FROM A DATA DESCRIPTION POINT OF VIEW

Diane C. Pirog Smith
Division of Computer Science
University of Utah

Introduction

As an aree closely involved in the manipuletion of large masses
of data, Information Retrieval should benefit from any research
developments involving data storage and data access methods. Current
research on generalized date description languages has lead to several
interesting developments in the area of data menagement. In this
paper we discuss these developments and show that Information Retrie-
val is indeed likely to benefit as a consequence.

Definition of Data Description

"Data description” is a term enjoying several distinct interpre-~
tations in the Progremming Language and Information Retrieval areas.
These different interpretations are caused by several factors. From
a practicel standpoint, they ars caused by tha application envisaged
for the data description. While, from a technical standpoint, they
are caused by the aspects of data being described and the level of
detail to which the description is taken.

To appreciate thess various factors, we bsgin by considering
date as a linguistic entity. The data on a disk pack is a string of
symbols (in binary code) smbedded in a three-dimensional space. This
string has a certain syntactic structure (particular symbol seguences
are recognized as fields, records, etc.), and it hes a certain semen-
tic structure (particular symbols are interpreted as pointers, as
delimiters, or as data items of various types). A description of the
syntactic structure alone is usually sufficient to retrieve informa-
tion from a file, but only by an exhaustive search through the sym-
bol string attempting to match keys. However, if a description of
the gemantic structure is available, then retrieval becomes more
sfficient as the access paths embeddsd in the file can be utilized.

A syntactic description then indicates how the format of the file is
comprised of its component symbol strings, whereas a semantic descrip-
tion specifies how the access paths embedded in the file cen be

used to effect efficient storage and retrieval. One factor in a data
description is that of syntactic versus semantic description.

A second factor relates to the level at which a file is treated.
Users of computsr systems are rarely concerned with controlling
directly the processors invoked by their jobs. Programming aids
such as compilers, opsrating systems and data bass management systems
are normally delegated the tasks of managing ths details of their
programs and data. These various processors contribute a hierarchy
of successively refined levels to the syntax and semantics of data.
Many attempts have been made to formalize thess levels by decomposing
the characteristice of stored data into meaningful partitions [Olle,
Smith, Taylor, SDDTTG, Altman]. Though differing in the numbers of
sublevels and distribution of characteristics, theses attempts rscognize
the following levels of data syntax and semanticsi

118

1) the Entity Level: this level is the representation of the
user's view of his data. It consists of entities and re-
lations over entities.

2) the Logical Access Level: this level consists of the char-
acteristics of the access paths which implement the rela-
tions seen at the entity level.

3) the Physical Access Level: this level consists of the

characteristics relating to how data is positioned on physi-
cal storage media.

A third and final factor in data description is the type of
description itself. A description may be implicit in a program which
creates and maintains a data structure or explicitly stated in a date
description language in such terms as "item length" or "ordering."

In terms of these factors we can define a generalized data
description language (gddl) as a language in which the syntax and
semantics of stored data can be explicitly described at all levels
of its implementation,

Now lat us look at how these factors are reflescted in practi-
cal data description languages (ddls).

Examples of Data Description Langquages

Although the idea of a generalized data description langusge is
relatively new, data description facilities came into existence with
the first computers, as they are implicit in the order codes that
position data and control storage media. Higher level programming
languages like COBOL contain statements that describe explicitly
particular levels of a data structurs. MMacro calls on operating
system data management components imply complex logical and physical
access structures such as indexed sequential and sequential accass
structures for tape and disk.

Current ideas about generalized and explicit data description
languages have arisen from the development of generalized data base
management systems (GDBMSs) and extensible languages.

Becauss GDBMSs attempt to provide their users with a variety of
of structures, thsy require a language in which the users can describe
the options they select. The more generalized the DBMS is, the more
generalized its ddl must be. A proliferation of GDBMSs and ddls lad
CODASYL in the late 1960's to form a task group. Its purpose was to
codify a ddl which could be used as a standard for GD8MS development
[copasvi .

