
Training Algorithms for Linear Text Classifiers

David D. Lewis Robert E. Schapire James P. CalIan Ron Papka

AT&T Laboratories Center for Intelligent Information Retrieval

Murray Hill, NJ 07974 USA Department of Computer Science

{iewis, schapire} (Qb-esearch.att.com University of Massachusetts

Amherst, MA 01003 USA

{callan, papka} (2ks.umass.edu

Abstract

Systems for text retrieval, routing, categorization and other
IR tasks rely heavily on linear classifiers. We propose that
two machine learning algorithms, the Widrow-Hoff and EG
algorithms, be used in training linear text classifiers. In con-
trast to most IR methods, theoretical analysis provides per-
formance guarantees and guidance on parameter settings for
these algorithms. Experimental data is presented showing
Widrow-Hoff and EG to be more effective than the widely
used Rocchio algorithm on several categorization and rout-
ing tasks.

1 Introduction

Document retrieval, categorization, routing, and filtering
systems often are based on classification. That is, the IR sys-
tem decides for each document which of two or more classes
it belongs to, or how strongly it belongs to a class, in order
to accomplish the IR task of interest. For instance, the two
classes may be the documents relevant and not relevant to a
particular user, and the system may rank documents based
on how likely it is that they belong to the relevance class.

The rules or classifier-s used to perform these tasks are
often trained on data rather than, or subsequent to, being
constructed by hand. For instance, a ranked retrieval sys-
tem using relevance feedback will ask its user to indicate
which of the top ranked documents retrieved for a query
are relevant and which are not. The judged documents are
used as training data to produce a more effective query and
thus a new and better ranking. In text categorization, doc-
uments that have been categorized by human indexers can
be used as training data for a classifier to categorize future
documents.

In this paper we compare the widely used Rocchio train-
ing algorithm to two other algorithms, the Widrow-Hoff and
EG algorithms, which produce the same kind of classifier,
a linear classifier. The Widrow-Hoff and EG algorithms

Permissionto makedigital/bard copy of all part of this work for per-
sonalor classroomuseis grantedwithout fee providedthat copiesare
not madeor distributedfor profit or commercialadvantage,the copy-
right notice, the title of the publication andits dateappear,andnotice
is given that copying is by permissionof ACM, Inc. To copy otherwi-
se, to republish,to post on serversor to redistributeto lists, requires
prior specific permission and/or fee.
SIGIR’96, Zurich, Switzerland@1996 ACM 0-89791-792-
8196/08,$3.50

are better understood from a theoretical standpoint, lead-
ing to performance guarantees and guidance on parameter
settings. In addition, we show experimentally that Widrow-
Hoff and EG are more effective than Rocchio on both routing
and categorization tasks.

2 Linear Functions in IR

IR systems often represent texts as feature vectors, that is,
tuples of values:

X=(X1, X2,Q)
where Z3 is the numeric value that feature j takes on for this
document, and d is the number of features. For example, d
might be the number of distinct non-stopwords in a textbase,
and Xj the number of times a particular word occurs in this
document.

In order to rank documents, a text retrieval system typ-
ically applies a d-ary function f to each vector x, producing
a score f(x). Documents with the largest values of f(x) ap-
pear at the top of a ranking. A text categorization system
might similarly compute scores f(x) and assign to a category
only those documents where f(x) exceeds some threshold or
satisfies some other criterion. Systems for filtering, routing,
and other text classification tasks operate similarly.

The simplest such functions are linear, that is, they may
be expressed as the dot product of a weight vector w and
the feature vector x:

d

f(x) = w . x = ~w3x3.

j=l

Most approaches to ranked retrieval use linear functions.
For instance, in the Robertson/Sparck Jones probabilistic
retrieval model documents are ranked by this linear function:

2~jlog W(I –%)
(1 –pj)qj ‘

j=l

where p; and qi are probabilities to be estimated based on
training data (Robertson & Sparck Jones, 1976) or the text
of a user request (Croft & Harper, 1979), and the X3’s are
binary (1 if a word is present in a document, O otherwise).

The classical vector space model (Salton & McGill, 1983,
pp. 120–123) (Harman, 1992a), ranks documents using a
nonlinear similarity measure called the cosine correlation:

SIM(q, X) = ~
114111+1

298

where IIxII = @~=l x~2, and q is a query vector with the

same features as x. For instance, qj might be 1 if a word
appeared in a textual user request and Ootherwise, while XJ
is the number of times the word occurs in the document of
interest, times its inverse document frequency, i.e., a form of
tf x idf weighting (Salton & McGill, 1983, p. 63), (Harman,
1992a). This model can be recast aa linear classification by
treating the query as a classifier and incorporating its length
normalization into each of the elements of its weight vector:

‘“h
and similarly incorporating the document length normaliza-
tion into the document vector feature values:

“ = ~“

Indeed, recent work on the vector space model replaces
the cosine normalization with other length normalizations,
but maintains the linear form of the classifier (Singhal et al.,
1996). Many commercial ranked retrieval systems also are
based on linear functions, the evaluation of which can be
made very efficient via inverted files and other techniques.

Basing an IR system on linear classifiers requires using
corpus statistics, the text of a user request, or other knowl-
edge about a class to choose an initial weight vector. These
initial values can usually be improved by learning from train-
ing data, as discussed in the next section.

3 Algorithms for Training Linear Classifiers

By training a linear classifier, we mean using training data
(a set of texts of known class membership) to find a weight
vector which accurately classifies new texts. We distinguish
between parametric and nonparametric training algorithms
(Duda & Hart, 1973, p. 130). Parametric algorithms use
training data to estimate parameters of a probability distri-
bution, and a classifier is produced under the assumption
that the estimated distribution is correct. Many probabilis-
tic IR algorithms, for instance the Robertson/Sparck Jones
relevance feedback algorithm, are parametric algorithms.

