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ABSTRACT
Point-of-Interest (POI) recommendation is a new type of recom-
mendation task that comes along with the prevalence of location-
based social networks in recent years. Compared with traditional
tasks, it focuses more on personalized, context-aware recommenda-
tion results to provide better user experience. To address this new
challenge, we propose a Collaborative Filtering method based on
Nonnegative Tensor Factorization, a generalization of the Matrix
Factorization approach that exploits a high-order tensor instead of
traditional User-Location matrix to model multi-dimensional con-
textual information. The factorization of this tensor leads to a com-
pact model of the data which is specially suitable for context-aware
POI recommendations. In addition, we fuse users’ social relations
as regularization terms of the factorization to improve the recom-
mendation accuracy. Experimental results on real-world datasets
demonstrate the effectiveness of our approach.

Categories and Subject Descriptors
H.2.8 [Data Management]: Database Applications—Data min-
ing; H.3.5 [Information Storage and Retrieval]: General

Keywords
Tensor factorization; social regularization; location based social
networks; recommendation

1. INTRODUCTION
With the popularization of mobile devices, wireless networks

and location-enabling techniques, location-based social networks
(LBSNs), such as Foursquare, Gowalla, and Brightkite, have been
attracting millions of users. People are increasingly using LBSNs
services to connect with friends, explore places (e.g., restaurants,
shops, cinemas etc.), and share their locations via check-in activi-
ties, which contain rich clues of users’ preference on locations [5,
2, 6]. We take Brightkit check-in data1 as an example to show some
key patterns:

1http://snap.stanford.edu/data/loc-brightkite.html
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Figure 1: Illustration of check-in patterns in terms of geo-
graphical pattern (a) and (b), friendship impact (c) and tem-
poral pattern of one specific user (d) over Brightkit

• Check-in activities have shown some interesting geographi-
cal characteristics such as spatial clustering patterns (as shown
in Figure 1 (a)). Generally, people tend to visit nearby loca-
tions of their homes or offices, which are their POIs, and
may also be interested in visiting the nearby locations of
these POIs, even if they become far away from their homes
[3, 11]. In addition, the majority of POIs checked in by the
same users tend to aggregate within a certain range of short
distances (as shown in Figure 1 (b));

• Users’ social relationships have shown impact on checking-
in activities. A dominant percentage of users have less than
10% overlapping locations with their friends (as shown in
Figure 1 (c));

• Check-in data also show the periodical features depending on
the type of POIs. For example, restaurants’ peak time may
be in the lunch hours, yet nightclubs or cinemas are most
probably during nights and weekends (Figure 1 (d)).

Such availability of check-in data with rich spatial-temporal-social
information makes it possible to design the context-aware location
recommendation applications. In view of such informative patterns
in check-in information, many significant works have been con-
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Figure 2: (a) Tensor Construction; (b) CP Decomposition

ducted on POI recommendation by analyzing users’ check-in his-
tory and social constraints patterns [3, 12, 5]. In particular, Ye
et al. [11] apply a power-law probabilistic model to capture the
geographical influence among users’ check-ins. Zhang et al. [13]
consider social and geographical influence from both user and loca-
tion perspectives, and develop a recommendation model by fusing
Kernel density estimation into the matrix factorization framework.
Yuan et al. [12] propose a collaborative recommendation model by
incorporating temporal information. In a very recent work, Hu et
al. [6] propose to improve the recommendation accuracy by incor-
porating the geographical neighborhood information.

Instead of modeling check-ins as a traditional two-dimensional
user-location matrix, in this paper, we address the POI recommen-
dation problem by incorporating the multi-dimensional contextual
information of check-in data with high order tensor factorization
to uncover the hidden dependency of multi-dimensional contextual
information. Karatzoglou et al. [7] also propose a tensor-based
context-aware recommendation framework using tucker decompo-
sition. However, they did not consider the internal correlations
among the contextual entities. In contrast to their work, we em-
ploy three order tensor to uncover the hidden dependency of multi-
dimensional contextual information, and further explore the social
influence among users, to support more accurate POI recommen-
dation.

This paper makes the following contributions:

• We propose using high order tensor to interpret the multi-
dimensional contextual information of check-in data in a com-
pact manner. In particular, we further impose users’ social
connections as an extra regularization to improve recommen-
dation accuracy.

• We evaluate our proposed method using real datasets, and
the experimental results demonstrate the effectiveness of our
approach.

Notations. In the rest of this paper, scalars will be denoted by
lowercase letters, (e.g., m), vectors by boldface lowercase letters
(e.g., u), matrices by boldface capital letters (e.g., U), and tensors
by Calligraphy (e.g., R). We will use ◦ to denote the outer product,
⊙ the Khatri-Rao operation, and || · ||F the Frobenius norm.