Extensible languages seek to increase the choice of structures
available to users of higher level programming languages. $o again
a language is required in which a user cen describe the new data
structures he wishes implemented.

The explicit ddls developed by the CODASYL Task Group and by
extensible language researchers (e.q. [StandiShJ) are not generalized
in the sense described above. The CUDASYL ddl is concerned with the
entity and logical access levels only, For example, while pointers
may be specified by a user as a means of implementing access paths,
their format, storage media implementation and access strategiss are
predetermined by the GDBMS and not by the user. The data description
elements of extensible lanquages are concerned with specifying logi-
cal access structures and methods. Storage level considerations are
predetermined by the language processor.

In 1972 the first versions of a generalized ddl were implemen-
ted at the Universities of Pennsylvania and Michigan [Rameriz, Fry].
These implementationswill be covered in greater deteil in later sec-

tions of ths paper. Now we will examine some of the current and
potential applications of ddls.

119

Applications of Generalized DDLs

The lack of standardization in storage formats and the conse-
guent difficulty in sharing stored data have suggested the use of a.
standardized DDL as a documentation language. We envisage that in
the not too distant future every stored file will be accompanied by
a tag (probably machine readable) that describes the structure of the
stored datas. The machine readable ddl will be used to drive a
generalized read routine, so that files will not becoms obsolets
after conversions to new computer systems. We further foresee a
machine readable ddl driving a generalized write routine for storing
data onto different storage media. Such a processor will be used to
create on demand new logical and physical access structures for any
given set of ‘data.

A processor combining the generalized description driven read
and write routines forms a description-driven data translator that
converts stored data from one :structure to another.

Data Description-Driven Data Translation

The idea of description driven generalized data translation is
clearly eppealing and is receiving an increasing amount of attention.
Theoretical techniques have been developed in [Smith 1971, Taylor and
Fry] and the current thrust-is to demonstrate practical feasibility,
To this end the projects at the Universities of Pennsylvenia and Mich-
igan and the work of the CODASYL Task Group on Stored Data Descrip-
tion and Translation [Fry and Smith 1972] 2T noteworthy.

A translation processor accepts as input three descriptions and
the set of data to be translated. The first description characterizes
the logical and physical structure of the data to be translated (the
gource files). The second description characterizes the structure into
which the source files are to be translated (the target structure).

The third description identifies, for each element in the target struc-
ture, its source of values from the source files., The relationships
between descriptions, data and processor are illustrated in Figura- 1.

Present versions of generalized translators operate, in effect,
“off-line." That is, they cannot produce translated date on demand in
real-time. Their mode of operation is either "one-shot' or "multiple-
shot." A one-ghot translation task is one in which translation between
source and targst structures need be performed only once. Translations

lsource Translation » Target
Description escrieﬁigg/ Description

Figure 1. Relation-
ships between a

Gengrilized generalized data

aia translator,

Source Translator descriptions and
Data data.

necessitated by changes in computer systems are typical examples. The
University of Michigan translator, as we will see later, is more orien-
ted towards one-shot applications. A multiple-shot translation task is
one in which translations between given source and target structures
must be performed repeatedly. Sharing data betwsen two separately
maintained data bases is a situstion which requires repeated transla-
tions to maintain updated versions of the respective bases. The Uni-
versity of Pennsylvania translator is oriented towards multiple-shot
applications. These different modes of operation will be discussed in
later sections.

While generalized data translation is proving to be a practical
tool for off-line applications, there will be even more impressive
applications should the technology advance to the state where real-
time translation is feasible., Real-time translators could be incor-

120

porated into heterogensous networks of computers to facilitate dynamic
data sharing., They could be used with integrated data bases to allow
users to impose multiple structures over single copies of databy dynam-
ically translating between storage structure and any one of the users'
desired structures.

With these current and future épplications in mind we will now
look at components and implementation strategies of data translators.

Components of a Generalized Data Tranalator

A generalized data description driven datas translator consists of
three components: a data structure analyzer (DSA), a data structure
synthesizer (DSS) and a translation controller (TC).

