
Optimizations for Dynamic Inverted Index Maintenance 

Doug Cutting and Jan Pedersen 

Xerox Palo Alto Research Center 
3333 Coyote Hill Road 

Palo Alto, California 

Abstract 

For free-text search over rapidly evolving corpora, dy- 
namic update of inverted indices is a basic requirement. 
B-trees are an effective tool in implementi-ng such in- 
dices. The Zipfian distribution of postings suggests 
space and time optimizations unique to this task. In 
particular, we present two novel optimizations, merge 
update, which performs better than straight forward 
block update, and pulsing which significantly reduces 
space requirements without sacrificing performance. 

Inverted Indices 

Most standard free-text search methods in Information 
Retrieval (IR) can be implemented efficiently through 
the use of an inverted index. These include standard 
boolean, extended boolean, proximity, and relevance 
search algorithms. (73 

An inverted index is a data structure that maps a 
word, or atomic search item, to the set of documents, 
or set of indexed units, that contain that word - its 
postings. An individual posting may be a binary in- 
dication of the presence of that word in a document, 
or may contain ad.ditional information, such as its fre- 
quency in that document and an offset for each oc- 
currence, required far various non-boolean search algo- 
rithms. In the following, we will simplify this situation 
by assuming that each word occurrence indexed has a 
corresponding posting. This approximation has the ad- 
vantage of being amenable to analysis. 

Since access to an inverted index is based on a single 
key (i.e. the word of inlerest) ef&ient access typically 
implies that the index is either sorted or organized as 
a hash table. In the following we will mume that keys 
are sorted. For hashing schemes, the interested reader 
is directed to [6]. 

As a part of an operational IR system, properties be- 
yond formal description become important. .This paper 

is concerned with the following performance criteria: 

Block Update Speed: The time required to index 
documents. 

It is presumed that a practical IR system will be 
manipulating indices too large to conveniently fit 
in main memory, and hence that the inverted in- 
dex will be represented as a data structure on sec- 
ondary storage. Since insertion in a sorted struc- 
ture is at best a logn operation, where n is the 
number of previously indexed postings, we will 
measure performance by the number of references 
to secondary storage. This is further justified by 
noting that these sorts of computations are typi- 
cally completely dominated by disk access time. 

Access Speed: The time required to access tlrc 
postings for a given word. 

This parametrizes search performance, and, hence, 
is extremely user-visible. Again, access time is in- 
herently iogn, but may require fewer than log n 
disk accesses. 

Index Size: The amount of storage required for the 
inverted index. 

Since some record must be made for each post- 
ing, the inverted index must be proportional to the 
number of postings. This proportionality constant 
is referred to as the indexing overhead, or the size 
of the index expressed as a percentage of the size 
of the entire corpus. 

Dynamics: The ease with which the inverted index 
is incrementally updated. 

This is particularly important for rapidly evolving 
corpora. Insertion is typically more common than 
deletion. Many indexing schemes presume a static 
corpus. [2, 71 These may be updated only by re- 
constructing the entire index. We will only discuss 
incrementally updatable indices in this paper. 
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w Scalability: The relation between the above and 
corpus size. 

Indexing algorithms should scale gracefully with 
increasing corpus size. In particular, main memory 
usage should be independent of corpus size. 

We assume that each of the above are important, and 
seek methods which perform well on all these axes. 

B-trees are a file-b&d data structure particularly ap- 
propriate for the implementation of dynamically mod- 
ifiable inverted indices. The following will analyze the 
use of B-trees in this task and suggest several novel time 
and space optimizations. 

B-trees 

Conceptually, a B-tree maintains an ordered sequence 
as an n-ary branching balanced tree, where the tree re- 
sides on secondary storage rather than in main memory. 
[I, 5, 61 Nodes in the tree are represented as disk pages, 
and rebalancing algorithms insure insertion, examina- 
tion and deletion of entries in U(log, Iv) disk accesses 
where b is the bratiching factor of the B-tree and N 
is the number of entries contained in the B-tree. The 
quantity logb N is referred to as the depth of the B-tree. 
Entries may also be enumerated in sorted order in time 
proportional to N, requiring roughly N/b disk accesses. 

