
FROW A DATA DESCRIPTION POINT Of VIEW

Diane C. Pirog Smith
D i v i s i on of Computer Science

Un ivers i t y of Utah

In t roduc t ion

As an area closely involved in the manipulation of large masses
of data, Information Retrieval should benefit from any research
developments involving data storage and date access methods. Current
research on general ized data descr ip t ion languages has lead to several
interesting developments in the area of date management. In this
paper me discuss these developments and sham that Informat ion Ret r ie -
va l i s indeed l i k e l y to benef i t as a consequence,

D e f i n i t i o n of Date Descr ip t ion

"Date description" is • term enjoying several distinct interpre-
tations in the Programming Language and Information Retrieval areas.
These d i f f e r e n t i n t e rp re ta t i ons are caused by several fac to rs , from
• practical etendpolntw they are caused by the application envisaged
for the data description. While, from • technical standpoint, they
are caused by the aspects of data being described and the l eve l of
detail to mhich the description is taken.

To appreciate these var ious fac to rs , we begin by consider ing
data as a l lngulat lc entity. The data on a disk pack is e string of
symbols (in binary code) embedded in a three-dimensional space. This
s t r i n g has a ce r ta in syn tac t i c s t ruc tu re (p a r t i c u l a r symbol sequences
are recognized as f i e l d s , records, e t c .) , end i t has • ce r ta in semen-
t i c a t m c t u t e (p a r t i c u l a r symbols are in te rp re ted as po in ters , es
delimiters, or as data items of var ious types). A deacrlption of the
syntactic structure alone Is usually sufficient to retrieve informa-
tion from a f i l e , but only by en exhaust ive search through the sym-
bol ettlng attempting to match keys. However, i f s description of
the semantic structure is available, then retr ieval becomes more
e f f i c i e n t as the access paths embedded in the f i l e can be u t i l i z e d .
A syntactic description then indicates how the format of the file Is
comprised of i t s component symbol s t r i ngs , mharsas a semantic descr ip-
t i on spec i f ies how the access paths embeddedin the f i l e can be
used to effect eff ic ient storage and retr ieval. One factor in • date
description is that of syntactic versus semantic description.

A second factor relates to the level at which e file is treated.
Users of computer systems are re re ly concerned with controlling
d i r e c t l y the processors invoked by t h e i r jobs. Programming aids
such as compilers, operat ing systems and data base management systems
ere normally delegated the tasks of managing the de ta i l s of t h e i r
programs end data. These var ious processors con t r ibu te a h ierarchy
of successively re f ined leve ls to the syntax and semantics of data.
~eny attempts have been made to formal ize these leve ls by decomposing
the characteristics of stored date into meaningful partitions l o l l s ,
Smith, Taylor, SDDTTG, Altman]. Though differing in the numbers of
sublevsls and distribution of characteristics, these attempts recognize
the f o l l ow ing l eve l s of date syntax end semantics:

118

I)

2)

the Entity Level: this level is the reoresentetion of the
user's view of his date. It consists of entities and re-
lations over entities.

the Logical Access Level: this level consists of the char-
acteristics of the access paths which implement the rela-
tions seen at the entity level.

3) the Physical Access Level: this level consists of the
characteristics relatinq to how data is positioned on physi-
cal storage media.

A third end final factor in date description is the type of
description itself. A description may be implicit in e program which
creates end maintains a data structure or explicitly stated in a date
description language in such terms es "item length" or "ordering."

In terms of these factors we can define a generalized data
description language (gddl) as a language in which the syntax end
semantics of stored data can be explicitly described at all levels
of its implementation.

Now let us look at how these factors ere reflected in practi-
cal date description languages (ddls).

Examples of Date Description Lanqusqes

Although the idea of a generalized data description language is
relatively new, date description facilities came into existence with
the first computers, as they are implicit in the order codes that
position date and control storage media. Higher level programming
languages like COBOL contain statements that describe explicitly
particular levels of s dets structure. Macro cells on operating
system data management components imply complex logical and physical
access structures such es indexed sequential and sequential access
structures for tape end disk.