2. PROPOSED METHOD
The POI recommendation problem in this paper can be defined

as: given the historical check-in records of m users {ui}mi=1 on n

locations {vj}nj=1 and q timeframes {tk}qk=1, recommending the
target users a set of locations that they might be interested in. We
model the check-in tensor R ∈ Rm×n×q via third order tensor,
where each Rijk quantifies users’ preference in terms of frequency,
i.e., the times that user ui visits location vj within time slice tk.
The tensor construction from check-in records R ∈ Rm×n×q can
be defined as the check-in frequency of if user ui visits location vj
within time frame tk, where Rijk denotes user ui checks in at loca-
tion vj within time period tk (Figure 2 (a)). To address the temporal
dependency of users’ dynamic check-ins over time, the third order
tensor R can be estimated from check-in records using tensor de-
composition techniques, such as the High Order Singular Value De-
composition (HOSVD) and CANDECOMP/PARAFAC (CP) de-
composition [4]. In this paper, we employ CP decomposition D-
component of rank 1 tensors [8] to characterize the three dimen-
sional check-in records (Figure 2 (b)), the preference of user ui

on location lj in time frame tk can be approximated as: R̂ ≈∑D
d=1 ud ◦ vd ◦ td where R̂ denotes the predicted approximation

of R; ud ∈ Rm, vd ∈ Rn and td ∈ Rq . We aim at finding the
decomposition R̂ that best approximates the original tensor R to
achieve best recommendation results. In particular, we solve the
optimization problem by minimizing the squared loss as follows.

L(U,V,T) =
1

2
min

U,V,T
||R − R̂||2F

=
1

2
min

U,V,T
||R −

D∑
d

ud ◦ vd ◦ td||2F
(1)

where U = [u1, ...,uD] ∈ Rm×D , V = [v1, ...,vD] ∈ Rn×D ,
and T = [t1, ..., tD] ∈ Rq×D are all factor matrices. To avoid
overfitting, the regularization terms associated with U, V and T
are introduced into Equation 1 as:

min
U,V,T

1

2
||R − R̂||2F +

λ

2
(||U||2F + ||V||2F + ||T||2F ) (2)

where λ is the regularization parameter. We further consider users’
explicit social friendships to improve recommendation accuracy,
which has been widely used in two-dimensional matrix factoriza-
tion based recommendation frameworks [9]. The social regulariza-
tion term can constrain the matrix factorization objective function
and indirectly propagate users’ preferences.

The Equation 2 can be reformulated as:

L(U,V,T) = min
U,V,T

1

2
||R − R̂||2F +

λ

2
(||U||2F + ||V||2F + ||T||2F )

+
α

2

s∑
i,j=1

Ai,j

D∑
d

([Ui,d]− [Uj,d])
2

= min
U,V,T

1

2
||R − R̂||2F +

λ

2
(||U||2F + ||V||2F + ||T||2F )

+
α

2

D∑
d

U∗d
TLU∗d

= min
U,V,T

1

2
||R − R̂||2F +

λ

2
(||U||2F + ||V||2F + ||T||2F )

+
α

2
tr(UTLU)

= min
U,V,T

1

2
||R − R̂||2F +

1

2
tr[UT (λI+ αL)U] +

λ

2
(||V||2F + ||T||2F )

= min
U,V,T

1

2
||R − R̂||2F +

1

2
tr[UT (λI+ αL)U] +

λ

2
tr[VVT +TTT ]

(3)
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where Ai,j indicates the similarity between user i and j, L is the
Laplacian matrix induced from users’ social networks matrix A ∈
Rm×m; L = D − A, where D is the diagonal matrix whose i-th
diagonal element is the sum of all the elements in the i-th row of
A, i.e., Dii =

∑
j Aij .

∇UL(U,V,T) = ∇U||R(1) − Û(V ⊙T)T ||2F +
λ

2
I+

α

2
L

∇VL(U,V,T) = ∇V||R(2) − V̂(U⊙T)T ||2F +
λ

2
I

∇TL(U,V,T) = ∇T||R(3) − T̂(U⊙V)T ||2F +
λ

2
I

(4)

where R(1) ≈ U(V ⊙ T)T , R(2) ≈ V(U ⊙ T)T and R(3) ≈
T(U⊙V)T . As Equation 3 is not convex, we adopt the alternating
optimization strategy to solve the objective function. In particular,
we alternately optimize each of the three parameters U, V and T,
while fixing the other two until convergence to find the optimal
solution using Equation 4.

3. EXPERIMENTS

3.1 Experimental Settings
Dataset. We select the check-in occurred during January 2010 to
September 2010 from the original Brightkite [3], we remove users
whose checked-in records are fewer than 5 POIs, and then removed
POIs with fewer than 5 users checked in. For each user, we ran-
domly mark off another 20% of POIs as testing data to evaluate
the effectiveness of the recommendation methods. We use Preci-
sion@x and Recall@x to evaluate our proposed method (x= 5, 10,
15, 20).

Comparison Methods. We compare the proposed models TenInt
with the following other methods, which basically consist of two
categories: (1) Non-contexts: we implement basic non-negative
matrix factorization (NMF), user-based collaborative filtering (UCF)
and item-based collaborative filtering (ICF) [10]; (2) Partial con-
texts: we develop three models by taking into geographical influ-
ence, temporal information and friendship into account, respec-
tively.

