin:

It's the same sort of business if you are thinking of top-down parsing llke you are thinking of
transition networks. We were using the augmented transition networks. In the work that Woods has done,
there is quite a diffe~ence~tween transition networks. What we couldn't do with bottom-up Parsing
was this blend of spreading out the information about the data base between the command language, the
semantic processes and the file definition. The top-down parsing approach allowed us to blend these
things in a very nice way.

Top-down gave us the capability to place calls among semantic processes wherever we desired;
conversely, bottom-up parsing says it limits you to doing semantic processing only after you have
finished production.

Unidentified questioner:

Could you amplify on how you do the processing between the command language and the rest of the system?

Guertin:

If you look at the appendix to our paper, you will see that the command language is shown as a BNF
language. Imbedded in that are angled brackets with numbers. The numbers are indications of semantic
calls, i.e., calls on the semantic processors for work to be done. A PL 360 program is used to drive
down the BNF in order to parse the user's query. A semantics routine is then called. A branch is made
to the proper semantics processor from this routine based on what the parsing of the user's command
has produced. Information gleaned from the data base and placed in core is then examined to see
whether the semantics will succeed or fail. The semantics routine will then return control to the parser
indicating whether it has been able to succeed in its task or something is wrong. Failure causes the
attempt to try alternate routes in the BNF. This process can be repeated several times until finally
a complete indication of task completion is given by the semantics routine, and at that time a search

is effected.

Robert Gaskill:

I am quite interested in the tools that are used in the implementation systems such as SPIRES. I
believe you mentioned that it took the two of you something llke two years. You further indicated that
the basic reasons were that you used a high level language, PL 360, and then you gave a couple of others.
I submit, at least for your comment, that maybe you left out one of the most important reasons, and that

is that there were only two of you.

Martin:

There were also some additional contributing factors and they were the availability of all the other
things at Stanford. These included an efficient, capable text editor, the various on-line debugging
techniques, etc. Also, to be honest, the second person is actually a third person who is not here.
There were other people on the staff who contributed also, but perhaps 90% of the work was done by

these two people.

Guertin:

By the way, I have broken down for you the division by language of the code for SPIRES II. Note that
there are 2,000 bytes of •assembly language, 4,000 bytes in BNF, and the remainder, 86,000 bytes, in

PL 360.

96

Bill Carlson:

What do you do to help users keep bad data out of their data bases? Are people expected to edit a
sequential file before they enter it into your system?

Martin:

Once again in terms of our input processing rules, the User can construct his added records at a
terminal and then we can submit those to all the validation tests the user has specified before entering
them in his data base. Acceptance of the record actually means its entrance into~What we call an
overnight queue. ~The record is actually entered at this point, but the updatihg of the inverted files
is done only at night, so that the inverted file version of the record will be available only after the
updating at night.

Guertln:

This process of deferred updating means that we can do the updating for a series of records at one
time rather than having to do each one individually.

Bill Carlson:

And the semantic structures for this editing and valldatlon are contained within your 150. Still,
you do not find that you need to assist users in doing this?

Martin:

I £hlnk it's fair to say that he who is defining his file had better go through an individual who
really understands the file definition process. It is not a simple process.

Leo Bellew:

I am still confused as to the processing between the semantic routines and the data base. Could you
clarify this?

Martin:

(The following is a severely edited version of Martin's reply.) The user's query stimulates a series
of calls upon semantic processes that eventually terminate with a reference to the file definition.
Within the file definition are contained those terms that are present in an inverted file. This process
then returns to the semantic routine with the information as to whether the terms constructed in the
parsing of the query are contained in the inverted file. If there, the result is a success; if not,
a failure.

Guertin:

There is a multi-level here in that what you see in the paper is coded PL 360. One of the semantic
processes that can be called contains rules for search procedures. These rules may differ depending on
particular data bases. All the rules are also coded in PL 360, but the user does not see that from the
BNF level. Note that the data base contains not only the data but also the rules as to how the data can
be used and how different data elements are related. Does this answer the question?

Unidentified questioner:

The question is why are you doing that? Are you actually going out to the data base while you are
doing all those things?

Martin:

The answer is "No".

Unidentified questioner:

(This question related to the file definition usage in the SPIRES system. Unfortunately the
questioner did not use a mlcrophone, so it was impossible to determine the exact wording of his question.)

Martin:

When a file is selected, brought into the user's area is a portion of the file that is related to file
definition. This portion of the file definition includes both needed information for searching and for
file updating. These tables created by the file definition portion are then called upon by the semantic
processing routines. Imbedded in these tables are the rules to which we have referred several times.

97

Guertin:

When you have completed the parsing, a search routine physically accesses the data base.
Consequently, the data base is physically accessed only when the parsing is completed, but file
definition information, stored in core, is accessed during the parsing process.

Bernard Plasman:

How does your system handle the relations between more than one data base, and can the system
establish work areas for treating subfiles within two or more data bases?

Martin:

We have not done that. It can be done only by working with one data base and storing the results as
a temporary file, then working with the second data base and storing its results as a temporary file
before trying to bring the two together in any sense.

Bernard Plagman:

Then the responsibility would be with the user to keep account of what is happening in his work area?