Currant ideas about generalized and explicit date description
languages have arisen from the development of generalized date base
management systems (GOBMSs) and extensible languages.

Because GDBMSs attempt to provide their users with a variety of
of structures, they require e language in which the users can describe
the options they select. The more generalized the DaMs is, the more
generalized its ddl must be. A proliferation of GDBMSs and ddls led
CODASYL in the late lg60's to form a task group. Its purpose was to
codify s ddl which could be used es a standard for GDBMS development
ECODASYLJ.

Extensible languages seek to increase the choice of structures
available to users of higher level programming languages. 5o again
s language is required in which a user can describe the new data
structures he wishes implemented.

The explicit ddls developed by the COOASYL Task Group and by
extensible language researchers (e.g. ~Standishj) are not generalized
in the sense described above. The CODASYL ddl is concerned with the
entity and logical access levels only. For example, while pointers
may be specified by e user as a means of implementing access paths,
their format, storage media implementation and access strategies are
predetermined by the GDBMS and not by the user. The data description
elements of extensible languages ere concerned with specifying logi-
cal access structures end methods. Storage level considerations ere
predetermined by the language processor.

In 1972 the first versions of e generalized ddl were implemen-
ted at the Universities of Pennsylvania and michigan ERemeriz, FryJ.
These implementetion~will be covered in greeter deteil in later sec-
tions of the paper. Now we will examine some of the current end
potential applications of ddls.

119

Applications of Generalized DOLe

The lack of standardization in storage formats and the conse-
quent difficuity in sharing stored data have suggested the use of e
standardized DDL as a documentation language. We envisage that in
the not too distant future every stored fiIa wiii be accompanied by
a tag (probably machine readabie) that describes the structure of the
stored data. The machine readabIe ddi wili be used to drive •
generalized read routine, so that files wili not become obsoIete
after conversions to new computer systems. We further foresee a
machine readabie ddl driving a generaiized write routine for storing
data onto different storage media. Such e processor wiil be used to
create on demand new logical and physical access structures for any
given set of data.

A processor combining the generalized description driven reed
and write routines forms a description-driven date transistor that
converts stored data from one6tructure to another.

Oats Description-Driven Data Translation

The idea of description driven generalized data translation is
cIeeriy appealing and is receiving an increasing amount of attention.
Theoretical techniques have been developed in ESmith ig7I, Taylor and
Fry] end the current thrust is to demonstrate practical feasibility.
To this end the projects ~t the Universities of Pennsylvania and Mich-
igan end the work of the CODASYL Task Group on Stored Date Descrip-
tion end Translation EFry and Smith 1972] are noteworthy.

A translation processor accepts ms input three descriptions end
the set of data to be translated. The first description characterizes
the logical end physical structure of the data to be translated (the
source files). The second description characterizes the structure into
which the source files are to be translated (the target structure).
The third description identifies, for each element in the target struc-
ture, its source of values from the source files. The relationships
between descriptions, data and processor are illustrated in Figure 1.

Present versions of generalized translators operate, in effect,
"off-line." That is, they cannot produce translated date on demand in
real-time. Their mode of operation is either "one-shot" or "multiple-
shot." A one-shot translation task is one in which translation between
source end target structures need be performed only once. Translations

I
Source I 1 ~Translati°n i [Target i

/ Data
ISoorce h / Trenslator

Figure i. Relation-
ships between e
generalized data
translator,
descriptions and
date.

necessitated by changes in computer systems are typical examples. The
University of Michigan transistor, as we will see later, is more orien-
ted towards one-shot appIications. A multiple-shot translation task is
one in mhich translations between given source and target structures
must be performed repeatedly. Sharing data between two eeparateiy
maintained data bases is a situation which requires repeated trensia-
tions to maintain updeted versions of the respective bases. The Uni-
versity of Pennsylvania translator is oriented tomerde multiple-shot
applications. These different modes of operation mill be discussed in
later sections.

While generalized data translation is proving to be a practical
tool for off-line applications, there will be even more impressive
applications should the technology advance to the state where real-
time translation is feasible. Real-time translators could be incor-

120

porated into heterogeneous natBorks of computers to facilitate dynamic
date sharing. They could be used Blth integrated data bases to allow
users to impose multiple structures over single copies of data by dynam-
ically translating between storage structure and any one of the users'
desired structures.