• NMF. It only considers the 2D user-location matrix. It ap-
plies non-negative matrix factorization on user-location ma-
trix to predict the possibility of check-in. The user-location
matrix can be decomposed into two lower dimension matri-
ces in this method:

min
U,V

1

2

m∑
i=1

n∑
j=1

(rij − uT
i vj)

2 (5)

• User-CF (UCF). It predicts a user’s preferences by taking
the preferences of other similar users into account and use
Jacaard similarity for similarity computation.

• Item-CF (ICF). It predicts a user’s preferences on a target
location by taking his preferences on similar locations into
account [10] and Jaccard similarity is used for similarity
computation.

• Friendship-aware CF (FA). The probability of user i checks
in location k can be calculated as:

Rf
ik =

∑
j∈Fi

sfij · cjk∑
j∈Fi

sij
(6)

where cjk = 1 if user i checked in location k, otherwise 0.
sfij is computed as:

sfij = λ
|Fi ∩ Fj |
|Fi ∪ Fj |

+ (1− λ)
|Li ∩ Lj |
|Li ∪ Lj |

(7)

where F· denotes user’s friendship set and L· denotes the
locations checked in by each user. λ is used to balance the
importance of friend impact and impact of shared checked
in locations [11]. λ = 0.4 is the best setting based on our
empirical study in this work.

• Geographic-aware CF (GA). We use Gaussian Mixture Model
(GMM) to capture the geographical clustering influence, where
Gaussian center could be user’s home, office, or entertain-
ment places like shopping malls or restaurants [1]. The prob-
ability that user i visits location k is modeled as below:

Rg
ik =

M∑
m=1

πmN(lk|µm,
∑
m

) (8)

where lk denotes location k, which is represented by longi-
tude and latitude coordinates, and m is the number of Gaus-
sian clusters.

• Time-aware. To address the temporal influence in users’
check-in behaviors, we decompose the time over two dimen-
sions of day (Mon. to Sun.) and hour (1 to 24). The proba-
bility of check-in is computed as:

Rt
ik =

∑L
l=1 I(i, l) · sim(l, k) · f(T )∑L

l=1 sim(l, k) · f(T )
(9)

where l denotes a subset closely associated with user i ac-
cording to his historical check-in records. sim(l, k) can be
computed using Jaccard similarity. f(T ) is a temporal ad-
justment function for each user, which can be computed by
using:

f(T ) = η · Pr(k|h) + (1− η) · Pr(k|d) (10)

where Pr(k|h) is the probability of check-in at location k,
given the h-hour within a day (24 hours one day). Pr(k|d)
is the probability of check-in at location k, given the d-th day
within a week (7 days one week).

We also compare with a linear model (LIM) by integrating these
three partial contextual models together. The overall probability
that user i would visit location k can be obtained:

Rik = αRt
ik + βRf

ik + (1− α− β)Rg
ik (11)

α = 0.1 and β = 0.6 are the best settings based on our empirical
study.

3.2 Results

3.2.1 Overall Comparison
The overall comparison results are shown in Figure 3, from which

we summarize two main observations. First, our tensor-based rec-
ommendation method significantly outperforms all compared meth-
ods (including both non-context aware methods and context-aware
methods) in terms of top 5 to top 20 validations. Our method ob-
tains better prediction than the linear model, mostly because the
tensor-based factorization can better reveal the hidden information.
Second, all context-aware methods (e.g., the linear model fully
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combined with friendship, spatial and temporal influence) have bet-
ter performance than the ones without or with only partial context-
awareness. The basic matrix factorization method has the worst
accuracy, as it only works on user-location matrix and does not in-
tegrate any contextual information. To sum up, the results demon-
strate the effectiveness of incorporating multi-dimensional contex-
tual information in a unified tensor based approach in improving
the recommendation performance.
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Figure 3: Precision and recall over all methods

3.2.2 Impact of Tensor Dimensionality
As the parameter dimensionality fundamentally determines the

number of latent factors involved in the tensor factorization, in this
section, we investigate the impact of the dimensionality by varying
the value of dimensionality from 5 to 60 with a step size 5. Figure 4
shows the precision and recall at top 5, 10, 15 and 20 under differ-
ent tensor dimensionality. We observe that the precision and recall
keep increasing with larger dimensionality, however they slightly
drop when dimensionality reaches around 55. The results reveal a
larger dimensionality can effectively uncover information of check-
ins and improve the recommendation performance. But when the
dimensionality exceeds certain threshold, the performance may de-
grade because of over-fitting. Larger dimensionality also requires
more computational cost. Based on our results, we have set the
dimensionality as 50 in above comparison.
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Figure 4: Impact of tensor dimensionality

4. CONCLUSION
In this paper, we propose a tensor non-negative decomposition

based Point-of-Interest (POI) recommendation approach using users’
social constraints as regularization. We model the check-in records
as three dimensional tensor and employ the non-negative tensor
factorization method to enable effective POI recommendation in a
higher dimensional space. Specially, we propose to impose users’
social constraints as regularization terms on tensor non-negative

factorization to improve the recommendation accuracy. Our pro-
posed method achieves better performance than seven standard base-
lines in our experimental study.
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