Reactive Index Replication for Distributed Search Engines

Flavio P. Junqueira
Yahoo! Research
Barcelona, Spain

fpj@yahoo-inc.com

ABSTRACT

Distributed search engines comprise multiple sites deployed
across geographically distant regions, each site being spe-
cialized to serve the queries of local users. When a search
site cannot accurately compute the results of a query, it
must forward the query to other sites. This paper consid-
ers the problem of selecting the documents indexed by each
site focusing on replication to increase the fraction of queries
processed locally. We propose RIP, an algorithm for repli-
cating documents and posting lists that is practical and has
two important features. RIP evaluates user interests in an
online fashion and uses only local data of a site. Being an
online approach simplifies the operational complexity, while
locality enables higher performance when processing queries
and documents. The decision procedure, on top of being on-
line and local, incorporates document popularity and user
queries, which is critical when assuming a replication budget
for each site. Having a replication budget reflects the hard-
ware constraints of any given site. We evaluate RIP against
the approach of replicating popular documents statically,
and show that we achieve significant gains, while having the
additional benefit of supporting incremental indexes.

Categories and Subject Descriptors

H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms

Design, Experimentation, Performance

Keywords

Multi-site web search engine, distributed index, replication

1. INTRODUCTION

Distributed search engines aim at horizontal scalability
for Web search [2, 6]. The search engine is distributed over

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGIR’12, August 12-16, 2012, Portland, Oregon, USA.

Copyright 2012 ACM 978-1-4503-1472-5/12/08 ...$10.00.

Vincent Leroy
Yahoo! Research
Barcelona, Spain

leroy@yahoo-inc.com

831

Matthieu Morel

Yahoo! Research

Barcelona, Spain
matthieu@yahoo-inc.com

several search sites deployed in (smaller) data centers spread
across the world. Each search site only indexes a fraction
of the documents, and receives the queries of the users in
its region. When a query cannot be answered locally, it is
forwarded to the other sites in order to compute accurate
responses [2, 8]. Distributed search engines share the work-
load among several sites. Thus, deploying an extra site in a
new data center increases the capacity of the search engine.

Designing an efficient distributed search engine is a chal-
lenging task. Traditional search engine algorithms rely on
all the resources being accessed within a single data center.
However, in the case of distributed search, the index is split
among several distant locations. Accessing data in another
search site translates into a higher response time due to net-
work latency. Ideally, a site processes most queries locally
to offer low response time and avoid the cost of processing
the query in several sites. To enable this property, a care-
ful selection of the documents to index on each site becomes
necessary to guarantee that most frequently requested docu-
ments can be retrieved locally. A trivial solution is of course
to replicate all documents across all sites. This solution,
however desirable from a latency perspective, induces a high
utilization of computer resources. Consequently, an impor-
tant goal is to reduce resource utilization while providing
low latency to end users through local query processing.

Brefeld et al. use machine-learning techniques to assign
each document to one or multiple sites [4]. Their approach,
however, does not consider the popularity of documents or
a resource budget for each site. The popularity of docu-
ments becomes important when having to selectively drop
documents due to resource constraints. Following a differ-
ent approach, Blanco et al. propose to assign each document
to a single site, and later rely on user activity to proceed to
documents replication [3]. Their method relies on terms dis-
tribution and cache invalidations of a document to predict at
which search site it is most likely to be requested. However,
they do not propose any replication strategy.

Upon receiving a query, a search site processes it against
its local index and then estimates whether other sites may
have better documents, in which case the query is forwarded.
Several heuristics have been developed for estimating the
quality of documents in different sites. They rely on some
partial knowledge of the content of the other search sites,
either per-term score thresholds [2], or the scores of previ-
ously processed queries [8]. These algorithms are conserva-
tive: they can generate false positives, but no false negatives.
Hence, the results computed by the distributed search en-
gines are always the same as the ones generated by a single-

Site S,i——-----—-——-——----___________, Local query
4 -TTEEEEEEEE=EEIsIl 2 processing
—
\ \
Mii Sli Fli ! \
Crawler ' ' T \\\ ' Query
AR 1 \
ARY 1 \
l / fullf f \:‘ ; \
replication partial «y \
Master replication Query !
site Ind licati . _ forwarding 1
selection Distributed query heuristic !
v\ __ processing T !
I = Results ;
l v ,/I
Mij Slj Flj
Site S;

Figure 1: Architecture of a distributed search engine

site search engine. While these two approaches achieve a
reasonable precision, they only target static indexes and re-
quire offline computation.

