
Optimizations for Dynamic Inverted Index Maintenance

Doug Cutting and Jan Pedersen

Xerox Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California

Abstract

For free-text search over rapidly evolving corpora, dy-
namic update of inverted indices is a basic requirement.
B-trees are an effective tool in implementi-ng such in-
dices. The Zipfian distribution of postings suggests
space and time optimizations unique to this task. In
particular, we present two novel optimizations, merge
update, which performs better than straight forward
block update, and pulsing which significantly reduces
space requirements without sacrificing performance.

Inverted Indices

Most standard free-text search methods in Information
Retrieval (IR) can be implemented efficiently through
the use of an inverted index. These include standard
boolean, extended boolean, proximity, and relevance
search algorithms. (73

An inverted index is a data structure that maps a
word, or atomic search item, to the set of documents,
or set of indexed units, that contain that word - its
postings. An individual posting may be a binary in-
dication of the presence of that word in a document,
or may contain ad.ditional information, such as its fre-
quency in that document and an offset for each oc-
currence, required far various non-boolean search algo-
rithms. In the following, we will simplify this situation
by assuming that each word occurrence indexed has a
corresponding posting. This approximation has the ad-
vantage of being amenable to analysis.

Since access to an inverted index is based on a single
key (i.e. the word of inlerest) ef&ient access typically
implies that the index is either sorted or organized as
a hash table. In the following we will mume that keys
are sorted. For hashing schemes, the interested reader
is directed to [6].

As a part of an operational IR system, properties be-
yond formal description become important. .This paper

is concerned with the following performance criteria:

Block Update Speed: The time required to index
documents.

It is presumed that a practical IR system will be
manipulating indices too large to conveniently fit
in main memory, and hence that the inverted in-
dex will be represented as a data structure on sec-
ondary storage. Since insertion in a sorted struc-
ture is at best a logn operation, where n is the
number of previously indexed postings, we will
measure performance by the number of references
to secondary storage. This is further justified by
noting that these sorts of computations are typi-
cally completely dominated by disk access time.

Access Speed: The time required to access tlrc
postings for a given word.

This parametrizes search performance, and, hence,
is extremely user-visible. Again, access time is in-
herently iogn, but may require fewer than log n
disk accesses.

Index Size: The amount of storage required for the
inverted index.

Since some record must be made for each post-
ing, the inverted index must be proportional to the
number of postings. This proportionality constant
is referred to as the indexing overhead, or the size
of the index expressed as a percentage of the size
of the entire corpus.

Dynamics: The ease with which the inverted index
is incrementally updated.

This is particularly important for rapidly evolving
corpora. Insertion is typically more common than
deletion. Many indexing schemes presume a static
corpus. [2, 71 These may be updated only by re-
constructing the entire index. We will only discuss
incrementally updatable indices in this paper.

Permission to copy without fee all part of this material is' granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

(cl 1990 ACM o-89791-408-2 SO 0009 405 $1.50

405

w Scalability: The relation between the above and
corpus size.

Indexing algorithms should scale gracefully with
increasing corpus size. In particular, main memory
usage should be independent of corpus size.

We assume that each of the above are important, and
seek methods which perform well on all these axes.

B-trees are a file-b&d data structure particularly ap-
propriate for the implementation of dynamically mod-
ifiable inverted indices. The following will analyze the
use of B-trees in this task and suggest several novel time
and space optimizations.

B-trees

Conceptually, a B-tree maintains an ordered sequence
as an n-ary branching balanced tree, where the tree re-
sides on secondary storage rather than in main memory.
[I, 5, 61 Nodes in the tree are represented as disk pages,
and rebalancing algorithms insure insertion, examina-
tion and deletion of entries in U(log, Iv) disk accesses
where b is the bratiching factor of the B-tree and N
is the number of entries contained in the B-tree. The
quantity logb N is referred to as the depth of the B-tree.
Entries may also be enumerated in sorted order in time
proportional to N, requiring roughly N/b disk accesses.