Nonparametric training algorithms do not assume that
the training data has a particular distributional form. They
instead search directly for a good weight vector, as measured
by some criterion function. The hope is that the weight
vector will generalize well, i.e., that it will also optimize the
criterion function, or some other effectiveness measure, on
new data.

Different training algorithms can be produced by vary-
ing the criterion function and search procedure used (Duda
& Hart, 1973, pp. 130-131). Search procedures can operate
in either online or batch fashion. Online algorithms are pre-
sented with one training example at a time. They update
their current weight vector based on that example and then
discard the example, retaining only the new weight vector.
Batch algorithms, on the other hand, optimize the criterion
function on the entire set of training data at once. Batch
algorithms typically do a better job of optimizing the cri-
terion function than online algorithms, and can more easily
use criterion functions that are not simple functions of per-
example criteria. However, batch algorithms tend to put
large demands on memory, and typically require that past
training data be saved if additional training is to be done in
the future.

In the remainder of thk section we review three impor-
tant nonparametric algorithms for training linear classifiers,
showing how they vary in their criterion functions and search
procedures. Throughout this section, x, = (x,1,. ... z~~) de-
notes the ith training document, and y, its associated class
label (1 if relevant/a class member, Oif irrelevant /not a class
member).

3.1 The Rocchio Algorithm

The Rocchio algorithm (Rocchio, Jr., 1971; Harman, 1992b)
is a batch algorithm. It produces a new weight vector w from
an existing weight vector WI and a set of training examples.
The jth component Wj of the new weight vector k:

w, =Crw,,, ++= Z’” -+cxt” (1)
nc n—nc

where n is the number of training examples, C = {1 < i <
n : y, = 1} is the set of positive training examples (i.e.,
members of the class of interest), and nc is the number of
positive training examples. The parameters a, ~, and ~
control the relative impact of the original weight vector, the
positive examples, and the negative examples, respectively.
If a = O, ~ = 1 and --y= 1, then w/llwll is the weight vector
of unit length which maximizes

‘i~Cw”x_XigCw”x (2)
nc n—nc ‘

i.e., the difference in the mean scores for positive and nega-
tive training instances. Rocchio refers to such a w as an op-
timal query, though he does not show a connection between
optimizing the criterion (2) and optimizing more usual effec-
tiveness measures for ranking or binary classification. Since
Rocchio was working in a relevance feedback context, he also
did not address how well these weight vectors generalize to
new data.

Typically, classifiers produced with the Rocchio algo-
rithm are restricted to having nonnegative weights, so that
instead of using the raw w from Equation
where

(l), one uses w’

{

ifwj>Ow; = ‘W3
o otherwise.

3.2 The Widrow-Hoff Algorithm

The LMS or Widrow-Hoff algorithm (Widrow & Stearns,
1985, Ch. 6) (Duda & Hart, 1973, p. 156) (here abbreviated
WH) is an online algorithm. It runs through the training ex-
amples one at a time updating a weight vector at each step.
We denote the value of this weight vector before processing
the ith training example by “i. Initially, the weight vector
is typically set to the all zeros vector, W1 = (O, O); how-
ever, other initial settings are possible. At each step, the
new weight vector Wi+l is computed from the old weight
vector w, using training example xi with label y,. The jth
component of the new weight vector is found by applying
the rule:

‘wa+l,J = Wi,j – 2’7/(W~. Xi – yi)~~,~ . (3)

The parameter q >0, usually called the learning r-ate, con-
trols how quickly the weight vector w is allowed to change,
and how much influence each new example has on it.

WH is usually viewed as a gradient descent procedure
since the term 2(w. x – y)x is the gradient (with respect to

299

w) of the square loss (w . x – y)2. Thus, WH tries to move
in a direction in which this loss is (locally) decreasing the
fastest.

For classifying new instances, it may seem natural to use
the final weight vector Wn+l. However, there are theoretical
arguments (e.g. (Kivinen & Warmuth, 1994)) which suggest
that a better choice is the average of the weight vectors
computed along the way:

w= -+&n+lt=l
(4)

3.3 Kivinen & Warmuth’s EG Algorithm

The exponentiated-gradient or EG algorithm was introduced
by Kivinen and Warmuth (Kivinen & Warmuth, 1994). This
algorithm is similar to WH in that it maintains a weight vec-
tor w, and runs through training examples one at a time.
With EG, however, the components of the weight vector Wi
are restricted to be nonnegative and to sum to one. The
usual initial weight vector assigns equal weight to all com-
ponents so that WI = (l/d,..., I/d). The update rule for
EG, analogous to Equation (3) for WH, is:

wt,j exp(–2q(wz. xi – W)xt,j)
‘u-tl,J =

L’f=lw,, f=p(-%(w2 ~xi - Y,)c,,,)”

Thus, each component W,,J is multiplied by exp(–2q(w, .x, –
yi)xi,J), and then the entire weight vector is renormalized.
The name of the algorithm comes from the exponentiation
of the same gradient that appeared in WH. As before, the
learning rate ~ >0 controls the impact of each new training
example.

Kivinen and Warmuth give a detailed motivation for
both EG and WH. Briefly, the new weight vector Wi+l can
be shown to minimize a formula which trades off the con-
flicting goals of (1) minimizing the 10SS(wi+l . xi – y,)2 of
the new vector W,+l on the current example xi, and (2)
penalizing the choice of a new vector Wi+l which is “far”
from the old vector w,. The different rules EG and WH are
derived using different choices of distance functions in (2).
The parameter q, in their framework, determines the rela-
tive importance given to (1) and (2).