The branching factor b is related to both the page size 
and the average size of entries, but is typically fairly 
large, say around 100. This means that any entry in 
such a B-tree containing a million entries may be ac- 
cessed in three disk accesses. This may be improved 
by retaining some of the B-tree nodes or pages in main 
store. Since each page contains b entries on average, 
holding one page in memory requires storage propor- 
tional to b. If the root page is kept in core then we can 
reduce by one the humber of disk accesses required for 
any operation - at the cost of storing just b entries. To 
make anotfser similar gain we must cache ail the imme- 
diate children of the root. In general, the cost of access 
is 

l”gb N - log, C, for N 2 C 

disk accesses, where C is the number of entries stored 
in core, or the cache size. Note, we are describing an 
upper-nodes caching strategy. Other strategies, such as 
an LRU (least recently used) cache, have similar per- 
formance characteristics. [5] 

If-C = IV, then the entire B-tree is represented in 
core, and no disk accesses are required. If C = N/b, 
all the non-terminal nodes are cached in core, and any 
access operatio’n may be performed with just one disk 

access. In our example, with 6 = 100, a B-tree of size 
N = 1, 000,000 is of depth 3, and a cache of size C = 
N/b = 10,000 guarantees random access with just one 
disk operation. 

Although the typical inverted index operation is ran- 
dom access ,to the postings for a given word, the sorted 
enumeration property of a B-tree may be exploited for 
prefix wild-carding. Suppose words are sorted in lexi- 
cographic drder, then words with a common prefix are 
adjacent in the B-tree. If biog, N storage is allocated 
to hold the path of pages between the root and the 
current poibt in an enumeration, a disk operation need 
only occur every b adjacent entries. 

N+ve B-tree Indexing 

A B-tree iaverted index clearly addresses the issues of 
access speed, dynamic update, and scalability. Access 
to any given entry requires no more than log, Iv disk 
accesses, B-trees are intrinsically updatable, and ac- 
cess times may be reduced through the use of relatively 
small page caches. However, we have yet to discuss 
the time required for a block update or the space occu- 
pied by a B-tree index. In the following we will analyze 
block update time in terms of the number of disk reads 

required. An actual update will, of course, also requires 
disk u&es, but each read will require no more than one 

write, hence the total cost of an update operation is no 
worse than proportional to the number of disk reads. 

A sifnple approach to constructing a B-tree inverted 
index is to consider each entry to be a pair of the form 

(word, location) 

ordered first by word and second by locafion. Thus, an 
entry is jqst a posting ordered so that the postings for 
the same word are adjacent. Random access to all the 
postings for a given word is simply B-tree enumeration, 
requiring a disk access for every b postings. index up- 
date with this representation requires a B-tree insert 
for every ‘word instance in the new text. Thus, by (I), 
indexing n words of new text requires 

n(io& N - log, C) (2) 

disk readi. 
Remov@l of references to a document can be accom- 

plished at the same expense as insertion, providing the 
document is still available. If the tokens comprising 
the document are no longer available, then an exhaus- 
tive enumeration of the index is required to find and 
remove rkferences to it. 
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A Speed Optimization 

It has been shown that the number of disk accesses re- 
quired to perform an update can be reduced by caching 
the upper nodes of the B-tree in core. If, instead, this 
core memory is used as a buffer for postings, which 
is merged with the B-tree when full, many more disk 
accesses can be eliminated. Equation (2) gives the ex- 
pected number of disk reads to insert n new postings 
using a page cache containing room for C entries. If 
these same n postings are buffered and sorted by word 
in core, then, rather than having n instances, we have 
w words, each with an associated list of postings. (The 
time required to sort in core is ignorable, since it re- 
quires no disk accesses and is, in any event, much less 
than the time required to sort n postings via B-tree in- 
serts.) At merge time’, we must insert these w entries 
into the B-tree. Since the postings for a given entry 
typically fit on a single B-tree page, this is approxi- 
mately equivalent, in disk access time, to w inserts in 
sort order. If we aSSume that these entries are uniformly 
distributed over the set of keys, each ordered insert will 
require an average advance of N/w entries through the 
B-tree. 

Suppose log* N pages are held in core to hold a path 
between the root and a leaf. Then the cost of each such 
advance can be estimated as follows. Consider the sub- 
B-tree defined by the span to be advanced over. This 
B-tree contains, by definition, N/W entries of which the 
leftmost path is in core. To access the last entry in the 
span we must bring the rightmost path into core. This 
requires logb(N/w) disk transactions. Hence 

w(Jogb(N/w)) = w(log* Iv - log, W) (3) 

disk accesses are required on average to index n postings 
with this technique. 