The function of the DSA is to access items of data in a source
file, given the description of the source file, the source file and a
FIND command that identifies the item to be accessed. The DSA outputs
the accessed item and returns control to the DSS. The relationships

between the D3A, descriptions, data and control flow are {llustrated
in Figure 2,

The function of the DSS is to construct a representation of a
target file, given the description of the target structure. It out-
puts a GET request to the TC to obtain the value for each element in
the target structure it is constructing. When the value is found (by
the DSA) it is sent as input to the DSS. Whatever conversion is

r——=>control flow
{LFIND (element identification) o Lo

1 Transfer control
Source DSA :::::$> to 05S (when element found)
File ! S > data element

Source
Description

necessary is performed on the value before it is inserted in the target
structure under construction. When the target structure is completed,
it is output. The relationships between the DSS, date and degscriptions
and the D35's control paths are illustrated in Figure 3.

i} GET (element identification)
' ———> control flow
- ——data flouw
Target
fFile

Figure 3. Relationships between the DSS,
data, descriptions and the control flow
to other translator components.

Figure 2. Relationships between the DSA,
data, descriptions and the control flow to
other translator components.

Dss
data
element

Target
Degcription

The TC is driven by a translation dascription which specifies
what elements in a source file are to provide values for an slement
in the target file. It operates as followss When it receives a GET
command issued by the DSS , the element identification {1n) deotermines
which target slement is to be constructed next. The translation description
is then consulted to yield the identification of the source element
which is to provide its value. The TC outputs an appropriate FIND
command to the DSA.

The generalized description-driven translator is produced by
connecting the DSA, DSS and TC as illustrated in Figure 4. The pro-

121

Translation
Description

——=> control flow
— data flow

l Target |
Description

Source]
Descriptio

FIND(ID)

GET(ID)

Figure 4. The &ruc~
ture of a data trans-
lator

DA |
; data element
| Sourcse

\\file
S’

cess begins with the DSS requiring a value for a data element to be
supplied by the source file. The request is sent to the TC which
determines the identification of the source element which is to provide
the value. This identification is sent to the DSA in a FIND command.
The DSA then returns control and the value to the DSS when it has
extracted the value from the source file.

Data Tranglation Implementation Strateqies

————

In developing implementations of & generalized data translator
two different strategies of note have appesreds The first might be
called the "Gensralized Processor" approach and the second the “Com-
piler-compiler" approach.

The Generalized Processor approach is the strategy used at the
University of Michigan. It is oriented towards use with generalized
data base management systems. That is, the input to the translator
will be records output by DBMSs in linear fashion. Its output will
be records in formats that can be input by DBMSs. Later versions will
accept as input files created by DBMSs and will output files directly
usable by DBMSs. The translator is implemented as three separate
modules: two "convertors" and a restructurer. The convertors are
generalized read and write routines that convert data into and from
a normalized form. This normalized form is a standard representation
for all access paths and value sncodings that is machine independent.
The components are linked as illustrated in Figure 5. The restruce-

Source - Translation | . Terget
Description Description Description

Source Target
Convertor Restructurer Convertor
Figure 5. Generalized Target
Processor Approach to File

data translation,

turer and convertors are each data translators. The sources convertor
translates the source fram its input form to the normalized form. The
restructurer translates from the input normalized form to an output
normalized form. The terget convertor translates from the output
normalized form to the final output form, The advantages of this
approach result from the use of a normalized, machine-independent

form for performing the actual restructuring of the data, and the
separation of the restructurer from the hardware dependent convertors.,
The restructurer is thus completely machine independent and can be run
on any system. Only the convertors need to be tailored to particular
systems. This situation makes this approach suitable for developing
for use in real-time network applications. Convertors can reside at
local nodes and the restructurer whereever convenient.

122

The compiler-compiler approach is the strategy used at the Uni-
versity of Pennsylvania. It is oriented towards producing efficient
translation. The processor accepts as input the source, target and
translation descriptions, and outputs a special purpose translator
for translating all sets of data satisfying the source description.