3.4 Binary Classification

The algorithms described above produce classifiers which
output a numeric value w . x. This value can be used, for
instance, to rank documents or classes for presentation to
a user. Something more is needed if binary classification
is required, that is, if we must explicitly decide for each
document whether it belongs to the class of interest. The
approach taken in our experiments is to define a threshold
t,and assign a document x to the class if w . x > t.The
threshold is chosen so as to optimize the desired effectiveness
measure on the training set, with the hope that effectiveness
on the test set will also be optimized, though this approach
has weaknesses (Lewis, 1995a).

4 Error Bounds for WEI and EG

Kivinen and Warmuth (Kivinen & Warmuth, 1994) study
in detail the theoretical behavior of EG and WH, build-
ing on previous work (Cesa-Bianchi et al., 1993; Widrow
& Stearns, 1985). Kivinen and Warmuth focus on deriving

upper bounds on the error of WH and EG for various set-
tings of the learning rate q. For instance, for the setting
of q = 1/(4X2) used in our experiments, and with appro-
priate assumptions about the random presentation of exam-
ples, their results imply the following upper bound on the
expected square loss of the vector w computed by WH:l

(Ilullzxa)E[(w. x–y)2]<2 E[(u. x–y)2]+~ . (5)

Here, expectation is with respect to the random presentation
of examples (x, y), X is an assumed upper bound on 11x11for
all instances x, u is the vector which gives “best” fit to the
data (actually, the bound holds for all u), and n as usual is
the number of training instances. Thus, the expected square
loss of w is upper bounded by twice the expected square
loss of the best vector u, plus a term that is quadratic in
the Euclidean length of u and the maximum length of any
instance, but which vanishes at the rate l/n.

This bound helps us to predict when WH will perform
well (in terms of square loss), namely, when there is some
vector u which fits the data well and when the number of
training examples n is large relative to the lengths of u and
of the document representatives.

Kivinen and Warmuth prove bounds of a somewhat dif-
ferent form for EG. With similar assumptions as above and
for the setting q = 2/(3R2) used in our experiments, they
show thatz

(R2 in d
E[(w. x–y)2]<~ E[(u. x–y)2]+~

)
(6)

where u is the probability vector (nonnegative components
summing to one) which best fits the data, and where R is a
value such that max~ X,J —minj X,3 < R for all instances x,.

Note that the “additional term” for EG depends on very
different parameters than it does for WH (R and in d rather
than X and Ilull). In particular, for a binary representation
of documents, this additional term is small even for a huge
number of features, since R = 1 and the dependence on the
number of features d is only logarithmic. It is this mild
dependence on the number of features which suggested to
us that EG might do well on an IR task.

In sum, Kivinen and Warmuth’s results suggest that EG
is likely to work well on high dimensional problems. Their
results also give insight into how to deal with different doc-
ument representations. Blum’s recent success (Blum, 1995)
with a related multiplicative update algorithm on a learn-
ing problem with some textual features also encouraged us
to try EG.

5 Evaluation Techniques

We tested the algorithms described above on two IR tasks
where supervised learning is particularly applicable: cate-
gorization and routing. The overall evaluation strategy was
similar for the two tasks, and is described in this section.
The details of the particular tasks are described in later sec-
tions.

our experiments were of the batch-mode machine learn-
ing type. For each data set, a group of classes were defined.
A training set of document feature vectors plus class labels

lThis bound foIlows from Kivinen and Warnmth’s Theorem 5.3
combined with the results in Section S.

2This bound follows from Kivinen and Warm”th’s Theorem 5.10
combined with the results in Section 8.

300

was used by the learning algorithm to produce a classifier for
each class. The classifiers were evaluated on a separate test
set of document vectors for which class labels were known.

Evaluations of both binary classification and ranking
were performed. For binary classification, the weight vec-
tor plus a threshold (produced as described in Section 3.4)
were used to classify each test document. The effectiveness
of this classification was summarized in four contingency ta-
ble values:

● a = number of class members put in class

● b = number of nonclass members put in class

● c = number of class members not put in class

● d = number of nonclass members not put in class.

Several effectiveness measures can be defined in terms of
these values, for instance:

● recall (R) = a/(a + c)

● precision (P) = a/(a + b).

We used the F-measure (Lewis & Gale, 1994) (see also
(van Rijsbergen, 1979, pp. 173-176)), a weighted combina-
tion of recall and precision that can be defined in terms of
the contingency table values:

Fe= (B2 + 1)~~ = (/32 + l)a

~’P+R (p’ + l)a + b + p’c

We use FB with /3 = 1, i.e., F1 = 2a/(2a + b + c). If a, b,
and c are all O, we define F1 to be 1.

On the routing data set, we also evaluated the effective-
ness of classifiers for ranking. A classifier is applied to each
test document, and the documents are sorted by the result-
ing scores. We measure how close to perfect ranking the
classifier came using simple average precision (SAP), which
is the mean of precision measured at each class member in
the ranking (Harman, 1995b, p. A-9).

6 Text Categorization Task

Text categorization systems classify units of natural lan-
guage text into pre-defined categories. We describe two new
text categorization data sets and how they were used in our
experiments.

6.1 The OHSUMED Text Categorization Test Col-
lection

The first collection consists of Medline records from the
years 1987 to 1991, distributed as part of the OHSUMED
text retrieval test collection (Hersh et al., 1994). For text
categorization experiments, we ignore the queries and rel-
evance judgments in the collection, and make use of the
MeSH (Lowe & Barnett, 1994) controlled vocabulary terms
assigned to the records by National Library of Medicine in-
dexers.