With these currant end future applications in mind Be Bill now
look at components and implementation strategies of date translators.

Components of • Generalized Date Translator

A genereiized data description driven data transletor consists of
three componentsl e data structure analyzer (DSA), • data structure
synthesizer (DSS) end • translat ion control ler (TC).

The function of the DSA is to access items of data in a source
file, given the description of the source file, the source file end e
FIND commend that identifies the item to be accessed. The OSA outputs
the accessed item and returns control to the DSS. The relationships
betBeen the DeA, descriptions, data end control flow are illustrated
in Figure 2.

The function of the DSS is to construct e representation of a
target file, given the description of the target structure. It out-
puts • GET request to the TC to obtain the value for each element in
the target structure it is constructing. When the value is found (by
the DSA) i t is sent as input to the DSS. Whatever conversion is

DSA

] s o u r c e]

~control flow
FIND (element identification) y date flow

Transfer control
to DeS (when element found)

data element

Figure 2. Reletionshipe between the DBA,
date, descriptions end the control flo~ to
other translator components.

necessary is performed on the value before i t is inserted in the target
structure under construction. When the target structure is completed,
i t is output. The relationships betBeen the OSS, date end descriptions
and the DSS's control paths ere i l lustrated in figure 5.

data
e l e m e n t /

Target I

GET (element identification)

>control flow
I @ ~dete flow

DeS J

Figure 5. Relationships between the DSS,
data, descriptions end the control flow
to other translator components.

The TC is driven by e translation description which specifies
whet elements in a source file ere to provide values for an element
in the target file. It operates as follows: When it receives e GET
commend issued by the D55 , the element identification (!~) determines
which target element is to be constructed next. The translation description
is then consulted to yield the identification of the source element
which is to provide its value. The TC outputs an appropriate FINO
command to the DSA.

The generalized description-driven translator is produced by
connecting the DSA, OS$ and TC as i l lustrated in Figure 4. The pro-

121

IDascr I 1 Tr o l t oo | I Tsrgst I
io~ LOescriptioo~i I Description I

FIND(ID) F--~--~ET(ID)

W

~-----~control flow
------~dats flow

Figure 4. The ~ruc-
ture of a data trans-
lator

cess begins wi th the DSS requ i r i ng a va lue f o r a data element to be
suppl ied by the source f i l e . The request i s sent to the TC which
determines the i d e n t i f i c a t i o n of the source element which i s to provide
the value. This identification is sent to the DSA in a FIND command.
The DSA then returns control end the value to the DSS when it has
extracted the value from the source file.

Data Translation Implementation 5treteqies

In developing implementations of a generalized date translator
two different strategies of note have appeared. The first might be
called the "Generalized Processor" approach and the second the "Com-
piler-compiler" approach.

The Generalized Processor approach is the strategy used at the
University of Michigan. It is oriented towards use with generalized
data base management systems. That is, the input to the translator
will be records output by DBMSs in linear fashion. Its output will
be records in formats that can be input by Dames. Later vsreions will
accept as input files created by OBMSs and will output files directly
usable by DBMSs. The translator is implemented as three separate
modulast two "convsrtors" and a restructursr. The convertors are
generalized read and write routines that convert data into end from
a normalized form. This normalized fo~m is e standard representation
for all access paths end value encodings that is machine independent.
The components are linked as illustrated in Figure 5. The restruc-

~Source rtor l ~ Restructurer]

Figure 5.

data translation,

I Source I [Translation I [Target I
Description l~ption~~Description

I J Target I
Convertor I

Generalized
Processor Approach to

t u r e r end convertors are each date t r a n s l a t o r s . The source conver tor
translates the source from its input form to the normalized form. The
rastructurer translates from the input normalized form to an output
normalized form. The target convertor translates from the output
normalized form to the final output form. The advantages of this
approach result from the use of a normalized, machine-independent
form for performing the actual restructuring of the date, end the
separation of the restructurer from the hardware dependent convartors.
The restructurer is thus completely machine independent end can be run
on any system. Only the convertors need to be tailored to particular
systems. This situation makes this approach suitable for developing
for use in reel-time network applications. Convertors can reside st
local nodes and the restructurer =hereever convenient.