Contributions. We make the following contributions in
this paper:

e We propose RIP (Reactive Indexing Protocol), a prac-
tical algorithm to selectively replicate documents and
posting lists across sites in a distributed search engine.
The algorithm makes decisions online and locally;

e RIP uses document popularity and user queries to se-
lect documents to replicate. Such information is im-
portant to ensure locality while respecting resource
constraints;

e We evaluate the algorithm and compare it against a
baseline that replicates documents statically, as well as
a reactive documents replication algorithm. We show
that RIP increases query locality by 23% while only
increasing the index size of each site by 14%.

Roadmap. The remainder of this paper is organized
as follows. We describe the architecture of the distributed
search engine in Section 2. In Section 3 we present RIP, and
evaluate its performance in Section 4. Finally, we review
related work in Section 5 and conclude with Section 6.

2. ARCHITECTURE

We consider a distributed search engine comprising a set
of search sites S deployed across geographically different re-
gions. The collective of the sites forming the search engine
indexes a document collection D. We present a global view
of the architecture of the distributed search engine in Fig-
ure 1, and describe the elements composing it throughout
this section.

2.1 Traditional search engine architecture

The architecture of a search engine is typically divided
into three components. The crawler fetches documents from
the Web and discovers new content by following hypertext
links. The indezer processes D, the collection of documents,
to generate an inverted index. For each term ¢ present in the
collection, the inverted index contains a posting list, i.e., a
list of the documents that contain . A popular technique for
implementing an index is incremental indexing. Incremental
indexing enables the addition, deletion, or update of indexed
documents without fully regenerating the index. This fea-

832

ture is particularly important in the case of large scale Web
search engines where the cost of regenerating the full in-
dex to update frequently modified Web pages (e.g. news)
is prohibitive. Incremental indexes offer a good trade-off
between the freshness of the documents and the processing
performance. Hence, in this paper, we consider the case of
an incremental indexer. The query processor receives user
queries and processes them against the index. Historically,
commercial Web search engines have preferred conjunctive
query processing [14]: a document has to contain all the
terms in the query to be in the result set. To obtain the
result set, the query processor computes the intersection of
the posting lists of the query terms, evaluating the scores of
the documents using a ranking function. The k (typically
10) results with the highest scores are returned to the user.

2.2 Assignment of documents to sites

In a distributed search engine, each search site has its own
index and processes the queries of the users in its region.
It is therefore important to carefully select documents to
index in each site to tailor the data structures of the sites
for their users. For a short response time, a search site must
be able to process most of the queries it receives using its
local index alone. Indexing documents that are popular in
a region enables locality. However, it is also important to
limit the number of documents indexed at each site. The
query processing latency in fact increases with the size of
the index [5]. Furthermore, replicating a large fraction of
the documents at each site limits the scalability of the search
engine. In this work, we assume that each search site has
a fixed index capacity, either due to limited resources, or
arbitrarily chosen to reduce the processing time. We express
this limit using number of postings, i.e., the sum of the
length of all the posting lists in the index.

To the extent of our knowledge, two approaches have been
developed to compute an assignment of documents to search
sites. The first one relies on machine learning algorithms to
analyze new documents upon their discovery and assigns
them to one or more search sites [4]. The second one assigns
each document to a single master site [3]. This assignment
results in a minimal index, with each document indexed in
a single location. The master site of a document is respon-
sible for maintaining it in its index, which guarantees that
the distributed search engine has the same recall as a cen-
tralized implementation. Our work builds up on the master
selection approach [3]. We assume the existence of an al-
gorithm that assigns each document to a single search site.
Hence, the search site S; has a master index MI; which in-
dexes all the documents S; is the master of. Typically, this
index represents the majority of S;’s index capacity.

The popularity of Web pages typically follows a power
law: while most of the Web pages are unpopular, a few
of them are requested very frequently. A Web page might
present high locality, being popular in a single region, or
be popular across many regions. Distributed search engines
work better in a context where documents have a strong
locality. Indeed, this means that each document only needs
to be indexed by the search site located in the region where it
is popular. Fortunately, a large fraction of the popular Web
pages exhibit a high divergence in their popularity across
regions [3]. Nevertheless, there are still documents which are
popular across region boundaries and are requested by users

of different search sites. The master selection algorithm,
ensures that each document is indexed by its master site.