Of the 348,566 OHSUMED records, all but 23 have
MeSH categories assigned. These 348,543 records all have
titles, but only 233,445 of them have abstracts. Our exper-
iments used only the 233,445 records with both. We used
the 183,229 such documents from the years 1987 to 1990 as
our training set, and the 50,216 such documents from the
year 1991 as our test set.

Training Test
Category I Number I Freq.] Number I Freq.

Set 1
tickertalk
boxoffice
nielsens
bonds
burma
ireland
quayle
dukakis
budget
host~ges
Set 2

88
109
163
272
341
348
400
716
420
549

Yugoslavia
aparts
dollargold
W.p.w.
german
gulf
britain/british
israel
bush
japan L

388
588

1053
1188
1231

575
2441
2495
2553
2901

0.0006
0.0008
0.0011
0.0019
0.0024
0.0024
0.0028
0.0050
0.0029
0.0038

0.0027
0.0041
0.0074
0.0083
0.0086
0.0040
0.0171
0.0175
0.0179
0.0203

35
61
85

115
93

127
113
20

443
367

188
202
561
636

1161
2896
1074
1164
1368
1436

0.0005
0.0009
0.0013
0.0017
0.0014
0.0019
0.0017
0.0003
0.0066
0.0055

0.0028
0.0030
0.0084
0.0095
0.0173
0.0432
0.0160
0.0174
0.0204
0.0214

Table 1: TREC-AP cate~ories, seDarated into Set 1 and Set
2 and sorted by total fre~uency o; the TREC-AP data. We
show frequencies on TREC-AP training (years 1988-1989)
and test (year 1990) sets. w.p.w. is the category weather-
pageweather.

MeSH terms consist of a mam heading optionally flagged
with subheadings and importance markers. A total of 14,626
distinct main headings occur in the OHSUMED records. In
text categorization research with OHSUMED we have fo-
cused on the set of 119 MeSH categories in the Heart Dis-
ease subtree of the Cardiovascular Diseases tree structure
(Lowe & Barnett, 1994). The frequencies of these 119 heart
disease categories vary widely, and some in fact do not actu-
ally appear in the OHSUMED data. The experiments here
used the 49 categories with a training set frequency of 75 or
higher, and the 28 categories with a training set frequency
between 15 and 74. Results on the remaining 42 categories
are omitted here since their high variance requires additional
analysis.

The OHSUMED text retrieval test collection was devel-
oped by William Hersh and colleagues at Oregon Health
Sciences University. It is available by anonymous ~tp from
the server medir. ohsu. edu in the directory /pub/ohsumed.

Procedures for the use of OHSUMED in text categorization
research were developed by David Lewis and Yiming Yang,
with invaluable advice from Christopher Chute, Bill Hersh,
Betsy Humphreys, Stephanie Lipow, Henry Lowe, Nels 01-
son, Peri Schuyler, Mark Tuttle, and John Wilbur. The
119 MeSH Heart Disease categories was extracted by Yim-
ing Yang from the April 1994 (5th Ed.) UMLS CD-ROM,
distributed by the National Library of Medicine. Further
details are available from Lewis (lewts @research.att. corn) or
Yang (yiming@cs. emu. edu).

6.2 The TREC-AP Text Categorization Test Col-
lect ion

Our second data set is a subset of the AP rnewswire stories
from the TREC/TIPSTER text retrieval test collection. A

301

total of 242,918 AP stories from the years 1988 through
1990 are included in the collection. In processing this data,
we corrected some formatting anomalies in the stories and
screened out certain internal editorial notes. We then se-
lected only those stories which had exactly one <HEAD>
field (i.e., title) and <TEXT> field (i.e., the body of the
article), and meeting other well-formedness criteria. The
result was a set of 209,783 AP stories which we call the
TREC-AP text categorization test collection.

Several previous text categorization studies with a pro-
prietary AP collection have used two sets of 10 categories:
Set 1 (Lewis & Gale, 1994; Cohen, 1995; Cohen & Singer,
1996) and Set 2 (Lewis, 1995b). We have defined these cat-
egories on the TREC-AP data set as well (see Table 1). For
the experiments reported here, we use the years 1988 and
1989 (142,791 documents) as a training set, and the year
1990 (66,992 documents) as the testing set.

The TREC-AP data covers a different date range than
the aforementioned proprietary AP collection, and we use
it here with a chronological training/test split rather than
a random one. Results on the TREC-AP data therefore
cannot be compared to those from the previous AP studies.

The documents in the TREC-AP collection appear on
the TIPSTER Information Retrieval Text Research Col-
lection CD-ROMs, Volumes 1 to 3, March 1994 revision.
The CD-ROMs are used in the TREC evaluations and
are also distributed by the Linguistic Data Consortium
(ldc@unagi.cis. upenn. edu). Information on TREC is avail-
able from Donna Harman (haman@potomac. ncsl.nist.gov).
Details of the TREC-AP data are available from David
Lewis (lewistlresearch.att.tom).

6.3 Details of Experiments

This section summarizes our text categorization experi-
ments, including experimental conditions that were varied.

Feature Extraction. The set of features for each prob-
lem was defined by a crude tokenizer that replaced every-
thing but alphabetic characters with a blank, and down-
cased alphabetic characters. Both binary feature values
and cosine-normalized t~ x id~ feature values (SMART tfc
weights (Salton & Buckley, 1988)) were used for Rocchio
and WH, with idj estimated on the training set for that run.
(This is a deviation from the strict online learning frame-
work.) EG was only run on a binary representation, due to
limitations of our current software.

Feature Selection. The full feature set was used in all
cases.

Text Segment. The use of titles alone was compared
with the use of the main texts (abstract or body of article)
alone.

Starting Vector. Rocchio was used without a start-
ing vector (a = O) or, equivalently, a starting vector of
(O, O). WH used a starting vector of (O,. . . . O)and EG a
starting vector of (l/d,. . . . l/d).