122

The compiler-compiler approach is the strategy used at the Uni-
versity of Pennsylvania. It is oriented towards producing efficient
translation. The processor accepts as input the source, target and
translation descriptions, and outputs a special purpose translator
for translating all sets of data satisfying the source description.
In its current version, it produces translators coded in PL/I. Later
versions will produce translators coded in other programming languages.
The advantages of this approach are the smaller size of the resulting
translator and the efficiency of a special purpose processor generated
in an automatic manner. This approach promises to figure in research
on the automatic generation of information systems. This will be
discussed in more detail later in this paper.

The suitability of the Generalized Processor approach for one-

shot applications results from the fact that the translator can per-
form the translation directly, whereas, the processor of the compiler-
compiler approach must first generate a specialized translator which
will then only be used once. However, in the multiple-shot applica-
tions, once the compiler-compiler processor has generated the special-
ized translator, it can perform translations more quickly and using
less space than the General ized Processor approech.

Information systems from a date description point of vim~

From the applications we have seen, it is not surprising that e
date translator couId be used to extend the cspabiiities of an
Information Storage and RetrieveI system, in terms of date prepara-
tion and restructuring. What is perhaps surprising is that an Infor-
mation Storage and Retrievai s~tem itseif is nothing but a coiiection
of speciaIized data translators and data description ienguagss. We
will show hom this fact can be exploited to extend the capabilities
of an Information Storage end RstrievaI system by rethinking its
internal structure rather than by adding further sxternai processors.

In this light, me examine query languages end the create,
retrieve and update functions of an information system.

A query language is the combination of s specialized data
description language and a transIetion description ianguage. It is
used to describe both the target structure of the data to be retri-
eved and aiso criteria for determining which data ere to be retrieved.
Consider a typical query: "Retrieve ail authors who wrote books
about information retrieval in 1973, end also the names of their pub-
lishers". The phrase " ... all authors ... and also the names of
their publishers" indicates that records consisting of single "author"
fields followed by possibly repeating "publisher" fields ere to be
output. This is a data description. The phrase " ... books about
information retrieval in 1973 ... " indicates that the source of those

"author" fields are records in which an index word field has "infor-
mation retrieval" as e value and the date field has "1973" as a
value. This is a translation description.

The create function is a date translator that translates raw
data into the structure of the date base.

The retrieve function can be seen as a degenerate data trans-
istor in mhich the target file it constructs is always s subset of
the source fiIe. The incoming query is decomposed into its data
description end translation description components, end these in
turn are passed to the DSS and the TC respectively. The main role
in the translation is of course played by the DSA, which must use
the structure of the source file to locate the records for the out-
put subset.

Updating is composed of the retrieve function together with
a record ievei data translator. In this case the source files con-
aist of the existing file and e fiie of update information, while
the target fiie is constructed by modifying the existing fiie.
First, a source date record is retrieved as discussed above. Then
this record is transisted by placing updated vaIuee in appropriate
fields, before being returned to the original file.

123

Recognition of these relationships between date translation
end information system functions suggests several ways in which ddl
and data translation technology may influence information system
design and implementation. One of the most interesting benefits
may arise from "automatic programming".

We will show how, by using both a compiler-compiler type of
date translator generator and a generalized data translator, the
the main modules of an information system can be programmed auto-
meticslly. The data translator generator can produce the "create"
module automatically if it is given descriptions of the raw data
format end the intended data base organization. The "retrieve"
module can be implemented by combining two components. First, the
translator generator is used to produce s DSA specialized to operate
over the intended data base organization. Then a generalized date
translator is used to supply the TC and 055 functions. These two
components are then combined to produce e hybrid data translator.
The TC and 055 processors can operate from the translation and data
descriptions (which are generated by e retrieve or update request)
to drive the specialized DSA to retrieve the required records.
The record level translator required for the update module may be
produced am a specialized translator using the data translator gener-
ator. In this case the data translator generator needs descriptions
of the data base and the update file.