In its current version, it produces translators coded in PL/I. Later
versions will produce translators coded in other programming languages.
The advantages of this approach are the smaller size of the resulting
translator and the efficiency of a special purpose processor generated
in an automatic mannsr. This approach promises to figure in research
on the automatic generation of information systems., This will be
discussed in more detail later in this paper.

The suitability of the Generalized Processor approach for one-
shot applications results from the fact that the translator can per-
form the translation directly, whereas, the processor of the compiler-
compiler approach must first generate a specialized translator which
will then only be used once. However, in the multiple-shot applica-
tions, once the compiler-compiler processor has generated the special-
ized translator, it can perform translations more quickly and using
less space than the Gensralized Processor approach.

Information eystemg from a data description point of view

From the applications we have seen, it is not surprising that e
data translator could be used to extend the capabilities of an
Information Storage and Retrisvel system, in terms of data prepara-
tion and restructuringe what is perhaps surprising is that an Infor-
mation Storage and Retrieval system itself is nothing but a collection
of specialized data translators and data description languages. We
will show how this fact can be exploited to extend the capabilities
of an Information Storage and Retrieval system by rethinking its
internal structure rather than by adding further external processors.

In this light, we examine query languages and the create,
retrieve and update functions of an information system.

A guery language is the combination of e specialized data
description language and a translation description language. It is
used to describe both the target structure of the data to be retri-
evad and also criteria for determining which data are to be retrieved.
Consider a typical query: 'Retrieve all authors who wrote books
about information retrieval in 1973, and also the names of their pub-
lighers". The phrase " ... all authors .., and also the names of
their publishers" indicates that records consisting of single "author"
fields followed by possibly repeating "publisher"” fields are to be
output. This is a data description. The phrase " ... books about
information retrieval in 1973 ,.. '" indicates that the source of those
"author" fields are records in which an index word field has "infor-
mation retrieval” as a value and the date field has '1973" &s a
value. This is a translation description,

The create function is a deta translator that translates raw
data into the structure of the data base.

The retrieve function can be seen as a degensrate data trans-
lator in which the target file it constructs is always a subset of
the source file. The incoming query is decomposed into its data
description and translation description components, and these in
turn are passed to the DSS and the TC respectively. The main role
in the translation is of course played by the DSA, which must use

the structure of the source file to locate the records for the out-
put subset.

Updating is composed of the retrieve function together with
a record level data translator. In this case the source files con-
sist of the existing file and a file of update information, while
the target file is constructed by modifying the existing file.
First, a source data record is retrieved as discussed above. Then
this record is translated by placing updated values in appropriate
fields, before being returned to the original file.

123

Recognition of these relationships between data translation
and information system functions suggests several ways in which ddl
and data translation technology may influence information system
design and implementation. One of the most interesting benefits
may arise from "automatic programming".

We will show how, by using both a compiler-compiler type of
data translator generator and a generalized data translator, the
the main modules of an information system can be programmed auto-
matically. The data translator generator can produce the "create"
module automatically if it is given descriptions of the raw dsta
format and the intended data bese organization. The "retrieve"
module can be implemented by combining two compoments. First, the
translator generator is used to produce a DSA specialized to operate
over the intended data base organization. Then a generalized data
translator is used to supply the TC and D8S functions. These two
components ars then combined to produce a hybrid data translator.
The TC and DSS processors can operate from the translation and data
descriptions (which are generated by a retrieve or update request)
to drive the specialized DSA to retrieve the required records.
The record level translator required for the update module may be
produced as a specialized translator using the data translator gener-
ator. In this case the data translator generator needs descriptions
of the data base and the update file.

Data translation technology also suggests a solution to a
frequent problem in both the Informetion Storage and Retrieval and
the DBMS arsa. This problem is one of "local” inefficiencies that
are felt by data base users who have occasion to concentrate their
interest on various subsets of the data base. These users may re-
quire access patterns that are not optimized in the context of the
current date organization, A solution to this problem (for cases
whsre the data base is not highly linked and users partition the
base) is to provide as many different "local" access structures as
are needed at a given time [Nllkes). A generalized data translator
and a data translator generator can be used in a manner indicated
below to create local structures and the processors needed to sup-
port them.