In this paper, we propose RIP, a Reactive Indexing Pro-
tocol. RIP uses part of the remaining index capacity of each
search site to replicate documents that are frequently re-
quested locally, but were assigned to a different search site
by the master selection algorithm. Contrary to the mas-
ter selection algorithm, which only relies on the content of
the document, RIP is reactive: it analyzes the behavior of
the users at each site to dynamically adjust replication de-
cisions. These fully replicated documents form the shadow
index, denoted SI; for the site S;.

2.3 Distributed query processing

In a distributed search engine, a search site indexes locally
only a fraction of the documents. To preserve the quality of
results, a distributed search engine must generate the same
results as a centralized implementation. A query submitted
to a site S; must be evaluated on the full set of documents
D, whether they are indexed locally (MI; and SI;) or not. So
far, the main approach to executing queries in a distributed
search engine relies upon query forwarding [2, 8]. When
processing a query, a search site first computes results using
its local index, and then relies on a forwarding heuristic
to determine whether another site may be able to provide
higher quality results. If there are such sites according to
the evaluation of the heuristic, then the query is forwarded
to the relevant search sites for further processing. Finally,
the results are then merged and returned to the user.

The forwarding heuristic is conservative with respect to
query forwarding, and it can generate false positives, but
no false negatives. As already mentioned in Section 2.2,
it is preferable to answer a query locally, since it reduces
the response time. It is therefore important to devise an
accurate forwarding heuristic to reduce the forwarding rate.

Existing forwarding heuristics [2, 8] leverage properties
of the search engine ranking function to compute an upper
bound on the score of documents which are not indexed lo-
cally. This ranking function s(d|q), presented on Figure 2,
was introduced by Baeza-Yates et al. [2]. The score of a
document d is computed by averaging partial scores over
the terms of the query ¢q. A document d has a quality score,
expressed by f(d), and a relevance score for a term t, com-
puted by g(d|t). The parameters wy and wy weight quality
and relevance respectively. The partial score of a document
d for a term ¢, expressed as r(d|t), is typically maintained
in the posting lists of the index to improve query evalua-
tion performance. Note that distributed search engines are
compatible with more complex ranking functions, including
positional features, machine learning and diversification. In
these cases, the s(d|q) ranking function is used in the first
phase of a two-phase ranking [9], which ensures that relevant
documents will be known locally before the execution of the
second phase of the ranking.

The heuristic we propose here supports the same rank-
ing function. A site S; may partially replicate the posting
lists of the master indexes of other sites in order to estimate
the need to forward queries. This forwarding index is des-
ignated as FI;. The posting lists of forwarding indexes are
ordered by partial score. For a given term ¢, S; replicates the
list of documents that have the highest partial score r(d|t).
A document whose master is S; and that contains several

833

la|

Zg d|t;)

r(d[t) = wy f(d) + wgg(d|t)

25

s(dlq) = wy f(d

s(dlq) =

Figure 2: Ranking function

terms may only be indexed in one of the posting lists of FI;,
provided its other partial scores are low.

2.4 Index structure

In this section, we summarize the different elements of
the index of a search site. The index of a site S; is logically
divided into three components:

Master index MI;: It contains the documents that were
assigned to S; by the master selection algorithm.

Shadow index SI;: It contains documents that are fully
replicated by S;. They were assigned to one of the other
search sites by the master selection algorithm, but are repli-
cated to improve the query processing locality.
Forwarding index FI;: It contains partial information
about documents assigned to the other search sites. For a
given term t, the posting list associated to ¢ in FI; contains
the list of documents that have the highest partial scores for
t. Documents having high partial scores are also likely to
have a high popularity. Hence, SI; and FI; may overlap.

These logical indexes represent the data available to S; for
processing queries. The posting lists of search engines are,
in most cases, ordered by document ID. This allows high
compression rates, and is particularly efficient for conjunc-
tive query processing [14]. In this work, we do not make
any assumption on the layout of MI; and SI;. However, we
present FI; as an index sorted by impact. This means that
the postings are ordered by partial scores. This assumption
simplifies the description of the algorithm, but there is, in
practice, no reason not to implement these three indexes as
a single incremental index relying on document ID ordered
posting lists.

