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ABSTRACT 
Searching on the Web or Net-surfing is a part of everyday life for 
many people, but little is known about the brain activity during 
Web searching. Such knowledge is essential for better 
understanding of the cognitive demands imposed by the search 
system and search tasks. The current study contributes to this 
understanding by constructing brain networks from EEG data 
using normalized transfer entropy (NTE) during three Web search 
task stages: query formulation, viewing of a search result list and 
reading each individual content page. This study further 
contributes to the connectivity analysis of the constructed brain 
networks, since it is an advanced quantitative technique which 
enables the exploration of brain function by distinct and varied 
brain areas. By using this approach, we identified that the 
cognitive activities during the three stages of Web searching are 
different, with various brain areas becoming more active during 
the three Web search task stages. Of note, query formulation 
generated higher interaction between cortical regions than 
viewing a result list or reading a content page. These findings will 
have implications for the improvement of Web search engines and 
search interfaces.  

Categories and Subject Descriptors 
H.3.3 [Information Search and Retrieval]: Search process  

General Terms 
Measurement, Design, Experimentation 

Keywords 
Information seeking; cognitive load; interactive information 
retrieval (IIR); EEG; normalized transfer entropy; graph 
theoretical analysis 

1. INTRODUCTION 
Interactive information retrieval is cognitive in nature [1, 2]. To 
understand the search process, it is necessary to understand 
individual users’ cognitive activity or load during information 
interaction [3]. Previous research by Kim and Rieh [4], used the 

dual-task method for assessing mental effort during Web 
searching, finding significant differences in user mental effort 
between viewing search results and reading contents pages. 
Similarly, Gwizdka [5] used dual-task method to demonstrate 
dynamic changes in cognitive load in the task stage level of Web 
searching, reporting significantly higher average cognitive load 
during query formulation. Cole, Gwizdka, Lui and Belkin [6] 
further measured dynamic cognitive load during Web searching 
using eye movement patterns. They found that cognitive effort 
increases as the task difficulty increases. The dual-task method 
which is based on users’ performance and reaction time to a 
secondary task, does not, however, directly measures brain 
activity. Similarly, eye tracking does not measure brain activity 
effectively; it is assumed that the captured indicators are closely 
related to the nervous system. As previous studies have relied on 
these inferential methods, how brain regions connect during 
effective Web searching, and which region acts as an information 
convergence region or hub remain unknown. Neuroimaging 
techniques such as EEG can, however, provide more direct 
measures of users’ cognitive activity and recent studies have also 
highlighted the potential of neuroscience to contribute in 
interactive information retrieval [7]. The current study aims to 
capture the dynamic interactions between neuronal elements of 
the human brain during Web search task stages by constructing 
functional brain networks (FBNs) from time series observations of 
EEG signals using NTE [8]. We selected EEG for measuring 
cognitive load during Web search interactions because it is an 
inexpensive and non-invasive technology with high temporal 
resolution, and allows easy setup of a Web search experiment in a 
user-friendly environment. The rest of the paper is structured as 
follows: Section 2 will discuss the current literature on NTE; 
Section 3 will describe the methodology. The discussion of results 
will be presented in Sections 4, followed by a brief conclusion and 
future research directions in Section 5. 

2. NORMALIZED TRANSFER ENTROPY 
Transfer Entropy (TE) is an information theoretical measure 
which determines the direction and quantifies the information 
transfer between two processes [9]. TE estimates the amount of 
activity of a system which is not dependent on its own past 
activity but on the past activity of another system. Given two 
processes ݔ and ݕ, the TE from ݕ to ݔ	is shown in equation 1:          

௬→௫ܧܶ			 = ෍ ,௡ାଵݔ)݌ ,௡ݔ (௡ݕ log ቆݔ)݌௡ାଵ	, ,௡ݔ .(௡ݕ ,௡ݔ)݌(௡ݔ)݌ .(௡ݕ ,௡ାଵݔ)݌ ௫೙శభ,௫೙,௬೙		௡)ቇݔ 	(1) 
Here, ݔ௡ denotes the status (value) of signal/system ݔ at time ݊, ݕ௡ denotes the status of signal ݕ	at time ݊ and ݔ௡ାଵ denotes the 
status of signal ݔ at time ݊ + 1. Due to the finite size and non-
stationarity of data, TE matrices usually contain much noise. In 
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the existing literature, noise/bias has been removed from the 
estimate of TE by subtracting the average transfer entropy from ݕ 
to ݔ using shuffled version of ݕ denoted by < ௬ೞ೓ೠ೑೑೗೐→௫ܧܶ	 >, 

over several shuffles. ݕ௦௛௨௙௙௟௘ contains the same symbol as in ݕ 
but those symbols are rearranged in a randomly shuffled order. 
The normalized TE is calculated from ݕ to ݔ with respect to the 
total information in sequence ݔ itself. This will represent the 
relative amount of information transferred by	ݕ. The NTE is 
shown in equation 2 as follows [10]: 