The branching factor b is related to both the page size
and the average size of entries, but is typically fairly
large, say around 100. This means that any entry in
such a B-tree containing a million entries may be ac-
cessed in three disk accesses. This may be improved
by retaining some of the B-tree nodes or pages in main
store. Since each page contains b entries on average,
holding one page in memory requires storage propor-
tional to b. If the root page is kept in core then we can
reduce by one the humber of disk accesses required for
any operation - at the cost of storing just b entries. To
make anotfser similar gain we must cache ail the imme-
diate children of the root. In general, the cost of access
is

l”gb N - log, C, for N 2 C

disk accesses, where C is the number of entries stored
in core, or the cache size. Note, we are describing an
upper-nodes caching strategy. Other strategies, such as
an LRU (least recently used) cache, have similar per-
formance characteristics. [5]

If-C = IV, then the entire B-tree is represented in
core, and no disk accesses are required. If C = N/b,
all the non-terminal nodes are cached in core, and any
access operatio’n may be performed with just one disk

access. In our example, with 6 = 100, a B-tree of size
N = 1, 000,000 is of depth 3, and a cache of size C =
N/b = 10,000 guarantees random access with just one
disk operation.

Although the typical inverted index operation is ran-
dom access ,to the postings for a given word, the sorted
enumeration property of a B-tree may be exploited for
prefix wild-carding. Suppose words are sorted in lexi-
cographic drder, then words with a common prefix are
adjacent in the B-tree. If biog, N storage is allocated
to hold the path of pages between the root and the
current poibt in an enumeration, a disk operation need
only occur every b adjacent entries.

N+ve B-tree Indexing

A B-tree iaverted index clearly addresses the issues of
access speed, dynamic update, and scalability. Access
to any given entry requires no more than log, Iv disk
accesses, B-trees are intrinsically updatable, and ac-
cess times may be reduced through the use of relatively
small page caches. However, we have yet to discuss
the time required for a block update or the space occu-
pied by a B-tree index. In the following we will analyze
block update time in terms of the number of disk reads

required. An actual update will, of course, also requires
disk u&es, but each read will require no more than one

write, hence the total cost of an update operation is no
worse than proportional to the number of disk reads.

A sifnple approach to constructing a B-tree inverted
index is to consider each entry to be a pair of the form

(word, location)

ordered first by word and second by locafion. Thus, an
entry is jqst a posting ordered so that the postings for
the same word are adjacent. Random access to all the
postings for a given word is simply B-tree enumeration,
requiring a disk access for every b postings. index up-
date with this representation requires a B-tree insert
for every ‘word instance in the new text. Thus, by (I),
indexing n words of new text requires

n(io& N - log, C) (2)

disk readi.
Remov@l of references to a document can be accom-

plished at the same expense as insertion, providing the
document is still available. If the tokens comprising
the document are no longer available, then an exhaus-
tive enumeration of the index is required to find and
remove rkferences to it.

406

A Speed Optimization

It has been shown that the number of disk accesses re-
quired to perform an update can be reduced by caching
the upper nodes of the B-tree in core. If, instead, this
core memory is used as a buffer for postings, which
is merged with the B-tree when full, many more disk
accesses can be eliminated. Equation (2) gives the ex-
pected number of disk reads to insert n new postings
using a page cache containing room for C entries. If
these same n postings are buffered and sorted by word
in core, then, rather than having n instances, we have
w words, each with an associated list of postings. (The
time required to sort in core is ignorable, since it re-
quires no disk accesses and is, in any event, much less
than the time required to sort n postings via B-tree in-
serts.) At merge time’, we must insert these w entries
into the B-tree. Since the postings for a given entry
typically fit on a single B-tree page, this is approxi-
mately equivalent, in disk access time, to w inserts in
sort order. If we aSSume that these entries are uniformly
distributed over the set of keys, each ordered insert will
require an average advance of N/w entries through the
B-tree.

Suppose log* N pages are held in core to hold a path
between the root and a leaf. Then the cost of each such
advance can be estimated as follows. Consider the sub-
B-tree defined by the span to be advanced over. This
B-tree contains, by definition, N/W entries of which the
leftmost path is in core. To access the last entry in the
span we must bring the rightmost path into core. This
requires logb(N/w) disk transactions. Hence

w(Jogb(N/w)) = w(log* Iv - log, W) (3)

disk accesses are required on average to index n postings
with this technique.

If n is large the frequency distribution of unique
words will approximately follow Zipf’s law.[3] In other
words

f(wb(w) = * (41

for some constant r, -where f(w) is the frequency of
word w in the set of 11 instances and F(W) is the rauk of
j(w) among the frequencies of all words in that set of
postings. Note that in this approximation z is both the
vocabulary size and the frequency of the most frequent
word. It follows that

fZf
n sz >:z/F k: z

t-=1 /
r=z l/rdr = rlnz. (5)

r=l

In other words, the vocabulary size, t, grows much Iess
rapidly than the number of word occurrences, n, and
can, in fact, be estimated given n.