3. REACTIVE INDEXING PROTOCOL
3.1 Problem definition

We consider the following problem. In a distributed search
engine, each search site is assigned an index budget ex-
pressed as the maximum number of posting lists entries a
site can accomodate. The collection of documents D is split
across the search sites through an initial master index se-
lection algorithm. The remaining index capacity of each
site is freely used to replicate documents and posting lists
of the other sites. A sequence of queries is submitted to
each search site and the goal is to maximize the amount of
queries that are answered locally, without query forwarding.
Consequently, a search site updates its index as it processes
queries. A search site modifies its index only between query
executions, and it does so for a given query only after its
results are returned to the user.

Let res(q) be the set of the k documents obtaining the
highest scores for the query ¢ according the the search en-

gine’s ranking function s(d|q). A site S; has to fulfill two
conditions to answer g locally. First, the documents of res(q)
must all be indexed and copied locally. The search site needs
a copy of the document data to generate the snippet pre-
sented on the results page, and also in the case that it uses
using a two-phase ranking [9]. The search site also needs to
be able to compute accurate scores for all the top-k results
to display them properly ranked. This requirement can be
expressed as follows:

Vd € res(q),d € MI; vd € SI; .

Second, S; should be able to determine, using local data
structures, that no other document could potentially score
higher than the lowest score of the results:

Vd € (D — res(q)), Ve € res(q), scBound(d|q) < s(elq) ;

where scBound(d|q) is the function that computes an upper
bound on the score of the document d for the query ¢ using
only local information, i.e. the information from MI;, SI;
and FIZ

We estimate the future queries Q{ of S; using Q;, a recent
query stream received by S;. Thus, at any given point, we
are trying to maximize the locality of the queries in @Q; to
increase the probability that future queries will be answered
locally. Let us focus on the first locality condition. The cost
of replicating a document is equivalent to the number of
posting list entries it requires in the index. To simplify the
problem, suppose that all documents contain the same num-
ber of terms and therefore have the same cost. The problem
we are trying to solve is a particular form of the knapsack
problem. The objects we are selecting are queries. The util-
ity of selecting a query is proportional to its frequency, while
its cost is equal to the indexing of the results, as well as the
partial information ensuring the quality of results.

Given that the search engine aims at serving the k best
results for each query, we could make the simplifying as-
sumption that all queries have the same cost: indexing k
documents. However, even in this case, the complexity of
the problem arises from the fact that many queries share re-
sults. Hence, the cost of a selection is not equal to the cost
of each query, as some documents would be counted several
times. The knapsack problem is N P-hard, but has greedy
heuristics that perform reasonably well. In particular, the
most common approach consists of selecting the objects in
a decreasing order of ¥ T our case, the cost of selecting
a query depends on the previously selected ones; hence the
costs should be re-evaluated at each step of the algorithm.

3.2 Practical approach

As presented in Section 3.1, a search site has to satisfy
two conditions to answer a query locally. The first one is
that the results should be indexed locally, and the second
one is that the search site should have enough information
to guarantee that no other document in D can score higher.
The computation of an exact optimal solution is NP-hard,
which leads us towards heuristic solutions. Moreover, we
need to consider practical implementation constraints in the
design of our algorithm.

This work targets search engines performing incremental
indexing. The index of the search engine is regularly up-
dated, and the algorithm must account for the presence of
new documents. This eliminates the possibility of relying
solely on an offline algorithm executed during the initial in-

834

dex generation. A practical solution should also use a min-
imal amount of computation and memory, so as to ensure
that as many resources as possible are dedicated to query
processing. Part of the computational cost of the problem
presented in Section 3.1 arises from the fact that the bene-
fit of replicating a document cannot be simply evaluated, it
depends on the full selection of replicated documents. From
this consideration, it would be tempting to devise a solution
based on hypergraphs of documents and queries to model
replication dependencies. However, given the scale of the
document collections we consider, such data structures do
not scale, both with respect to their memory consumption
and the processing cost required to exploit them.