As usage statistics (or a given user) indicate that access
performance for a particular subset of the database is unsatis-
factory, @ new data structure can be developed to optimize data
accesses to this subset. A description of this new structure can
be input to a generalized data tramslator which will convert the
data in the subset to the new structure. A description of this
new structure can then be input to a data translator generator
which will produce a special purpose tranglator thet is a "local
access method" particular to the subset of the databass in ques-
tion., This local access method can be used directly by the user
who "requested" the improved structurs. Data in the subset could
gtill be made available to "uniniated" users (i.e., users unaware
of the change) via the generalized data translator, if the new and
old descriptions of the subset are maintained. However, data
eccess becomes less sfficient for these uniniated users. This
spproach is only warrented if guch accesses are infreaquent and users
can tolerate the inefficiency. In some cases improved efficiency
could be obtained by using a hybrid data translator that has a
DSA which is specialized to the new structure of the subset (ieea,
which is based on the new "local access method").

Conclusicon

We have revieswed soms of the ideas and techniques bshind
generalized data description languages and automatic data translation,
As with all processors that deal with descriptions of objects rather
than with the actual objects themselves, there is a tradeoff between
efficiency of the processor on one hand, and ease of production,
convenience and flexibility on the other hand, We have indicatsd
several problems in ths information storage and retrieval area that

124

could benefit from increased flexibility and the rapid production

of specialized prccessors. We therefore, anticipate some interesting
developments in information systems based on the exploitation of

the growing data description technology.

8ibliography

Altman Altman, £, B., ot al.,: "Spacifications in a Data Ine
dependent Accessing Model,"” Proceedings of the 1972
ACM-SIGFIDET Workshop on Data Description, Access and
Control., Denver, 1972, pp. 363-381,

CODASYL Date Base Task Groups CODASYL Data Base Task Group
Report. New York, ACM, 1971.

SODTTG Fry, J. P, et als: An approach to stored data defi-
nition and translation," Proceedings of thes 1972 ACM-
SIGFIDET Workshop on Data Description, Access and Con-
trol, Denver’ 1972, PPs 13 - 56,

Fry Fry, Jeo Pey 8t 2let ™A developmental model for data
translation,” Procesdings of the 1972 ACM-SIGFIDET
Workshop on Data Description, Access and Control,
Denver, 1972, pp. 77 - 106,

Olle Olle, Te Wes ™A taxonomy of data definition languages,”
in File Description and Translation, a oublication of
ACM-SIGFIDET, Augqust 1969, pp. 123 - 130,

Smith Smith, D« An Approach to Data Description and Con-
version, Ph.D. Disgsertation, University of Pennsyl-
vania, 1971,

smith Smith, Des "A method for data trenslation using the
1972 Stored Data Definition and Translation Task Group lang=
uages," Proceedings of the 1972 ACM-SIGFIDET Work=-
shop on Data Description, Access and Control. Denver,
1972, pp. 107 - 124,

Standish Standish, T, A.t A Data Definition Facility for Program=-
ming Languages, Ph.D. Disgertation, Carnegie Institute
of Technology, 1967,

Taylor Taylor, R.W.:s Generalized Data Base Management System
Data Structures and their Mapping to Physical Storages
Ph.D. Dissertation, University of Michigan, 1971,

Wilkes Wilkes, Mes Special Lecture at the University of Utah,
1972,

125

QUESTIONS

Willard Draisin:

Could you show us some examples of the language that was used in the implementation?
Smith:

I do not have slides made up for it, but I can show some examples afterwards. There are statements
existing at each level. The conceptual level, which I mentioned decomposes further to describe the struc-
ture of items, groups, records, etc. There is a level for describing associations across records and then
a series of characteristics which describe how such a structure would actually be implemented as a bit
string, that is, saying how a particular type of association would be implemented by pointers, descriptors

for describing how those pointers are implemented, descriptors for saying how a particular type of relat-
ionship could be implemented in terms of index tables, and where the index tables could be treated as a

separate type of data structure,

Mitchell Krasny:

I am hung up on the last example which you used, where you inverted book files to abtain author files,
Is it the intention of this language to do that in one pass, or is that a two-step process?