If n is large the frequency distribution of unique 
words will approximately follow Zipf’s law.[3] In other 
words 

f(wb(w) = * (41 

for some constant r, -where f(w) is the frequency of 
word w in the set of 11 instances and F(W) is the rauk of 
j(w) among the frequencies of all words in that set of 
postings. Note that in this approximation z is both the 
vocabulary size and the frequency of the most frequent 
word. It follows that 

fZf 
n sz >:z/F k: z 

t-=1 / 
r=z l/rdr = rlnz. (5) 

r=l 

In other words, the vocabulary size, t, grows much Iess 
rapidly than the number of word occurrences, n, and 
can, in fact, be estimated given n. 

To demonstrate that memory is better utilized in a 
buffer than in a page cache, we must show that for 
constant C the cost in disk accesses, (2), denoted by 
X, is greater than (3), denoted by Y. This may be 
expressed by equating the number of postings n with 
C, since the same memory may either be allocated to a 
page cache or to store postings in a buffer. From these 
considerations and (5) we have 

x= 2 In z(Jog, N - log,{ 2 lo 2))) (6) 

and 

Y= r(log, N - Jog, 2). (7) 

Clearly, 

Y = X/Jn z + z log,(Jn 2). (8) 

Suppose, X > Y, then, by substitution of (8), 

X > X/Jn z + z Joa(ln z), 

or, by rearrangement, 

&(lnz - I) > logp(ln 2). 

After substituting in (6) and rearranging terms, this 
reduces to 

(Jn z - l)(Jogb N - lo&(z Jn z)) > Jog,(ln z) 

or 

In2 
Jog, Iv > log, z -t Jogb(In t)m. 

Exponentiating both sides leads to 

N > r(ln r)* (101 

In other words, X > Y iff inequality (10) holds. Now, 
since z In I = n = C and (2) is only valid if Iv 2 C, 
we have N > z In z. For substantial I, the exponent 
Jnz/(lnr - I) will be close to unity. Hence, for the 
update case, we can expect X > Y. 

For the example under consideration, b = 100, N = 
l,OOO,OOO and z ln z = 10,000, and z x I, 383. Bence 
xx 10,000 and Y x 1,977. Indeed, from (6), we 
expect 

X = In z(Y - z log*(ln 2)). (11) 

Hence, substantially fewer>disk accesses are required if 
memory is used as buffer for sorting and subsequently 
merging postings into an existing B-tree inverted index 
than if it is allocated as a B-tree page cache and updates 
are preformed in occurrence drder. 
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Table 1: Merge Experiment 
predicted observed 

CaSe z reads z reads writes 

100 cache 30 200 74 302 260 
merge 68 1 216 201 

1,000 cache I 191 1,500 I 420 2,587 2,038 
merge 355 931 867 

10,000 cache 1,383 10,000 3,421 16,012 13,605 
merge 1,977 5,049 4,890 

100,000 cache 10,800 50,000 14,105 70,721 63,330 
merge 10,620 7,795 9,100 

Experimental Results 

Table (1) contains the results of experiments which 
demonstrate the effectiveness of the merge optimiza- 
tion. Initially a B-tree was created containing the post- 
ings for a corpus with one mitlion word instances. Its 
branching factor, 6, averaged 100, and its depth was 
three. We ran cached and merged updates of 100, 1000, 
10,000, and 100,000 new postings. The B-tree cache 
size, C, and the merge buffer size for each trial was set 
equal to the number of new postings. 

The predictions were based on equations (5), (6), a;ld 
(7). The observed results for the merge case are higher 
than expected due to the inaccuracies of Zipf’s law in 
predicting vocabulary size, Z. The observed results for 
both cases are also slightly higher than expected be- 
cause equations (6) and (7) do not account for page 
reads due to B-tree rebalancing. Writes exceed reads in 
one case due to the creation of new pagea. 

Space Optimizations 

There is obvious redundancy in the ‘naive’ indexing 
scheme presented above; each word instance requires 
a reference to the word itself. If, instead, the set of 
postings for a word is decomposed into the word and 
a sequence of locations, then much of this redundancy 
is eliminated. There is a small overhead in performing 
this grouping, since any representation for a sequence 
of locations requires some record of its length, or a ter- 
mination. A prefix length indication is preferred since 
it can then serve as a record of the marginat, or corpus, 
frequency. In other words, in addition to requiring a 

‘cell’ for each word and for each location of that word, 
one additional cell is required to note the total number 
of locations. 