Inspired by previous work in Web caches [13], we propose
a Reactive Indexing Protocol (RIP). Each search site en-
gine monitors the queries of its users to gather local statis-
tics about the frequency of terms and documents. Based
on these observations, our algorithm evaluates the utility of
replicating information. A search site S; may either repli-
cate documents, to ensure that the results are copied locally,
or fragments of the posting lists of other sites, to increase
its knowledge of their document collection and make more
accurate query forwarding predictions by computing tighter
score bounds. As introduced in Section 2.4, S; indexes fully
replicated documents in SI;, while the replicated fragments
of posting lists form FI;.

3.3 Algorithm

Distributed search engines rely on query forwarding heuris-
tics to determine whether a given query g should be eval-
uated on other search sites to improve the quality of the
results. The role of the forwarding heuristic is to compute,
for all documents d € D, a score upper bound scBound(d|q).
If the top-k documents are either not fully replicated locally,
or cannot be clearly identified, the search engine decides to
forward the query to the other sites to guarantee the quality
of results. In this work, we introduce a new query forwarding
heuristic and RIP, its associated index replication algorithm.

3.3.1 Forwarding heuristic

The forwarding heuristic we propose stems from the NRA
top-k processing algorithms [11], with a few adaptations to
deal with incomplete posting lists. In NRA, posting lists are
sorted by impact and processed from top to bottom. NRA
maintains a sorted heap of potential top-k results with up-
per and lower bounds on their scores. These bounds are
updated as the processing progresses down the posting lists.
As soon as the upper bound of the (k + 1) document is
lower than the lower bound of the k** document, the top-
k results are identified and the algorithm terminates. In
the worst case, NRA has to process the full posting lists,
but, in most situations, it achieves significant performance
gains and only processes a small fraction of the index. The
forwarding heuristic performs a similar computation. It pro-
cesses the query over the forwarding index FI; and computes
upper bounds on scores. The posting lists of the forwarding
index are only partial, but they are continuous. A posting
list replicated by S; for a term ¢ down to the score value
v contains all the documents of D whose master is differ-
ent from S; and whose partial score r(d|t) is higher than v.
Therefore, for a given term, FI; provides either an exact par-
tial score, or an upper bound equal to the score of the last
posting list entry. While processing, the forwarding heuristic

4 2! &)
dyss - 24.5 des7-18.3 dgs-17.1
drso - 24.2 dns-17.9 dyyg - 16.2
dsss - 23.1 dsss-17.3 dyzs- 149
dsss - 22.8 de1s - 17.0

dioa-16.7

Figure 3: Forwarding heuristic on FI;

ignores the documents present in the shadow index SI;, as
they are already evaluated by traditional query evaluation
and are assigned a precise score.

We illustrate the forwarding algorithm with the exam-
ple of Figure 3. The query of the user is “t1, t2, t3”, and
the figure displays the posting lists of FI; corresponding to
those terms which the forwarding heuristic evaluates to de-
cide whether the query should be forwarded. The top doc-
uments for ¢; are replicated in SI; (in bold), so they do not
need to be considered. The following document is dsss, so
we know its exact partial score for this term. This document
is also present in the posting list of t2, so we will also find its
exact partial score for ¢t as the top-k execution progresses.
However, dsss is not represented in the posting list of t¢s.
The last known document of this posting list is diss. As
a consequence, we use its partial score as an upper bound
of dss5’s partial score for t3. Hence, the upper bound score
computed for dsss is (23.1+17.34+14.9) /3=18.4. We can also
compute a bound on the score of any document absent from
these posting lists using the scores of the last entries (22.8,
16.7 and 14.9 in this example). Using FI;, the forwarding
heuristic computes the highest possible score for a document
that is not indexed locally and compares it with the score of
local documents (MI; and SI;).

As an optimization, when a posting list is fully replicated
(i.e. replicated down to the 0 score), the forwarding heuristic
leverages the conjunctive properties of the ranking function.
Any document that is absent from this posting list can be
ignored, as it cannot be part of the results.