௬→௫ܧܶܰ			 = >	−௬→௫ܧܶ ௬ೞ೓ೠ೑೑೗೐→௫ܧܶ	 (௡ݔ|௡ାଵݔ)ܪ< 														(2) 
In equation 2, ܪ(ݔ௡ାଵ|ݔ௡) represents the conditional entropy of 
process ݔ at time ݊ + 1 given its value at time ݊ as shown in 
equation 3. ܪ(ݔ௡ାଵ|ݔ௡) = − ෍ ,௡ାଵݔ)݌ (௡ݔ log ,	௡ାଵݔ)݌ ௫೙శభ,௫೙(௡ݔ)݌(௡ݔ 				(3) 
NTE is in the range 0 ≤ ௬→௫ܧܶܰ ≤ 1	. NTE is 0 when ݕ transfers 
no information to ݔ, and is 1 when ݕ transfers maximal 
information to ݔ. In the present study, the FBNs are constructed 
by computing the NTE between EEG channels.  

3. METHODS 
3.1 Participants and EEG Data Acquisitions  
Ten healthy, right-handed adult (seven males, three females; age 
range 22-59) academic/professional staff and students of the 
University of South Australia volunteered to participate in this 
study. The experiments were conducted at the Cognitive 
Neuroengineering Laboratory of the University of South 
Australia. All participants reported normal hearing, normal or 
corrected-to-normal vision without any history of psychological, 
neurological or psychiatric disorders. EEG data were acquired at a 
sampling rate of 1000 Hz through a 40 channel Compumedics 
Neuroscan Nuamps amplifier using Curry 7 software. Prior to data 
collection, each participant was fitted with an appropriate sized 32 
channels Quikcap. The 30 electrode sites used were based on the 
international 10-20 convention: FP1, FP2, F7, F3, Fz, F4, F8, 
FT7, FC3, FCz, FC4, FT8, T3, C3, Cz, C4, T4, TP7, CP3, CPz, 
CP4, TP8, T5, P3, Pz, P4, T6, O1, Oz and O2 with the average of 
two earlobes (A1, A2) used as the reference. Continuous EEG 
data were collected during three different brain states: eyes open 
(baseline), visual search and Web search interaction conditions. 
All stimulus onsets and participant responses were time-marked 
on the EEG record using Compumedics Neuroscan STIM 2 
software and with the help of interaction logs from screen capture 
software Camtasia Studio.  

3.2 Cognitive Tasks 
Continuous EEG data was recorded while participants undertook 
the following computer-based experimental tasks. Stimuli were 
presented via STIM software for the first two tasks (i.e. 3.2.1 and 
3.2.2 discussed below). For task 3.2.3, participants were provided 
with an Internet-connected computer. Users’ Web search 
interaction sequences (e.g. mouse and keyboard activity; visited 
and bookmarked URLs) were recorded using Camtasia Studio 
software.  

3.2.1 Eyes Open/Eyes Closed (2 minutes each) 
To obtain baseline brain activity in Eyes Open (EOP) state, 
participants were asked to stare at a blue color fixation star 
comfortably on the STIM computer monitor for 2 minutes.  They 
were then asked to close their eyes and sit calmly for a further two 

minutes.  In the current study, only the EOP data were used for 
analysis and comparison with the search related brain activity. 

3.2.2 Visual Search (VS) Task (approx. 2 minutes) 
In this task, participants were asked to identify a target object 
from an array of distractor targets. For example, in Figure 1, the 
top red letter is the primary target. The participants would be 
required to press ‘y’ if the target is present amongst the black 
distractor array, or ‘n’ if the target is absent. 

 
Figure 1. An example of visual search 

3.2.3 Web Search Task (approx. 5-10 minutes) 
The participants were instructed to search information on the Web 
based on three provided topic areas. They were free to use any 
Web browser (e.g. Internet Explorer, Google Chrome, Mozilla 
Firefox) and any search engine (e.g. Google, Yahoo). Participants 
were also free to choose the source of information. The search 
questions provided for the three different scenarios are given 
below:  
Scenario 1: Your employer has just told you that he is going to 
give you a new company car and asked you to choose one. The 
only restrictions are that the car must be red and be reasonably 
fuel efficient but it cannot be a European brand. 

Scenario 2: While walking in the scrub in the Adelaide Hills you 
get bitten by what appears to be a tick.  Should you go to the 
hospital Emergency Department ASAP? YES/NO and WHY? 

Scenario 3: You’ve decided that you want to see a movie at the 
cinema.  What movie do you decide to see, which session, which 
cinema and why? 

3.3 EEG Signal Pre-processing 
From the collected EEG recordings of ten participants, two were 
excluded based on excessive residual artifacts such as muscle 
movements. Pre-processing of the remaining eight participants’ 
EEG data was done by applying 1-70 Hz band pass filter and a 
notch filter at 50 Hz. To detect eye blinks, one of the typical eye 
blinks was selected by visual inspection and the remaining eye 
blinks detected using Curry 7 template matching. These eye blink 
artifacts were then removed using principal component analysis 
(PCA). Bad blocks were removed manually. 