To demonstrate that memory is better utilized in a
buffer than in a page cache, we must show that for
constant C the cost in disk accesses, (2), denoted by
X, is greater than (3), denoted by Y. This may be
expressed by equating the number of postings n with
C, since the same memory may either be allocated to a
page cache or to store postings in a buffer. From these
considerations and (5) we have

x= 2 In z(Jog, N - log,{ 2 lo 2))) (6)

and

Y= r(log, N - Jog, 2). (7)

Clearly,

Y = X/Jn z + z log,(Jn 2). (8)

Suppose, X > Y, then, by substitution of (8),

X > X/Jn z + z Joa(ln z),

or, by rearrangement,

&(lnz - I) > logp(ln 2).

After substituting in (6) and rearranging terms, this
reduces to

(Jn z - l)(Jogb N - lo&(z Jn z)) > Jog,(ln z)

or

In2
Jog, Iv > log, z -t Jogb(In t)m.

Exponentiating both sides leads to

N > r(ln r)* (101

In other words, X > Y iff inequality (10) holds. Now,
since z In I = n = C and (2) is only valid if Iv 2 C,
we have N > z In z. For substantial I, the exponent
Jnz/(lnr - I) will be close to unity. Hence, for the
update case, we can expect X > Y.

For the example under consideration, b = 100, N =
l,OOO,OOO and z ln z = 10,000, and z x I, 383. Bence
xx 10,000 and Y x 1,977. Indeed, from (6), we
expect

X = In z(Y - z log*(ln 2)). (11)

Hence, substantially fewer>disk accesses are required if
memory is used as buffer for sorting and subsequently
merging postings into an existing B-tree inverted index
than if it is allocated as a B-tree page cache and updates
are preformed in occurrence drder.

407

Table 1: Merge Experiment
predicted observed

CaSe z reads z reads writes

100 cache 30 200 74 302 260
merge 68 1 216 201

1,000 cache I 191 1,500 I 420 2,587 2,038
merge 355 931 867

10,000 cache 1,383 10,000 3,421 16,012 13,605
merge 1,977 5,049 4,890

100,000 cache 10,800 50,000 14,105 70,721 63,330
merge 10,620 7,795 9,100

Experimental Results

Table (1) contains the results of experiments which
demonstrate the effectiveness of the merge optimiza-
tion. Initially a B-tree was created containing the post-
ings for a corpus with one mitlion word instances. Its
branching factor, 6, averaged 100, and its depth was
three. We ran cached and merged updates of 100, 1000,
10,000, and 100,000 new postings. The B-tree cache
size, C, and the merge buffer size for each trial was set
equal to the number of new postings.

The predictions were based on equations (5), (6), a;ld
(7). The observed results for the merge case are higher
than expected due to the inaccuracies of Zipf’s law in
predicting vocabulary size, Z. The observed results for
both cases are also slightly higher than expected be-
cause equations (6) and (7) do not account for page
reads due to B-tree rebalancing. Writes exceed reads in
one case due to the creation of new pagea.

Space Optimizations

There is obvious redundancy in the ‘naive’ indexing
scheme presented above; each word instance requires
a reference to the word itself. If, instead, the set of
postings for a word is decomposed into the word and
a sequence of locations, then much of this redundancy
is eliminated. There is a small overhead in performing
this grouping, since any representation for a sequence
of locations requires some record of its length, or a ter-
mination. A prefix length indication is preferred since
it can then serve as a record of the marginat, or corpus,
frequency. In other words, in addition to requiring a

‘cell’ for each word and for each location of that word,
one additional cell is required to note the total number
of locations.

For example, in the naive case, words of frequency
one occupy two celis, while the revised representation
requires three c&k; words of frequency two require four

cells in both representations. In general, the naive rep-
resentations requires 2N cells for N postings, while, by
(5), ‘grouping requires

)(2 + f(w)) = W(2 + ln W
ul

cells, where W is the vocabulary size of the same N
postings. Since W In W * N, this is smaller than 2N if
2W < N, which is true if In W > 2 or W > 7.39. The
ratio of cells required for the two strategies is

or slightly over l/2. Hence, grouping postings reduces
space req.uirements by almost 50%.

If words are represented as integers, as would be the
case if a lexicon is built to provide a ‘word to number’
mapping, and locations are also integers, then all cells
may be presumed to be roughly equivalent in size. In
this case, the space analysis above refers to the real sizes
of the reqpective indices.