For example, in the naive case, words of frequency 
one occupy two celis, while the revised representation 
requires three c&k; words of frequency two require four 

cells in both representations. In general, the naive rep- 
resentations requires 2N cells for N postings, while, by 
(5), ‘grouping requires 

)(2 + f(w)) = W(2 + ln W 
ul 

cells, where W is the vocabulary size of the same N 
postings. Since W In W * N, this is smaller than 2N if 
2W < N, which is true if In W > 2 or W > 7.39. The 
ratio of cells required for the two strategies is 

or slightly over l/2. Hence, grouping postings reduces 
space req.uirements by almost 50%. 

If words are represented as integers, as would be the 
case if a lexicon is built to provide a ‘word to number’ 
mapping, and locations are also integers, then all cells 
may be presumed to be roughly equivalent in size. In 
this case, the space analysis above refers to the real sizes 
of the reqpective indices. 

Heap Update 

A grouped index may be implemented by considering 
variable-length B-tree entries of the form 

(wofd, F, (location)‘), (13) 

where F is the marginal frequency of word and focatiarl 
refers to.the corpus position of a single posting. As only 
one entry exists per unique word, the B-tree’s ordering 
function need only examine word. A diff’culty immedi- 
ately arises, however, for words with a large number of 
postings. Recall that, by definition, the maximum size 
for any B-tree entry is one B-tree page; if the locations 
sequence overflows this limit no recourse is available. 
Indeed, if 1 is the number of locations that fit on one B- 
tree page, then from (5), we expect a corpus of size 1 In 1 
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postings to overflow this limit for the highest frequency 
word. 

This situation may be ameliorated by indexing tuples 
of the form 

(word, F, pas) (14) 

where pos indicates a position in an auxiliary data 
structure, known as a heap file, where the sequence of 
locations can be found. As is suggested by its name, 
a heap file is simply a binary file manipulated as if it 
were main memory. Continuous chunks of this mem- 
ory are allocated as necessary for the storage of arbi- 
trary data, in this case location sequences. Update is 
accomplished either in place, or if sizes change suffi- 
ciently, by allocating a new chunk to hold the updated 
sequence and freeing’ the old chunk. This implies that 
the chunks comprising a heap file are maintained by a 
dynamic storage allocation algorithm. 

One such algorithm, the buddy system, allocates 
chunks in sizes that are powers of two. [4] This ar- 
rangement insures that chunks are on the average 75% 
full, which is comparable to the storage utilization of 
B-trees. 

Access to an individual postings list for representa- 
tion (14) requires no more than log, W + 1 disk reads; 
log, W to read in the B-tree entry followed by one more 
to access the heap at pas. Block update proceeds by, 
for each new instance encountered, appending a new 
Iocation to the end of the chunk at pas, computed by 
adding F to pos, and incrementing F. AJI additional 
cost is incurred when a chunk is filled, since its contents 
must be copied to a freshly allocated twice-larger chunk, 
and the old chunk deallocated. Since chunks are allo- 
cated in powers of two, a location sequence of length f 
must be copied no more than Iogz f times. This amor- 
tized per instance cost of (log, f)// additional accesses 
is sufficiently small to be ignorable. Hence, the block 
update time is proportional to 

n(logb w - tog, c + 1) (151 

for n postings. The ‘merge’ optimization mentioned 
above may also be applied in this case to reduce n at 
the expense of the B-tree page cache. 

The space requirements for representation (14) are 
similar to (13) with one additional cell to hold the heap 
file pointer. Hence, IV postings occupy 

W(3-kInW) 

cells. The ratio with respect to the naive indexingstrat- 
egy is 

3/(2 In W) + l/2, 

which is only slightly greater than (12). 

Pulsing 

Use of a heap file solves the El-tree page overflow prob- 
lem at the cost of slightly increased access time and 
slightly larger overall index size. Yet, B-tree overflows 
will only occur for the relatively few high frequency 
words. This observations leads one to consider buffer- 
ing postings directly in the B-tree, and overflowing to 
a heap file only when necessary, a technique known as 
pulsing. Essentially, a threshold 1 is chosen which de- 
termines the maximum number of locations which are 
to be stored immediately. Updates are made directly in 
the B-tree, and only after i new instances of a word are 
seen are their i locations pulsed to the heap. In other 
words, at most, the i newest posting for any given word 
appear directly in the B-tree; any additional postings 
are found in the heap file. 

In this representation B-tree entries have the form 

(word, F, I, (dot)‘, pas) 

where word, F and pos are as in (14), and I is the length 
of the locations (dot)*. By convention, I and pos need 
not be provided when F is less than f as a space-saving 
measure. 