3.4 Analysis Framework 
In the Web search interaction, the tasks were divided into three 
subtasks: Query formulation (Q), viewing of search result List (L) 
and reading the each individual Content page (C) as shown in 
Figure 2. Subtasks were time marked on the EEG signals using 
the captured interaction logs (key and mouse strokes) of Camtasia 
Studio software, although we did not distinguish between the 
subtasks of each individual task. EEG data were then divided into 
2 second epochs for each subtask (if greater than 2 seconds). 
Those epochs were then averaged for each subtask level to 
produce one epoch of averaged data level. In order to compare 
search features with the baseline (EOP), 50 chunks of EEG data of 
two seconds duration were randomly selected from the EOP data, 
and then averaged. Visual search data was also considered as 
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baseline search activity by making 2 second epochs from the 
stimulus onsets, then averaging into a single 2 second averaged 
data epoch. Averaged EEG data epoch during EOP, VS, Q, L and 
C were then used for the computation of NTE matrices, where 
each cell of the NTE matrices represents the NTE value from one 
electrode to another. In the case of FBNs, scalp electrodes are 
considered as vertices/nodes and the connections/links between 
electrodes are measured using NTE [8]. The constructed NTE 
matrices were then binarized for the analysis using different types 
of complex network metrics. The following complex network 

metrics were used: connectivity density representing the actual 
number of edges as a proportion to the total number of possible 
edges [11] which is the simplest estimator of physical cost of a 
network and basically used to find the global interaction 
pattern/magnitude of the network; node degree of directed 
network represents the total of incoming and outgoing edges [11] 
which is basically used to find hub node/region of a network. The 
data, information processing and associated computational steps 
are illustrated in Figure 2. 

 

 
Figure 2. Transfer Entropy Analysis Framework for Web Search (TEAF-WS) 

4. RESULTS AND DISCUSSION 
4.1 Connectivity Density 
The group averaged connectivity density of different brain states 
(EOP, VS, Q, L and C) was calculated and shown in Figure 3. To 
calculate the group averaged connectivity density, connectivity 
density of each individual participant was calculated then 
averaged across participants. As EOP was the baseline cognitive 
state, it had the least connectivity density compared to Web search 
task stages (Q, L, and C). This suggests that higher connectivity 
density during Q, L and, C is directly task related. That Q has 
higher connectivity density than L or C further supports this given 
that query formulation requires the execution of a number of 
simultaneous processes (e.g. defining query terms, viewing search 
interface, typing etc.). 

 

Figure 3. Connectivity density during different brain states 

4.2 Topoplot using Degree Centrality 
The group averaged degree centrality of all electrodes for each 
brain state was plotted and displayed in Figure 4 using the 
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EEGLAB Topoplot function [12]. Topoplot function visualizes a 
topographic map of a scalp data field in a 2-D circular view. To 
visualize the subtle variation of degree centrality value in different 
brain states, the color map scale of Topoplot was customized such 
that a color map scale is used from minimum degree centrality 
value to maximum degree centrality value among the degree 
centrality value of all the electrodes of all the brain states [12]; 
thus blue represents the minimum degree centrality value and red 
the maximum degree centrality value. Of note, all topoplots 
showed clear activity which is reflective of the degree of 
engagement for each task; that is, the visual search condition 
shows greater engagement than the eyes open condition, while the 
list reading condition shows greater engagement than the content 
reading condition. In the case of eyes open versus visual search, 
this is easily explainable – a visual search task requires focused, 
more intense visual attention than simply staring at a fixation star. 
Similarly, the button press response requirement of the visual 
search task elicited higher activity in motor areas (FCz, Cz, C4) 

than the eyes open condition. The differences between list and 
content reading are also explainable, albeit conjecturally, on an 
attentional/focus basis; that is, content reading has been “filtered” 
via the list process, therefore is focused externally by this process 
such that content reading requires less internal focus through 
reduced decision-making requirements. Interestingly, the 
similarities in processing between the visual search and contents 
reading tasks suggest that the two tasks share common cortical 
regions in the execution of those tasks. There are, however, some 
obvious differences between content and list reading, with list 
reading eliciting higher activity at CP4 and TP8 whereas content 
reading exhibited higher midline activity at CPz and Pz. However, 
in the case of the query formulation task, the high activity is most 
likely a reflection of multiple processes contaminating the 
averaging process.  Further work is currently being conducted to 
divide this task into smaller sub-tasks so that movement, 
language, decision-making, and attentional processes can be 
further delineated during this query formation phase. 

 
Figure 4. Topoplot during different brain states using degree centrality 

5. CONCLUSION 
The key contribution of this study is the construction of functional 
brain networks using NTE during different stages of Web 
searching which enabled detailed investigation of brain function 
during Web searching. This study quantitatively identified that 
during Web searching the information transfer increases in brain 
networks when compared to baseline. This study also 
demonstrated that brain activity during different Web search task 
stages is not the same. This study may have implications to 
examine the effects of cognitive abilities on information search 
behaviour/processes and search task performance/outcomes, thus 
it could allow an adaptive information retrieval system to better 
personalize its interaction with users. Future work will increase 
the sample size and consider the effect of task complexity in the 
experimental design. 
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