Heap Update

A grouped index may be implemented by considering
variable-length B-tree entries of the form

(wofd, F, (location)‘), (13)

where F is the marginal frequency of word and focatiarl
refers to.the corpus position of a single posting. As only
one entry exists per unique word, the B-tree’s ordering
function need only examine word. A diff’culty immedi-
ately arises, however, for words with a large number of
postings. Recall that, by definition, the maximum size
for any B-tree entry is one B-tree page; if the locations
sequence overflows this limit no recourse is available.
Indeed, if 1 is the number of locations that fit on one B-
tree page, then from (5), we expect a corpus of size 1 In 1

408

postings to overflow this limit for the highest frequency
word.

This situation may be ameliorated by indexing tuples
of the form

(word, F, pas) (14)

where pos indicates a position in an auxiliary data
structure, known as a heap file, where the sequence of
locations can be found. As is suggested by its name,
a heap file is simply a binary file manipulated as if it
were main memory. Continuous chunks of this mem-
ory are allocated as necessary for the storage of arbi-
trary data, in this case location sequences. Update is
accomplished either in place, or if sizes change suffi-
ciently, by allocating a new chunk to hold the updated
sequence and freeing’ the old chunk. This implies that
the chunks comprising a heap file are maintained by a
dynamic storage allocation algorithm.

One such algorithm, the buddy system, allocates
chunks in sizes that are powers of two. [4] This ar-
rangement insures that chunks are on the average 75%
full, which is comparable to the storage utilization of
B-trees.

Access to an individual postings list for representa-
tion (14) requires no more than log, W + 1 disk reads;
log, W to read in the B-tree entry followed by one more
to access the heap at pas. Block update proceeds by,
for each new instance encountered, appending a new
Iocation to the end of the chunk at pas, computed by
adding F to pos, and incrementing F. AJI additional
cost is incurred when a chunk is filled, since its contents
must be copied to a freshly allocated twice-larger chunk,
and the old chunk deallocated. Since chunks are allo-
cated in powers of two, a location sequence of length f
must be copied no more than Iogz f times. This amor-
tized per instance cost of (log, f)// additional accesses
is sufficiently small to be ignorable. Hence, the block
update time is proportional to

n(logb w - tog, c + 1) (151

for n postings. The ‘merge’ optimization mentioned
above may also be applied in this case to reduce n at
the expense of the B-tree page cache.

The space requirements for representation (14) are
similar to (13) with one additional cell to hold the heap
file pointer. Hence, IV postings occupy

W(3-kInW)

cells. The ratio with respect to the naive indexingstrat-
egy is

3/(2 In W) + l/2,

which is only slightly greater than (12).

Pulsing

Use of a heap file solves the El-tree page overflow prob-
lem at the cost of slightly increased access time and
slightly larger overall index size. Yet, B-tree overflows
will only occur for the relatively few high frequency
words. This observations leads one to consider buffer-
ing postings directly in the B-tree, and overflowing to
a heap file only when necessary, a technique known as
pulsing. Essentially, a threshold 1 is chosen which de-
termines the maximum number of locations which are
to be stored immediately. Updates are made directly in
the B-tree, and only after i new instances of a word are
seen are their i locations pulsed to the heap. In other
words, at most, the i newest posting for any given word
appear directly in the B-tree; any additional postings
are found in the heap file.

In this representation B-tree entries have the form

(word, F, I, (dot)‘, pas)

where word, F and pos are as in (14), and I is the length
of the locations (dot)*. By convention, I and pos need
not be provided when F is less than f as a space-saving
measure.

For words, UI, of frequency f(w) c t, all postings are
directly accessible. Hence, the cost of access is no more
than log, E, where E is the effective number of postings
in the B-tree, E (N. We can estimate E by computing
the number of occurrences of words whose frequencies
are less than or equal to 1. From (5) we have

f(w) 5 i iff r(lu) 2 W/i.

It follows that

J
w!!d r = Wlnf

w/r a-

if f(w) > f, than the cost of access is no more than
(logb E+ 1). Since W In f postings reside directly in the
B-tree, we will avoid heap file access with probability

p = lnL/lnLV.

Hence, the expected access time is no worse than

pfogb E + (1 - p)(logb E-t 1) = log, E -I- (1 - p).

In other words, in comparison to (14), access is acceler-
ated by the hit rate p, but pot&tially penalized by the
larger &tree size, E. In particular, the ratio OT access
times is

409

log, w + 1 log* w + 1
logbE+ (1 -PI = log, W -f 1 -+ (Jog,(lni) - p)

This ratio is greater than one iff

Jogb(Jnt) < p or t < eb’,

However, t < b since we cannot buffer more postings
than the B-tree page size directly in the B-tree.