For words, UI, of frequency f(w) c t, all postings are 
directly accessible. Hence, the cost of access is no more 
than log, E, where E is the effective number of postings 
in the B-tree, E ( N. We can estimate E by computing 
the number of occurrences of words whose frequencies 
are less than or equal to 1. From (5) we have 

f(w) 5 i iff r(lu) 2 W/i. 

It follows that 

J 
w!!d r = Wlnf 

w/r a- 

if f(w) > f, than the cost of access is no more than 
(logb E+ 1). Since W In f postings reside directly in the 
B-tree, we will avoid heap file access with probability 

p = lnL/lnLV. 

Hence, the expected access time is no worse than 

pfogb E + (1 - p)(logb E-t 1) = log, E -I- (1 - p). 

In other words, in comparison to (14), access is acceler- 
ated by the hit rate p, but pot&tially penalized by the 
larger &tree size, E. In particular, the ratio OT access 
times is 
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log, w + 1 log* w + 1 
logbE+ (1 -PI = log, W -f 1 -+ (Jog,(lni) - p) 

This ratio is greater than one iff 

Jogb(Jnt) < p or t < eb’, 

However, t < b since we cannot buffer more postings 
than the B-tree page size directly in the B-tree. 

From the above, with the introduction of a page 
cache, block update has expected cost proportional to 

fl(bgb E - logbc + (1 - p)). 

Representation (16) also occupies Jess space than (14) 
since heap file indirection-can be avoided with probabil- 
ity p. For an entry with f(w) 5 t, we use 2+f(w) cells. 
An entry with indirection uses 4+1(w) cells. Hence the 
space occupied for N postings is 

>: (2-t f(w)) + >: (4 + f(w)) = 
tw:J(w)<gJ {w:l(w)>tl 

J w (2 + w/r)) dr + J W/l 
(4 + W/r) dr = 

W/l 1 

WlnW+ZW(l+l/i)-4 (19) 

The threshold, 1, may be selected to generate a 
desired ‘hit’ probability, p. For our example, Iv = 
1, 000, 000 and W x 88,000. To achieve a hit rate of 
25% we require t = m, or i cz 17. In other words, use 
of pulsing with a threshold of 17 reduces the frequency 
of access to the heap file by l/4. 

Delta Encoding 

A typical inverted index operation randomly accesses 
the postings for a given word. However, these postings 
are typically processed linearly. In other words, an in- 
verted index need not provide easy random access to 
individual postings. This suggests that the sequence 
of postings may be compressed in any fashion that re- 
quires no worse than linear time to decode. 

A pulsing strategy arranges for locations to be stored 
in the order indexed. JC each location is represented as 
an integer, and these integers are allocated in an in- 
creasing manner, then a particularly simple compres- 
sion scheme we term delfa encoding is possible. [5] 
Rather than storing an actual location the difference 
between it and the previous location, a delta, is stored 
instead. This yields a sequence of much smaller integers 
than the original sequence of locations. 

In itself this is uninteresting unless integers are en- 
coded in such a way that small integers occupy less 

space than large integers. A typical scheme for per- 
forming such an encoding employs the high order hit 
of each byte to indicate whether another byte need be 
read. Thus, with eight-bit bytes, the numbers O-127 
may be repr&sented in one byte, 128-16384 in two bytes, 
and so on. [3] Thus, if a word occurs on average every 
64 locations4 each location will, on average, occupy only 
one byte. 

In order to easily incrementally append new locations 
at the end of an existing chunk of locations (i.e. with- 
out having to decode the entire chunk) the size of each 
block and the last location in it must also be main- 
tained. These can be maintained in the B-tree or at 
the beginning of each block. The former is preferred 
as it minimizes the amount of the block which must be 
touched. Ad with other information about the chunk, 
e.g. its position in the heap, these need not be stored 
at all for words whose marginal frequency is less than 
the threshold t. 

There is one application in which random access to 
individual postings is desirable; that is deletion. A com- 
pression strategy, such as delta encoding will require us 
to read the entire postings list for a word to delete a 
single entry, and will require us to rewrite it since the 
sequence of postings will have changed. in other words, 
space and access time is optimized at the expense of 
this relatively rare operation. 

Conclusion 

For free-text search over rapidly evolving corpora, dy- 
namic update of inverted indices is a basic requirement. 
B-trees are an effective tool in implementing such in- 
dices and may be optimized to reduce access and update 
time and to minimize size. A speed optimization, rnerye 
update, performs better than straight forward block up- 
date and two space optimizations, puking and de/lo err- 
coding SignJficantJy reduce space requirements without 
sacrificing performance. 
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