Learning Rate. Rocchio used ~ = 16 and ~ = 4, as
suggested by Buckley, et al. (Buckley et al., 1994), but with
cr = O since no query was used. WH used a learning rate of
n = l/(4X2), where X is the maximum value of 11x11in the
training set for that run. EG used a rate of ~ = 2/(3 R.2),
which for a binary document representation is simply 2/3.
(See Section 4 for details.)

Training Set. Subsets of 10,000 training documents, as
well as the full training set, were tried.

Training Procedure. Training Rocchio is a simple
batch process. WH and EG were trained on a single pass

through the training set in random order.
Final Classifier. The final Rocchio classifier was used

as is. For WH and EG, the mean weight vector across
all training examples was used (see Section 3.2 and Equa-
tion (4)). In all cases the threshold for binary classification
was found by optimizing the F1 measure on the training set.

Another influence on effectiveness is randomness in the
sample used as a training set and, for order sensitive algo-
rithms such as EG and WH, the order in which training
instances are presented. We addressed this by running all
experiments with ten randomly selected and randomly or-
dered training sets, and computing average effectiveness over
the runs. The same ten randomly ordered sets of training
documents were used for all algorithms and categories in a
collection.

7 Routing Task

By routing systems, we mean IR systems which provide
users access to a stream of texts over a period of time. Ex-
amples would be systems that fax newswire stories to a user
each morning, which sort incoming email into folders, or
which provide a ranked retrieval view of a constantly chang-
ing body of text, such as Usenet news. As such, routing
systems share characteristics of both retrieval and catego-
rization systems.

7.1 A TREC Routing Data Set

Our routing experiments used data developed in the TREC
evaluations (Harman, 1995a). The 741,856 documents from
TIPSTER Volumes 1 & 2 were used for training, and the
336,310 documents from Volume 3 were used for testing.
(See Section 6.2 for availability.) The TIPSTER distribu-
tion includes several sets of “topics” describing the needs
of hypothetical users for information. We viewed each such
user need as a class to be learned, and conducted routing
experiments with this training and test data on two sets of
TREC topics: numbers 51-100 and numbers 101-150.

Judgments of which documents belong to each class (i.e.,
are relevant to each user information need) have been made
as part of the TREC evaluations and auxiliary studies, but
only a fraction of the documents have been judged. For top-
ics 51-100, a mean of 1,784 training documents (328 relevant
and 1,456 nonrelevant) and 2,340 test documents (220 rele-
vant and 2,121 nonrelevant), selected by a pooling strategy
(Harman, 1995a), have been judged for relevance. Similarly,
for topics 101-150, a mean of 1,252 training documents (233
relevant and 1,019 non relevant) and 1,333 test documents
(187 relevant and 1,146 nonrelevant) were judged. In our ex-
periments, we train only on the judged training documents.

For the purpose of estimating effectiveness we assume, as
do the TREC evaluations, that test documents not judged
for a topic are not relevant to that topic. Thus our test set
for all topics is of size 336,310.

7.2 Details of Experiments

The routing experiments varied in a number of ways from
the text categorization experiments:

Feature Extraction. The set of features was defined
by standard INQUERY tokenization of the text, but only
words, not phrases were used. The basic INQUERY weight-
ing formula was used (Callan et al., 1995), which has a min-
imum feature value of 0.4 and weights that tend to be in
the range 0.4 to 0.5. Due to this restricted range of values,

302

Catezorv I ltocc. WH EG-bin
Set 1
tickertalk
boxoffice
nielsens
bonds
burma
ireland
quayle
dukakis
budget
hostages
Set 2
Yugoslavia
aparts
dollargold
W.p.w.
german
gulf
britain/british
israel
bush
japan

.00 .06 .00

.49 .48 .59

.52 .51 .46

.61 .60 .59

.74 .68 .76

.43 .55 .52

.79 .78 .77

.61 .63 .61

.59 .58 .59

.58 .60 .58

.42 .66 .60

.07 .15 .10

.90 .92 .93

.85 .88 .72

.51 .66 .63

.22 .27 .31

.38 .55 .52

.60 .75 .61

.53 .51 .53

.50 .76 .61

Table 2: Per-category effectiveness for Rocchio, WH, and
EG on TREC-AP titles. Rocchio and WH use a t~ x id~
representation, EG a binary representation. The full train-
ing set of 142791 titles is used in all cases. We show mean
values (over 10 runs) of F1.

we trained the WH and EG algorithms with a target out-
put of 0.47 for relevant documents and 0.40 for non-relevant
documents. For the EG algorithm this can also be treated
simply as a change in the feature values used.

Feature Selection. Time did not allow us to work
with the full feature set of words in the routing experiments.
(There are 868,795 unique words just in the parsed version of
Volumes 1 and 2.) The features used were the content words
occurring in the textual description of the topic (on average
7.92 words/topic for topics 51-100 and 8.76 words/topic for
topics 101-150), and either 50 or 1000 additional words cho-
sen by a query expansion process similar to that used in the
U Mass TREC-4 experiments (Allan et al., 1996).

Text Segment. All textual material was used.
Starting Vector. Rocchio was used with a starting

vector of (O, O). WH and EG were started with the out-
put of the Rocchio algorithm. EG was also tested with the
starting vector (l/d, ..., l/d), producing similar results (not
reported).

Learning Rate. Rocchio was used with parameter set-
tings of a = 1, ~ = 2 and ~ = 0.5. The ratio of ~ = 2
to ~ = 0.5 is the same as in the text categorization exper-
iments. The value a = 1 gives some weight to the original
topic text, something not available in the text categorization
problems. WH was used with a learning rate of I/l[x, 112,
that is a different learning rate was used for each example.
This difference from the rate used in the categorization ex-
periments is unlikely to have had an effect given the training
procedure used (see below). EG used a rate of q = 2/(3R2),
with R varying according to the representation used.