Smith:

It depends on the actual implementation, i.e., it depends on how a processor is implemented to trans-—
late those statements. The language itself does not imply any patticular type of processing method or
algorithm,

Mitchell Krasny:

It seems as though it would be extremely difficult to do that with a fairly large file in one pass.
Smith:
Certainly.

Mitchell Krasny:

Is your system going to have the capability to accept two input files to produce one output file?
Smith:

Yes, you could treat that as a group of separate descriptions for each file or treat the whole thing
as one file with separate parts. The treatment is really quite independent of the language, and the
language has to include a set of reference statements which allow you to refer to different records that
could easily be in different files.

Patrick Mitchell:

In the way of a comment rather than a question, it would be relatively easy to implement as part of
this system a generalized data validation subsystem.

126

Smith:

Yes, and as it turns out the implementation at the University of Pennsylvania did just such a thing.
In effect the validation problem could be considered part of the translation/description problem in that
one of the conditions that you described for selecting data is that it meets certain criteria.

Richard Guertin:

Are you familiar with the work that's being done at Stanford already on this in SPIRES?

Smith:

No, I was hoping to have a chance to talk with you about it,

Guertin:

I think that you would find that it is exactly the same thing and is already operational.

Smith:

Well, as I mentioned we already have two prototypes running, one at Michigan and one at the University
of Pennsylvania.

127

DISCUSSION SESSION
Smith:

During the coffee break, someone mentioned their unfamiliarity with the group in CODASYL that 1
mentioned in my discussion. Most of you are familiar with the DDLC group that wrote the data base task
management report, and are not familiar with the group that I have mentioned which is the DDL group. The
two groups were formerly '"cousins" operating under the same systems committee, but now the DDLC is a
committee rather than a group. With respect to the relationship between the two groups, they are con-
cerned with creating a data description language for end users, and within that language one can describe
conceptual structures. Implementation structures have been reduced in their specifications, but some
options are still available. My data description language concerns, and those of the group of which I am
a member, go down beneath that, and we are really not concerned with how the user sees the data. Rather,
we are concerned with how the data are represented on a device. Consequently, our efforts are aimed
primarily at system designers and implementers.

Ben Mittman:

Can you give us some idea of what the language looks like, as it was implemented at Pennsylvania, or
can you give us some description of what is planned?

Smith:

I described, I believe, five different levels of description so that perhaps I can work through an
example at each level. Let's take something simple like a COBOL record. The actual description of the
items and their relationships would be described almost identically as they are in the COBOL data division.
Then specifying the implementation of that record as a bit string would require a series of characteristics
specified for each field and each group within the record to describe how that particular piece of data
was linearized. For example, the value "Jones" appearing in a NAME field would be described by; (1) type
of field (either fixed or variable), (2) if the field were variable, then a delimiter string, and (3) the
encodement of the value itself, e.g., bit string, ASCII, etc.

Willard Draisin:

Suppose the field length is specified as another field?
Smith:

Then there would have to be a count specified in a field above that one, which is the way it is handled
in COBOL. You essentially have a repeated field. The encodement of the count field would then have to be
described. Now the fact that the count field contained the length of the data field is not information
that would be needed until you reached the parsing of the record. So that when you describe the length,
which would be one of the characteristics of the NAME field, you would have to describe that it was a
function of the field called COUNT. This kind of context-sensitive capability must be present so as to
allow the specification of characteristics as being derived or variable. All four of these data descrip-
tion languages do contain the capability to allow you to define a characteristic in terms of any data
field value or any other of the characteristics. So this is the kind of specification that results in
describing the linearization of the logical structure into a bit string, and you have an analgous process
in describing the kind of storage structure on whatever device is chosen. For example, the selection of
tape for the storage of a COBOL file would require some specification of blocking for that tape, count
fields if variable records sizes are used, and the presence of headers or trailers, and these must be
described in the same sort of constructs that you used for the record description. Note that the essential
relationship is an association among items, and we have been careful to keep the level identified. All of