3.3.2 Replication principle

The replication algorithm works as follows. For each term ¢,
a site maintains two replication thresholds, expressed in par-
tial score values: the document replication threshold td; and
the postings replication threshold tp:. RIP reactively ad-
justs these thresholds using the activity of the local users to
determine which documents and postings are replicated.

vd € D,r(d|t) > td, A master(d) #i=d € S,

Vd € D,r(d|t) > tp: A master(d) # 1= d € FI;

For the example described on Figure 3, td;, is 24.2, while
tp:, is 22.8. By lowering td:, RIP decreases the highest
scores associated to t for a non local document. Lowering tp:
decreases the lowest score associated to t in FI;. Both these
actions increase the information related to the term ¢ and
decrease the amount of query forwarding. However, their
impact and cost can vary significantly. Fully replicating a
document is costly, as it generates one posting entry per
unique term in the document. On average, a Web page con-
tains 250 unique terms [15], therefore replicating a document

835

is 250 times more costly than replicating a posting entry.
Given that the differences in partial scores between entries
are, in most cases, higher among high quality documents,
fully replicating a document often has a higher positive im-
pact on query forwarding. RIP’s objective is to achieve a
good balance between documents and postings replication
to use the replication budget as efficiently as possible.
After each query execution, RIP analyses the query results
to determine which data should be replicated to ensure that,
in the future, this query could be processed locally. Let
w be the lowest score of the last document returned as a
result for the query ti...t)y. If the query only contains
one term, then the replication operation is trivial, and the
algorithm determines that td;, should be w. However, if
the query contains several terms, then the algorithm has
to decide whether it should replicate documents or posting
lists. The algorithm we propose relies on a parameter « to
balance the replication between documents and postings.

tdy = a X |q| x w

(1 —allgl xw

lg| =1
Using the scoring function s(d|q), it is possible to verify that
for all the documents present in a single posting list of FI;,
the forwarding heuristic has enough data to compute a score
upper bound at most equal to w:

tpt =

1
Vteq,m tdi+ Y tpu | =w

u€q—{t}

By definition, replicating document provides the correspond-
ing postings, so td: > tp:. As a consequence, given that
lg| > 2, @ > 0.5. When « is low, RIP favors replicating
documents, which increases the probability of having query
results in the local index. However, the forwarding heuris-
tic has less information to ensure that these local results
are optimal. On the contrary, a high value of « provides
a very accurate forwarding heuristic, but fewer replicated
documents.

In practice, some of the documents are present in several
posting lists. Hence, they have precise values for several
terms, and their score estimations may exceed w. The re-
sults of the query, for instance, will be present in all the
posting lists matching the query, and will generate scores
higher than w. Similarly, other documents present in at
least 2 posting lists, such as dss5 in Figure 3, may have high
upper bounds on their score and could trigger the query for-
warding mechanism. When these documents are not part of
the query results, query forwarding is unnecessary. In order
to avoid these cases of false positives, RIP identifies these
documents and fully indexes them in SI;.

3.3.3 Practical algorithm using blocks

RIP needs to estimate the amount of documents or post-
ings a replication decision represents before deciding whether
it should be applied or not. Furthermore, taking replication
decisions at the level of a single posting may lead to unstable
results and generate a high overhead.

Each search site estimates loosely the score distribution
for each term by regularly probing the other search sites.
This data structure is comprised of blocks, and is illustrated
in Figure 4. A block constitutes a unit of replication identi-
fied by its index as well as its score bounds. This information

block index/size 1 15

0/10 Upper = 15.7, Lower = 12.7 Upper = 17.1, Lower = 15.3
1/20 Upper = 12.7, Lower = 9.8 Upper = 15.3, Lower = 13.7
2/40 Upper = 9.8, Lower = 7.3 Upper = 13.7, Lower = 6.4
3/80 Upper = 7.3, Lower = 4.8 Upper = 6.4, Lower = 1.8

Figure 4: Blocks replication (k = 10)

is not required to be perfect, and can be obtained through
sampling. The first block has size k, and the size of the
following blocks increases exponentially, using a power of 2.

We adapt RIP to apply the replication thresholds td; and
tp: on blocks of documents and postings instead of single el-
ements. Figure 4 presents the computation of the thresholds
for the query “t4, t5”. The lowest score w = 8.5, and a = 0.6.
RIP determines that td;, should be 0.6 x 2 x 85 = 10.2.
Therefore, the first 2 blocks of documents should be repli-
cated (in bold), and dt;, becomes 9.8, once adjusted to the
block limit. tpy, is evaluated to be (1—0.6)x2x8.5/(2—1) =
6.8, which means that 3 blocks of postings should be repli-
cated (in italics) and ¢p¢ is adjusted to 6.4. This operation
is then repeated for td:; and tpy,.