Training Set. All documents judged for each topic were
used for training.

Training Procedure. Rocchio was trained in the usual
batch mode fashion. WH waa trained on a sequence of
100,000 examples drawn randomly with replacement from

Topics
Method 51-100 101-150
INQUERY
Q+50w / Rocchio .326 .341
Q+50w / WH .361 .288
Q+50w / EG .415 .403
Q+1OOOW / Rocchio .203 .190
Q+1OOOW / WH .216 .192
Q+1OOOW / EG .404 .295
(Buckley et al., 1994)
Q+50w / Rocchio .3829 —
Q+500w / Rocchio .4068
(Buckley & Salton, 1995)

m-

Table 3: Mean R-precision across routing topics for various
training procedur~s. R-precision is pre~sion at a number
of documents equal to the number of relevant documents
(Harman, 1995b, p. A-10). w indicates that expansion terms
are words, p indicates phrases. DFO is Buckley and Salton’s
Dynamic Feedback Optimization.

the full training set. EG was trained on 100,000 examples
drawn randomly with replacement from either the positive
(probability 1/2) or negative (probability 1/2) training ex-
amples.

Final Classifier. The final classifier was selected by a
pocketing strategy (Gallant, 1986). We pocket (record) the
weight vector after 100 training examples. After every 100
subsequent training examples the current weight vector is
used to rank the training data and the value of SAP is mea-
sured. If the SAP value is higher than that of the pocketed
vector, the pocketed vector is replaced by the current vector.
At the end of training the current pocketed vector is evalu-
ated on the test data. The threshold for binary classification
was found by optimizing F1 on the training set.

Since the routing experiments always used all training
data available, there was no sampling variation. The poten-
tial for the ordering of training data to impact effectiveness
was slight due to the use of pocketing, and the fact that
most examples were examined many times.

8 Results

Table 4 summarizes our results on the three data sets. We
compare the overall effectiveness of WH and EG with that
of Rocchio in two ways. First, we count the number of
classes on which WH (or EG) has a higher F’1 value than
Rocchio, and vice versa, as shown in the Wins columns.
WH and EG counts are significantly higher (p < 0.05) than
the corresponding Rocchio counts by a one-tailed sign test
(Siegel, 1956, Ch. 5) unless a “?” is shown. Second, we
compute the mean F1 value across classes for each algorithm
and compare this in the Mean F1 columns.

The general pattern of results is aa expected. The mean
F1 values hide the usual high variation among classes. The
more informative t~ x idf representation is generally supe-
rior to the less informative binary one, more training data
is better than less, and more positive training instances
(“big” categories) is better than fewer. One anomaly is that
OHSUMED titles work better than OHSUMED abstracts.
The high variance in length of abstracts, with a tendency

303

Data Set N urn Nurn W H vs. Rocchio EG vs. Mocchio
Trammg DocRep Classes Features Wms Mean hi Wms Mean hi
AP Headline Categoriz ation

10000 bin 20 40820 16>4 (.45> .33) 16>4 (.44> .33)
10000 tfxzdf 20 40820 14>?6 (.48 >.44) [10=?10 (.44 >.44)]

142791 bin 20 40820 15>5 (.57> .40) 18>2 (.55> .40)
142791 t~ X id~ 20 40820 13 >? 7 (.58 > .52) [14 >? 6 (.55 > .52)]

AP Body Categorization n
10000 bin 20 264836 18>2 (.48> .25) 18>2 (.52> .25)
10000 tfxzdj 20 264836 15>5 (.60 >.50) [10=?10 (.52 >.50)]

142791 bln 20 264836 18>2 (.65 >.33) 18>2 (.61 > .33)
142791 tf X id~ 20 264836 16>4 ~.72>.63j \ [9<?11 (’.6l<.63j]

OHSUMED Title Categorization (big categories)
10000 bin 49 64781 - 48>1 (.29 >.15)
10000 tfxzdf 49 64781 41>7 (.34 >.29)

183229 bin 49 64781 47>2 (.53 >.26)
183299 tjxidf 49 64781 32>17 (.51 >.47)

OHSUMED Title Cate gorization (small cate gories)
10000 bin 28 64781 15>4 (.04 > .02)
10000 tj X idf 28 64781 21>1 (.06 > .03)

183229 bin 28 64781 26>0 (.43 >.22)
183299 tf X idf 28 64781 16>10 (.43 >.41)

OHSUMED Abstract Categoriza tion (big categories)
10000 bin 49 135531 45>4 (.16 > .07)
10000 tf x idf 49 135531 45>4 (.28 > .18)

183229 bin 49 135531 49>0 (.51 > .13)
183299 tf X idf 49 135531 44>5 (.55 >.44)

OHSUMED Abstract Categoriza tion (small categories)
10000 bin 28 135531 13>1 (.01 >.00)
10000 tfxidf 28 135531 11>1 (.03 >.00)

183229 bin 28 135531 22>3 (.29 >.10)
183299 tf xidf 28 135531 15>12 (.39 >.33)

TREC Document Rout ing (topic s 51-100)
varies INQUERY 50 Q+50 34>16 (.28 > .22)
varies INQUERY 50 Q+1OOO 41>9 (.16 > .06)

TREC Document Rout ing (topic s 101-150)
varies INQUERY 50 Q+50 13 <? 37 (.23 < .29)
varies INQUERY 50 Q+1OOO 36>14 (.13 > .07)

47>2 (.29 > .15)
[30 >? 19 (.29 > .29)]