128

“us chose to implement the processor and the language at these separate levels., It is possible to do all
of the linearization, parsing, and generation machine independently, but when you get to a specific device
then that is so hardware dependent that you cannot generalize it to the same extent as the-rest of the
processor,

Willard Draisin:

Are you able to specify a field that is in several data records on input and exists as a single data
item on output?

Smith:
Yes, that is the translation process. That's what the translation description language does.

Willard Draisin:

For example, suppose you have a field that extends over two or three data cards?
Smith:

There you have a case of a storage mapping, then a data structure. That is still ome field; it simply
extends over two storage cells in effect. We would be describing that at neither the logical access
level nor the physical access level, but we would be describing that where we distribute the bit string
over the slots. We would have to describe in the language whether the distribution would be across blocks
or wholly within blocks. We would have to have some kind of SPANNING statement, and these languages do
have SPANNING statements.

Ben Mittman:

How complicated an information structure can you handle? For example, can you go to networks?
Smith:

The languages do; the implementation prototypes do not, We can go to tree structures within the
record, but that is it. The actual physical processors, the software machines, only handle sequential
files both at Michigan and at Pennsylvania. And the extensions that are anticipated are not toward more
complicated file structures but toward expanding the types of devices that can be described. Currently,
it is believed that applications of data translation are not toward restructuring the data so much as
toward placing the data on a different type of device,

Alan Beals:

Are all the different levels of specification required? For example, what I have in mind is the
mapping of a simple COBOL created disk file into another disk file on the same machine to be accessed by
COBOL programs only. Do you still have to go through all these levels of specification?

Smith:

No. Don't forget that the storage structures are exactly the same, You have used the same data
management system if you're on the same machine most likely, and once you have described the storage
structure demanded by that data management system component of the operating system, then you have
described it independently of the data. The fact that you are changing the structure of the records
within that storage structure does not change the storage structure at all., The same bottom half of the
description would then be used.

Alan Beals:

I'm not sure I understand; I don't want to have to respecify the bottom half.
Smith:

If you're going to use this kind of system, it would have to be specified at least once. In the case
you described, you might wish to simply use COBOL as a part of the data management system for that machine

and perhaps you wouldn't have to go through the language translator.

Richard S. Marcus:

Do you worry about transformations on the data itself? For example, if you had a journal title in
coded form and you wanted to translate it into its full specification?

129

Smith:

Yes, we can handle that simple kind of translation where it's simply a matter of encoding. What we
have not incorporated is the ability to define functions over the values of the data. A simple encode~
ment that can be handled by a table is possible in all the languages. In fact, you could define any type
of encodement translation that you wished, provided it could be specified in a table.

Mitchell Krasny:

My understanding is that I could take a file that is written by a UNIVAC 1108 on a UNISERVO 3A tape in
field data and, on a computer that could handle that tape drive and an IBM type tape drive, convert the
field data to ASCII, 6-bit to 8-bit code.

Smith:
That is the intended application of this type of data translation. There are still in the prototypes
severe restrictions on the range of device types that can be used, Most are currently tape oriented

although the one at Michigan is extending to handle simple disk structures.

Mitchell Krasny:

This is intended to relieve me of the tedium involved in writing a program to do this kind of thing?
Smith:
Yes, this is in effect what people have to do now whenever they change from one system to another,

Mitchell Krasny:

Our problem is a little broader than that since we at NTIS receive tapes from many different sources
and would like to make them available in some common form on a common medium.

Smith:
Another natural application of this is data translation networks, where you have different types of

architectures. In this case you do not wish to one-time translate, but you wish to be able to do it
dynamically. Efficiency is of course a problem here,

130