Date translation technology also suggests e solution to a
frequent problem in both the Information Storage and Retrieval end
the 08[~ area. This problem is one of "local" inefficiencies that
are felt by data base users who have occasion to concentrate their
interest on various subsets of the data base. These users may re-
quire access patterns that are not optimized in the context of the
current date organization. A solution to this problem (for cases
where the data base is not highly linked and users partition the
base) is to provide as many different "local" access structures as
are needed at s given time EWilkes3. A generalized date translator
and a data translator generator can be used in s manner indicated
below to create local structures and the processors needed to sup-
port them.

As usage statistics (or a given user) indicate that access
performance for e particular subset of the database is unsatis-
factory, e new data structure can be developed to optimize data
accesses to this subset. A description of this new structure can
be input to e generalized data translator which will convert the
data in the subset to the new structure. A description of this
new structure can then be input to a data translator generator
which will produce a special purpose translator that is a "local
access method" particular to the subset of the database in ques-
tion. This local access method can be used directly by the user
who "requested" the improved structure. Data in the subset could
still be made available to "uniniated" users (i.e., users unaware
of the change) via the generalized data translator, if the new end
old descriptions of the subset are maintained. However, data
access becomes less efficient for these uniniated users. This
approach is only warranted if such accesses ere infrequent end users
can tolerate the inefficiency. In some cases improved efficiency
could be obtained by using e hybrid data translator that has a
OSA which is specialized to the new structure of the subset (i.e.,
which is based on the new "local access method").

Conclusion

We have reviewed some of the ideas and techniques behind
9snaralized data description languages and automatic date translation.
As with all processors that deal with descriptions of objects rather
then with the actual objects themselves, there is s tradeoff between
efficiency of the processor on one hand, and ease of production,
convenience and flexibility on the other hand. We have indicated
several problems in the information storage and retrieval area that

124

could benefit from increased flexibility and the rapid production
of specialized processors. We therefore, anticipate some interesting
developments in information systems based on the exploitation of
the growing data description technology.

Blblioqrephy

Altman Altmsn, E. B., at el.: "Specifications in e Data In-
dependent Accessing Model," Proceedings of the ig72
ACm-SIGFIOET Workshop on Data Description, Access and
Control. Denver, Ig?2, pp. 363-381.

CODASYL

SDDTTG

Data Base Task Group: CODASYL Data Base Task Group
Report. NaY York, ACM, ig?l.

Fry, J. P, eL o l . : An approach to stored dote d e f i -
n i t i on end translation," Proceedings of the Ig72 ACM-
SIQ~IDET Workshop on Data Description, Access and Con-
t ro l . Denver, lg?2, pp. 13 - 56.

F~,y

O i ls

Fry, J. P., et sl.# "A developmental model for data
translation," Proceedings of the Ig?2 ACM-SIGFIDET
Workshop on Data Description, Access and Control.
Denver, 1972, pp. 77 - i06.

Olle, T.W.: "A taxonomy of date definition languages,"
in Fi le Description and Translation, a oublication of
AC~-SIGFIDET, August ig6g, pp. 123 - 130.

Smith Smith, D.I An Approach to Data Description end Con-
version, Ph.D. Dissertation, University of Pennsyl-
vania, Ig?l.

Smith
1972

Smith, D.s "A method for data translation using the
Stored Data Definition and Translation Task Group lang-
uages," Proceedings of the lg?2 ACM-SICFIDET Work-
shop on Data Description, Access end Control. Denver,
1972, pp. i07 - 124.

Standish Standish, T.A. : A Date Definition Faci l i ty for Program-
ming Languages, Ph.D. Dissertation, Carnegie Inst i tute
of Technology, Ig67.

Taylor

Wilkes

Taylor, R.~.: generalized Data Base Management System
Data Structures and t h e i r Mapping to Physical Storage,
Ph,O. Dissertation, Univers i ty of Michigan, igTl.

Wilkes, m.s Special Lecture at the Univers i ty of Utah,
1972o

125

QUESTIONS

Willard Draisin:

Could you show us some examples of the language that was used in the implementation?