48>1 (.51 > .26)
/35 >14 (.51 > .47)1

23>3 (.03 > .02)
[20 >7 (.03> .03)]
27>0 (.46 > .42)
[21 >4 (.46> .41)]

49>0 (.27 > .07)
[43 >6 (.27> .18)]
48>1 (.50> .13)

[34 >15 (.50 > .44)]

24>1 (.02 > .00)
[24 >1 (.02> .00)]
26>0 (.39 > .10)

[15 >12 (.39> .33)]

42>8 (.36 > .22)
49>1 {.36 > .06)

38>11 (.35 > .29)
48>2 (.19 > .07)

Table 4: Pairwise comparisons of WH vs. Rocchio. and EG vs. Rocchio. For each condition we show data set. training set
size, document representation, number of classes, and number of features. Wins shows the number of classes for which each
algorithm had a higher F1 value. Rocchio is significantly worse by one-tailed sign test unless a “?” is shown. Mean FI is the
mean value of F1 across all classes for each algorithm. Results for EG vs. Rocchio on a tf x idf representation are bracketed
“[]” to indicate that EG was actually run on a binary representation.

304

toward longer abstracts in later years may be part of the
reason.

10 Future Work

9 Discussion

Under almost allconditions the Rocchio algorithm was less
effective than both WH and EG, sometimes strikingly so.
The one notable exception, for which we do not have a good
explanation, is on routing topics 101-150, where the WH
algorithm does badly for small numbers of features. Similar
results (not shown) were obtained when classifiers were used
to rank routing documents, with effectiveness measured by
SAP. This is despite the fact that WH and EG are online
algorithms, and do not optimize a criterion function over an
entire training set as Rocchio can.

Document representation had a clear impact on results.
Both WH and Rocchio were improved by moving to the more
informative t~ x idf representation. Rocchio performed par-
ticularly poorly on a binary representation, as has previously
been observed (Salton & Buckley, 1990). On the text cat-
egorization data EG was run only on a binary representa-
tion, as mentioned earlier, but had higher effectiveness than
Rocchio running on a tf x idf representation in many cases.
WH and EG also dominated Rocchio on the INQUERY rep-
resentation used in the routing experiments.

These results are consistent with the theoretical prop-
erties outlined in Section 4. For a binary representation,
the parameter R which appears in the EG bound (Equa-
tion (6)) is equal to 1, and the parameter X2 in the WH
bound (Equation (5)) is equal to the number of (distinct)
words in the longest document — at most in the hundreds.
For cosine-normalized tf x zdf, X is equal to 1. So in each
of these cases, the “additional terms” appearing in the WH
and EG bounds are quite small given the large number of
documents used in our training sets.

Though inferior to EG and WH, it is surprising, in the
absence of theoretical guarantees, how well the Rocchio al-
gorithm did with such large feature sets. The per-category
data in Table 2 and frequency data in Table 1 suggests Roc-
chio does its best with relatively low frequency categories.

Our routing experiments show that WH and EG can
be used to improve initial weight vectors where both the
weights, and terms for which there are nonzero weights, are
chosen by the Rocchio algorithm. In addition, EG in par-
ticular tends to drive toward zero many of the remaining
weights, resulting in a shorter and thus more efficient classi-
fier. This use of EG for term selection is expensive, however.
On average, EG with 1000 features was 8 times slower than
EG with 50, but gave essentially the same effectiveness. This
suggests that when efficiency is a consideration, Rocchio or
some other more efficient method be used to choose a limited
feature set for which weights are found by EG or WH.

Table 3 compares our results for ranking (rather than
binary classifying) the routing data with those of other re-
searchers using the same topics, training data, and test data.
For Q+50 features and Rocchio starting weights on topics
101-150, EG does as well as Buckley and Salton’s (Buckley
& Salton, 1995) computationally intensive Dynamic Feed-
back Optimization. On topics 51-100, Buckley and Salton’s
only results used a phrasal representation, and so are not
directly comparable, but EG is at least competitive. Buck-
ley, Salton, and Allan (Buckley et al., 1994) found Rocchio
better suited to large feature sets on topics 51-100 than we
did, probably due to differences in document length normal-
ization.

There are many improvements possible in our techniques
for learning linear classifiers for IR. Applying EG to docu-
ments represented by tf x tdf weights on our categorization
data is an obvious next step, and other document weighting
functions should be investigated as well. The logarithmic
dependence of EG on feature set size suggests more radical
representation changes. One could combine several variants
on stemming, phrase formation, clustering, etc. in the docu-
ment representation with little danger of overfitting. Cohen
and Singer report preliminary results along these lines (Co-
hen & Singer, 1996).

It is not clear that minimizing squared error on the train-
ing set is the best approach to optimizing, for instance, FP

on the test set. The use of general optimization procedures
(Buckley & Salton, 1995) is one answer to this problem,
but one that sacrifices efficiency and theoretical guarantees.
One alternative would be to apply EG to sigmoidal units
(Helmbold et al., 1996), which produce probabilities usable
for optimization (Lewis, 1995a). Another would be to define
error measures for learning which are more tightly coupled
with the ultimate effectiveness measure. This may require
using a batch mode version of EG, which we in any case
wish to compare with other batch mode error minimization
procedures (Yang & Chute, 1994).

Maintaining and updating very large weight vectors may
take too much space or time, so methods for pruning weight
vectors while maintaining theoretical guarantees (Blum,
1995) are also worth examining.

11 Summary

IR methods are being applied to an increasingly broad range
of problems, and by implementers who are less experienced
with IR systems. Predictability and effectiveness of tech-
niques under a wide range of conditions are important. We
have shown that the Widrow-Hoff and EG algorithms for
training linear classifiers are not only more effective on IR
problems than at least one IR standby, but have a rich the-
ory that lets their performance be better understood and
predicted.