Martin:

That is correct.

Unidentified Questioner:

Does the appendix to the paper show actually how the file definition procedures work?

Martin:

Yes. That is the intent of the appendix. In an attempt at clarification, think of both the BNF and
these processing rules and as strings of calls on small programs resulting in an interpretive type
system.

Guertin:

The whole system, too, is recursive in itself. That is, the BNF analyzer has BNF that drives it, and
you can analyze the BNF to get a new BNF analyzer. The PL 360 compiler is written in PL 360 so that you
can change the compiler in its own language. And the file definitions are written as a file which is a
file definitions file. Consequently, the whole system is totally recursive and can be boot-strapped at
any point. The system is portable in every extent except that small part which is written in the
assembly language. This represents the interface with the operating system and consequently would
differ among implementations.

Bill Malthouse:

What is the interface between PL 360 and IBM supplied macros? For example, when advances are made in
the IBM macros, can you get at these easily through PL 360?

G~ertin:

The decision was made not to use any macros in PL 360.
remain independent of any operating system.

Bill Malthouse:

This decision was prompted by the desire to

Then PL 360 provides in itself some sort of macro capability?

Guertin:

It will. The University of Alberta has just developed a macro capability in PL 360. I received a
tape last week, but have not had the opportunity to examine it. Let me say that I do not think that the
absence of the macro capability inhibited our efforts at all.

Martin:

Perhaps an addendum is necessary at this point, since we should note that Dick Guertin had complete
control of the PL 360 compiler during our efforts. If he found something in the compiler that he didn't
like, he simply changed the compiler.

98

Willard Draisin:

Perhaps you should mention some of the weaknesses in the system, for I think that they would be as
useful to us as the strengths that have been emphasized.

Martin:

I could provide some of these. There is such a great deal of flexibility in the data definition

capability that you get widely differently appearing files. On the other hand, all of the messages are
at the system level so that it becomes quite difficult for a file manager to communicate with his users
about problems specific to a particular file.

Guertin:

We need file associated assistance and diagnostic routines. These HELP and error diagnostics should
be particular to a data base.

Martin:

Because there is so much flexibility in the data definition area, a user has to rely on one or two
individuals who can keep many of the details in mind because they are constantly creating files for
other users. A user cannot at present define a file from scratch.

Guertin:

This is something that we hope to remedy with our automatic file definition compiler.

Steven R. Roman:

Could you co~mnent on restrictions on the length of the record or the size of the file?

Guertin:

There are no limitations on the size of the data elements. We have fixed length area of records, and
we have required record areas whose entries may be multiple or single and may be fixed or variable in
length. Then there are optional elements that may or may not occur. Two bytes are used to process any
data element that is a fixed length or fixed occurring. As we have said beforej a data element may be a
structure, and a structure may have fixed or variable occurring or length characteristics. You can go

i0 deep in structures, so that there is little overhead required by the system. The last statistics I
saw on the MARC data base indicated that 80% of the file was being used for actual data.

Martin:

I don't believe we have answers to some of these questions. Under ORVYL there can be only nine data
sets so that we could have at one time only seven indexes or inverted files. We circumvent this
restriction by defining what we call a combined index for the type of element that occurs rarely but you
still wish to use in searching. In that case we sort of create a mini-index that is a record in and of

itself. There is a separate record in that combined index for every type of data element that you will
be treating in that way. The size of the record is no longer limited by the size of the data set, and
as a practical matter the size of the file in limited by the number of disks we have at Stanford.

Leo Bellew:

How difficult would it be to enter a foreign file, perhaps contained on 200 tapes?

Martin:

We would begin by writing a BNF description of what the file looked like. As a practical matter, we
have not had any gigantic files, in the neighborhood of millions of records, built on the system at this
time. I am sure that files of this size would cause problems in the way storage is maintained in the
current Stanford system.

Alan Beals:

I understand from your discussion that you enter the data record in an updating context at the time
that the data record is defined, but the indexes are not changed until a later point in time. Since the
only way one can get at the data record is through the indexes, why bother to add it at all at that time?

Guertin:

The reason we do not do on-line updating is that, for example, changing the title of a record might

99

mean unindexing a lot of different index terms and indexing on a lot of new ones. Perhaps 17 or 20
new index records could be affected by changing this particular data record. This produces a wider
window of time during which, if the system fails, we will have an incomplete updating process. Also, we
found that a user in updatinE a record may make several changes in a short period of time, for example, a
day. Thus we shall defer updating until the record is, in the user's opinion, of the form that he
wishes. Also, we make a comparison of the updated record with the original and change only those records
that have been altered.

Mart in:

The stimulus for this procedure with regard to updating was the desire for a very high system
reliability by the BALLOTS people. They felt that high reliability was a prime characteristic.

Guertin:

By the way, the "overnight" updating process can be done interactively on-line by those users who
wish to run that risk.

Alan Beals:

There seems to me that in some instances and in some applications a very gross error could be made by
referencing a data element whose key value has been changed but that change has not been made.
For example, consider the case in a bank where an account balance although changed has not been noted.

Martin:

Yes, I agree there are applications where our procedures are not suitable. We have just not been
dealing with that dynamic an environment.

100

