
A "Do-It-Yourself" Evaluation Service for Music
Information Retrieval Systems

M. Cameron Jones Mert Bay J. Stephen Downie Andreas F. Ehmann
University of Illinois at Urbana-Champaign

501 E. Daniel St. Champaign, IL 61820 USA

{mjones2, mertbay, jdownie, aehmann}@uiuc.edu

Categories and Subject Descriptors
H.3.4 [Performance Evaluation]: Efficiency and Effectiveness

General Terms: Performance, Measurement,
Experimentation, Standardization

Keywords Music Information Retrieval, Evaluation

1. EXTENDED ABSTRACT
This demonstration presents the Do-It-Yourself (DIY) web
service of the Music Information Retrieval Evaluation eXchange
(MIREX). As TREC does for text retrieval, MIREX provides
standardized datasets and evaluation frameworks to evaluate
Music Information Retrieval (MIR) systems and algorithms [1].
However, unlike TREC where participants are given the datasets
and execute their code locally, MIREX data sets cannot be
distributed due to copyright restrictions. In previous years,
MIREX participants submitted systems to the International Music
Information Retrieval Systems Evaluation Laboratory
(IMIRSEL), where they were manually executed, and evaluated.

The MIREX DIY service (see a demo at http://music-
ir.org/mirexdiy/) allows for the remote execution of black-box
algorithms submitted by participants, and provides participants
with real-time progress reports, debugging information, and
evaluation results. The DIY service can be remotely controlled by
the participants, allowing for continuous submission, evaluation,
and improvement of algorithms, mitigating the intensive
debugging, execution, and validation efforts previously required
of IMIRSEL members [1].

2. SYSTEM OVERVIEW
The MIREX DIY service extends the Data-to-Knowledge Web
Service (D2KWS) [3] and Music-to-Knowledge (M2K) libraries
[2] to support the remote execution of participant-submitted MIR
algorithms (Figure 1). Participants submit algorithms via a web
interface to MIREX DIY. MIREX DIY can currently support
compiled C/C++ or Java binaries, as well as Matlab, Perl, and
Python scripts. Using either SOAP (Simple Object Access
Protocol) or a web interface, participants then specify an itinerary
in which to execute their algorithm. The itinerary contains
information about the dataset(s) to be evaluated, the participant-
specified algorithm, and the evaluation metric to be used. This
information is passed to the D2KWS which queues the to-be-
executed job. D2KWS distributes the queued jobs to a set of
sandboxed and firewalled D2K servers. Participants can monitor a

job’s status and console output via SOAP or a web interface. Job
results are stored in the D2KWS and are returned to the client. In
the event of failure, exceptions and error messages are logged and
returned to participants. Participants can revise algorithms and
resubmit for future evaluation.

3. CHALLENGES
Providing the MIREX DIY service to the MIR community raises
several challenges. The current MIREX datasets comprise over
1TB of audio and symbolic music files. This raises challenges
with respect to the computational complexity and storage
requirements for executing submitted algorithms. For example, a
single job can take days to execute and generate gigabytes of
feature sets and models as output. Furthermore, as algorithms are
executed unsupervised, MIREX DIY must be robust to malicious
code, not only protected against attacks (both intentional and
accidental), but also secured against theft of copyrighted content.

4. REFERENCES
[1] Downie, J. S. (2006). The Music Information Retrival

Evaluation eXchange (MIREX), D-Lib Magazine, 12(12).
[2] Downie, J. S., Ehmann, A. F., Tcheng, D. K. (2005). Music-

to-knowledge (M2K): a prototyping and evaluation
environment for music information retrieval research. SIGIR
2005, 676.

[3] Shirk, A. (2004). D2K Web Service Design &
Implementation, presented at NCSA CyberArchitecture
Working Group, Available at
http://algdocs.ncsa.uiuc.edu/PR-20040828-1.ppt

Copyright is held by the author/owner(s).
SIGIR’07, July 23–27, 2007, Amsterdam, The Netherlands.
ACM 978-1-59593-597-7/07/0007.

Figure 1. System Architecture.

SIGIR 2007 Proceedings Demonstration

913