Smith:

I do not have slides made up for it, but I can show some examples afterwards. There are statements
existing at each level. The conceptual level, which I mentioned decomposes further to describe the struc-
ture of items, groups, records, etc. There is a level for describing associations across records and then
a series of characteristics which describe how such a structure would actually be implemented as a bit
string, that is, saying how a particular type of association would be implemented by pointers, descriptors
for describing how those pointers are implemented, descriptors for saying how a particular type of relat-
ionship could be implemented in terms of index tables, and where the index tables could be treated as a

separate type of data structure.

Mitchell Krasny:

I am hung up on the last example which you used, where you inverted book files to abtain author files.
Is it the intention of this language to do that in one pass, or is that a two-step process?

Smith:

It depends on the actual implementation, i.e., it depends on how a processor is implemented to trans-
late those statements. The language itself does not imply any particular type of processing method or

algorithm.

Mitchell Krasny:

It seems as though it would be extremely difficult to do that with a fairly large file in one pass.

Smith:

Certainly.

Mitchell Krasny:

Is your system going to have the capability to accept two input files to produce one output file?

Smith:

Yes, you could treat that as a group of separate descriptions for each file or treat the whole thing
as one file with separate parts. The treatment is really quite independent of the language, and the
language has to include a set of reference statements which allow you to refer to different records that

could easily be in different files.

Patrick Mitchell:

In the way of a comment rather than a question, it would be relatively easy to implement as part of
this system a generalized data validation subsystem.

126

Smith:

Yes, and as it turns out the implementation at the University of Pennsylvania did just such a thing.
In effect the validation problem could be considered part of the translation/description problem in that
one of the conditions that you described for selecting data is that it meets certain criteria.

Richard Guertin:

Are you familiar with the work that's being done at Stanford already on this in SPIRES?

Smith:

No, I was hoping to have a chance to talk with you about it.

Guertin:

I think that you would find that it is exactly the same thing and is already operational.

Smith:

Well, as I mentioned we already have two prototypes running, one at Michigan and one at the University
of Pennsylvania.

127

DISCUSSION SESSION

Smith:

During the coffee break, someone mentioned their unfamiliarity with the group in CODASYL that I
mentioned in my discussion. Most of you are familiar with the DDLC group that wrote the data base task
management report, and are not familiar with the group that I have mentioned which is the DDL group. The
two groups were formerly "cousins" operating under the same systems committee, but now the DDLC is a
committee rather than a group. With respect to the relationship between the two groups, they are con-
cerned with creating a data description language for end users, and within that language one can describe
conceptual structures. Implementation structures have been reduced in their specifications, but some
options are still available. My data description language concerns, and those of the group of which I am
a member, go down beneath that, and we are really not concerned with how the user sees the data. Rather,
we are concerned with how the data are represented on a device. Consequently, our efforts are aimed
primarily at system designers and implementers.

Ben Mittman:

Can you give us some idea of what the language looks like, as it was implemented at Pennsylvania, or

can you give us some description of what is planned?

Smith:

I described, I believe, five different levels of description so that perhaps I can work through an
example at each level. Let's take something simple like a COBOL record. The actual description of the
items and their relationships would be described almost identically as they are in the COBOL data division.
Then specifying the implementation of that record as a bit string would require a series of characteristics
specified for each field and each group within the record to describe how that particular piece of data
was linearized. For example, the value "Jones" appearing in a NAME field would be described by; (i) type
of field (either fixed or variable), (2) if the field were variable, then a delimiter string, and (3) the
encodement of the value itself, e.g., bit string, ASCII, etc.

Willard Draisin:

Suppose the field length is specified as another field?