From the above, with the introduction of a page
cache, block update has expected cost proportional to

fl(bgb E - logbc + (1 - p)).

Representation (16) also occupies Jess space than (14)
since heap file indirection-can be avoided with probabil-
ity p. For an entry with f(w) 5 t, we use 2+f(w) cells.
An entry with indirection uses 4+1(w) cells. Hence the
space occupied for N postings is

>: (2-t f(w)) + >: (4 + f(w)) =
tw:J(w)<gJ {w:l(w)>tl

J w (2 + w/r)) dr + J W/l
(4 + W/r) dr =

W/l 1

WlnW+ZW(l+l/i)-4 (19)

The threshold, 1, may be selected to generate a
desired ‘hit’ probability, p. For our example, Iv =
1, 000, 000 and W x 88,000. To achieve a hit rate of
25% we require t = m, or i cz 17. In other words, use
of pulsing with a threshold of 17 reduces the frequency
of access to the heap file by l/4.

Delta Encoding

A typical inverted index operation randomly accesses
the postings for a given word. However, these postings
are typically processed linearly. In other words, an in-
verted index need not provide easy random access to
individual postings. This suggests that the sequence
of postings may be compressed in any fashion that re-
quires no worse than linear time to decode.

A pulsing strategy arranges for locations to be stored
in the order indexed. JC each location is represented as
an integer, and these integers are allocated in an in-
creasing manner, then a particularly simple compres-
sion scheme we term delfa encoding is possible. [5]
Rather than storing an actual location the difference
between it and the previous location, a delta, is stored
instead. This yields a sequence of much smaller integers
than the original sequence of locations.

In itself this is uninteresting unless integers are en-
coded in such a way that small integers occupy less

space than large integers. A typical scheme for per-
forming such an encoding employs the high order hit
of each byte to indicate whether another byte need be
read. Thus, with eight-bit bytes, the numbers O-127
may be repr&sented in one byte, 128-16384 in two bytes,
and so on. [3] Thus, if a word occurs on average every
64 locations4 each location will, on average, occupy only
one byte.

In order to easily incrementally append new locations
at the end of an existing chunk of locations (i.e. with-
out having to decode the entire chunk) the size of each
block and the last location in it must also be main-
tained. These can be maintained in the B-tree or at
the beginning of each block. The former is preferred
as it minimizes the amount of the block which must be
touched. Ad with other information about the chunk,
e.g. its position in the heap, these need not be stored
at all for words whose marginal frequency is less than
the threshold t.

There is one application in which random access to
individual postings is desirable; that is deletion. A com-
pression strategy, such as delta encoding will require us
to read the entire postings list for a word to delete a
single entry, and will require us to rewrite it since the
sequence of postings will have changed. in other words,
space and access time is optimized at the expense of
this relatively rare operation.

Conclusion

For free-text search over rapidly evolving corpora, dy-
namic update of inverted indices is a basic requirement.
B-trees are an effective tool in implementing such in-
dices and may be optimized to reduce access and update
time and to minimize size. A speed optimization, rnerye
update, performs better than straight forward block up-
date and two space optimizations, puking and de/lo err-
coding SignJficantJy reduce space requirements without
sacrificing performance.

References

[1] R. Bayer and E. McCreight. Organization and main-
tenance of large ordered indices. Acla Informutica,
1:173-189, 1972.

[2] Harman. D. and G. Candela. A very fast prototype
retrieval system using statistical ranking. SICIR
Forum, 23(3,4):100-110, Summer 1989.

[3] H. S. Heaps. Storage analysis of a compression cod-
ing for a document database. INFOR, 10(1):47-61,
February 1972.

141 D. Knuth. The Art of Computer Programming, vol-
ume 1: Fundamental Algorithms. Addison-Wesley,
1968.

[5] D. Knuth. The Ari of Computer Progrrrmming, vol-
ume 3: Sorting and Searching. Addison-Wesley,
1973.

[6] G. Salton. Automatic Tezi Processing. Addison-
Wesley, 1989.

[7] G. Salton and M. McGill. Inlroduclion to Modem
Information Reirieval. McGraw-Hill, 1983.

[a] G. K. Zipf. Human Behavior azld Ihe Pri7wiplc of
Leasi Effori. Addison-Wesley, 1949.

411