Acknowledgments

Thanks to William Cohen, Isabelle Moulinier, Amit Sing-
hal, Yoram Singer, Manfred Warmuth, and Yiming Yang
for helpful comments on this work.

References

Allan, J., Ballesteros, L., Callan, J. P., Croft, W. B., &
Lu., Z. (1996). Recent experiments with INQUERY. In
Proceedings of TREC-~.

Blum, A. (1995). Emprical support for Winnow and
Weighted-Majority based algorithms: results on a cal-
endar scheduling domain. In Machine Learmng: Pro-

ceedings of the Twelfth International Conference, pp.
124-132.

Buckley, C., & Salton, G. (1995). Optimization of relevance
feedback weights. In SIGIR ’95, pp. 351-357.

Buckley, C., Salton, G., & Allan, J. (1994). The effect of
adding relevance information in a relevance feedback
environment. In SIGIR ’94, pp. 292–300.

305

Callan, J. P., Croft, W. B., & Broglio, J. (1995). TREC and
TIPSTER experiments with INQUERY. Information
Processing and Management, 31(3),327-343.

Cesa-Bianchi, N., Long, P. M., & Warmuth, M. K. (1993).
Worst-case quadratic loss bounds for a generalization
of the Widrow-Hoff rule. In Proceedings of COLT-93,
pp. 429–438.

Cohen, W. W. (1995). Text categorization and relational
learning. In Machine Learning: Proceedings of the
Twelfth International Conference, pp. 124-132.

Cohen, W. W., & Singer, Y. (1996). Context-sensitive learn-
ing methods for text categorization. In SIGIR ’96.

Croft, W. B., & Harper, D. J. (1979). Using probabilistic
models of document retrieval without relevance feed-
back. Journal of Documentation, 35(4),285-295.

Duda, R. O., & Hart, P. E. (1973). Pattern Classification
and Scene Analysis. Wiley-Interscience, New York.

Gallant, S. I. (1986). Optimal linear discriminants. In Inter-

national Conference on Pattern Recognition, pp. 849–
852.

Harman, D. (1992a). Ranking algorithms. In Frakes,
W. B., & Baeza-Yates, R., editors, Information Re-
trieval: Data Structures and Algorithms, pp. 363-392.
Prentice Hall, Englewood Cliffs, NJ.

Harman, D. (1992 b). Relevance feedback and other query
modification techniques. In Frakes, W. B., & Baeza-
Yates, R., editors, Information Retrieval: Data Struc-
tures and Algorithms, pp. 241–263. Prentice Hall, En-
glewood Cliffs, NJ.

Harman, D. (1995a). Overview of the third Text REtrieval
Conference (TREC-3). In (Harman, 1995b).

Harman, D. K., editor (1995b). Overview of the Third
Text REtrieval Conference (TREC-3), Gaithersburg,
MD 20899-0001. National Institute of Standards and
Technology. Special Publication 500-225.

Helmbold, D. P., Kivinen, J., & Warmuth, M. K. (1996).
Worst-case loss bounds for single neurons. In Advances
in Neural Information Processing Systems 8. To appear.

Hersh, W., Buckley, C., Leone, T. J., & Hickman, D. (1994).
OHSUMED: an interactive retrieval evaluation and new
large test collection for research. In SIGZR ’94, pp. 192-
201.

Kivinen, J., & Warmuth, M. K. (1994). Exponentiated
gradient versus gradient descent for linear predictors.
Technical Report UCSC-CRL-94-16, Basking Center
for Computer Engineering & Information Sciences; Uni-
versity of California, Santa Cruz, CA.

Lewis, D. D. (1995a). Evaluating and optimizing au-
tonomous text classification systems. In SIGIR ’95, pp.
246–254.

Lewis, D. D. (1995 b). A sequential algorithm for training
text classifiers: Corrigendum and additional data. S1-
GZR Forum, 29(2),13-19.

Lewis, D. D., & Gale, W. A. (1994). A sequential algorithm
for training text classifiers. In SIGZR ’94, pp. 3-12.

Lowe, H. J., & Barnett, G. O. (1994). Understanding and
using the medical subject headings (MeSH) vocabulary
to perform literature searches. Journal of the American
Medical Association, 271(14),1103–1108.

Robertson, S. E., & Sparck Jones, K. (1976). Relevance
weighting of search terms. Journal of the American
Society for Information Science, pp. 129-146.

Rocchio, Jr., J. J. (1971). Relevance feedback in information
ret rieval. In Salton, G., editor, The SMART Retrieval
System: Experiments in Automatic Document Process-
ing, pp. 313–323. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Salton, G., & Buckley, C. (1988). Term-weighting ap-
proaches in automatic text retrieval. Information Pro-

cessing and Management, 24(5),513–523.

Salton, G., & Buckley, C. (1990). Improving retrieval perfor-
mance by relevance feedback. Journal of the American
Society for Information Science, 41(4),288-297.

Salton, G., & McGill, M. J. (1983). Introduction to Modern
Information Retrieval. McGraw-Hill Book Company,
New York.

Siegel, S. (1956). Nonparametric Statistics for the Behav-
ioral Sciences. McGraw-Hill, New York.

Singhal, A., Buckley, C., & Mitra, M. (1996). Pivoted doc-
ument length normalization. In SIGIR ’96.

van Rijsbergen, C. J. (1979). Information Retrieval. But-
terworths, London, second edition.

Widrow, B., & Stearns, S. D. (1985). Adaptive Signal Pro-
cessing. Prentice-Hall, Englewood Cliffs, NJ.

Yang, Y., & Chute, C. G. (1994). An example-based map-
ping method for text categorization and retrieval. ACM
Transactions on Information Systems, 12(3),252-277.

306