Smith:

Then there would have to be a count specified in a field above that one, which is the way it is handled
in COBOL. You essentially have a repeated field. The encodement of the count field would then have to be
described. Now the fact that the count field contained the length of the data field is not information
that would be needed until you reached the parsing of the record. So that when you describe the length,
which would be one of the characteristics of the NAME field, you would have to describe that it was a
function of the field called COUNT. This kind of context-sensitive capability must be present so as to
allow the specification of characteristics as being derived or variable. All four of these data descrip-
tion languages do contain the capability to allow you to define a characteristic in terms of any data
field value or any other of the characteristics. So this is the kind of specification that results in
describing the linearization of the logical structure into a bit string, and you have an analgous process
in describing the kind of storage structure on whatever device is chosen. For example, the selection of
tape for the storage of a COBOL file would require some specification of blocking for that tape, count
fields if variable records sizes are used, and the presence of headers or trailers, and these must be
described in the same sort of constructs that you used for the record description. Note that the essential
relationship is an association among items, and we have been careful to keep the level identified. All of

128

us chose to implement the processor and the language at these separate levels. It is possible to do all
of the linearization, parsing, and generation machine independently, but when you get to a specific device
then that is so hardware dependent that you cannot generalize it to the same extent as the-rest of the
processor.

Willard Draisin:

Are you able to specify a field that is in several data records on input and exists as a single data
item on output?

Smith:

Yes, that is the translation process. That's what the translation description language does.

Willard Draisin:

For example, suppose you have a field that extends over two or three data cards?

Smith:

There you have a case of a storage mapping, then a data structure. That is still one field; it simply
extends over two storage cells in effect. We would be describing that at neither the logical access
level nor the physical access level, but we would be describing that where we distribute the bit string
over the slots. We would have to describe in the language whether the distribution would be across blocks
or wholly within blocks. We would have to have some kind of SPANNING statement, and these languages do
have SPANNING statements.

Ben Mittman:

How complicated an information structure can you handle? For example, can you go to networks?

Smith:

The languages do; the implementation prototypes do not. We can go to tree structures within the
record, but that is it. The actual physical processors, the software machines, only handle sequential
files both at Michigan and at Pennsylvania. And the extensions that are anticipated are not toward more
complicated file structures but toward expanding the types of devices that can be described. Currently,
it is believed that applications of data translation are not toward restructuring the data so much as
toward placing the data on a different type of device.

Alan Beals:

Are all the different levels of specification required? For example, what I have in mind is the

mapping of a simple COBOL created disk file into another disk file on the same machine to be accessed by
COBOL programs only. Do you still have to go through all these levels of specification?

Smith:

No. Don't forget that the storage structures are exactly the same. You have used the same data
management system if you're on the same machine most likely, and once you have described the storage
structure demanded by that data management system component of the operating system, then you have
described it independently of the data. The fact that you are changing the structure of the records
within that storage structure does not change the storage structure at all. The same bottom half of the
description would then be used.

Alan Beals:

I'm not sure I understand; I don't want to have to respecify the bottom half.

Smith:

If you're going to use this kind of system, it would have to be specified at least once. In the case
you described, you might wish to simply use COBOL as a part of the data management system for that machine
and perhaps you wouldn't have to go through the language translator.

Richard S. Marcus:

Do you worry about transformations on the data itself? For example, if you had a journal title in
coded form and you wanted to translate it into its full specification?

129

Smith:

Yes, we can handle that simple kind of translation where it's simply a matter of encoding. What we
have not incorporated is the ability to define functions over the values of the data. A simple encode-
ment that can be handled by a table is possible in all the languages. In fact, you could define any type
of encodement translation that you wished, provided it could be specified in a table.

Mitchell Krasny:

My understanding is that I could take a file that is written by a UNIVAC 1108 on a UNISERVO 3A tape in
field data and, on a computer that could handle that tape drive and an IBM type tape drive, convert the

field data to ASCII, 6-blt to 8-bit code.

Smith:

That is the intended application of this type of data translation. There are still in the prototypes
severe restrictions on the range of device types that can be used. Most are currently tape oriented
although the one at Michigan is extending to handle simple disk structures.

Mitchell Krasny:

This is intended to relieve me of the tedium involved in writing a program to do this kind of thing?

Smith:

Yes, this is in effect what people have to do now whenever they change from one system to another.

Mitchell Krasny:

Our problem is a little broader than that since we at NTIS receive tapes from many different sources
and would like to make them available in some common form on a common medium.

Smith:

Another natural application of this is data translation networks, where you have different types of
architectures. In this case you do not wish to one-tlme translate, but you wish to be able to do it
dynamically. Efficiency is of course a problem here.

130