The usage of blocks brings several benefits to RIP. It ma-
terializes a small number of well defined replication bounds,
which favors clear replication decisions while lowering the
amount of memory required to maintain them. In addition,
it ensures the continuity of replicated data. A replication
decision caused by a given query may, as a side effect, trig-
ger the replication of blocks that contain documents useful
for other future queries.

3.3.4 Space management

RIP does not directly proceed to the replication of data.
Instead, it maintains counters about the number of times a
particular piece of information was determined to be useful.
We refer to these counters as the temperature of the data.
The higher the temperature, the more useful it is. The tem-
perature values are used to determine which data should be
replicated within the budget constraint. As explained previ-
ously, depending on the data type, the cost of the replication
varies. Given that a document has on average 250 distinct
terms, the cost of replicating a document is on average 250,
the cost of replicating the documents of a block of size n is on
average 250n, and the cost of replicating only the postings
of this block is exactly n.

We rely on the cubic selection scheme [13] to decide which
elements are selected for replication. This approach was ini-
tially designed to cache Web objects. Hence, in this con-
text, the size of an object is always precisely known, and
there are no dependencies between objects. In our case, the
size of an object is first estimated, and then corrected when
a replication decision is actually taken. For instance, RIP
first assigns a cost of 250 to a document, and then corrects
it upon receiving the content of the document. Similarly,
evicting a block whose documents are replicated does not
necessarily free 250n, as some of the documents may remain
replicated due to other decisions (e.g. replicated blocks of
other terms). We also ensure that the continuity of block
replication is maintained. It is impossible to evict a block
without evicting all the following blocks.

836

3.3.5 Dealing with incremental indexing

Web search engines are often designed to support incre-
mental indexing. This feature is particularly used for pop-
ular Web pages that are frequently modified, such as news
Websites. Replicating information in several locations poses
the problem of data consistency. If a search site does not
take into account a new version of a Web page, it will serve
stale results to its users.

To ensure that index updates are propagated, a search site
keeps track of which other sites replicate the documents it
is the master of. In addition, for each term, it maintains the
documents and postings replication thresholds of each one
of the other sites. When the crawler sends a new version of
a document to its master site S;, MI; is updated and all the
sites replicating any stale data are notified.

4. EVALUATION

To evaluate RIP’s efficiency, we simulate a distributed
search engine configuration consisting of five search sites
S ={51...5s}. We first compute optimal query results
through a centralized search engine indexing all documents,
and then evaluate each site’s ability to generate these re-
sults using its master index and the data it replicates. Each
search site is associated with a query log originating from
neighboring countries and collected from the front-end of a
commercial search engine. In total, we sample 7,023,102
consecutive queries, and split them chronologically into a
training set and a testing set of equal size. The collection
of documents consists of 31,599,910 Web pages randomly
sampled from the index of the same search engine.

We rely on the distribution of terms in queries and doc-
uments to assign each document to a master site (KL-Q
feature), as in the work of Blanco et al. [3]. This process
creates, for each site, the master index MI, and represents
the initial assignment of documents to sites in our evalu-
ation. In this work, the master index creation process is
fixed, and these indexes remain constant throughout the ex-
periments. We evaluate RIP’s ability to generate SI and FI,
and to reduce the query forwarding rate.

Commercial search engines often cache query results to
avoid re-evaluating repeated queries. To make our experi-
ment more realistic, we assume that the search engine im-
plements a results cache with a Time-To-Live (TTL): cached
results are only served if their TTL has not expired. We use
a TTL value of 2 hours. For incremental indexes, it is possi-
ble for a results cache to return stale results, which happens
when the result set does not reflect accurately the current
state of the index. In our setup, the TTL of the cache is
2 hours. Such a TTL value is moderately aggressive: the
staleness of the results will never exceed 2 hours.

4.1 Search results diversity

Blanco et al. [3] observe that most documents exhibit a
high divergence of popularity among the different search
sites. They are very popular in a given region, but are rarely
requested at other search sites. We confirm this observation
by evaluating how the popularity ranking of documents dif-
fers across search sites. We execute the training queries on
the search engine and count how often each document is
returned as part of the top-10 results.

In Figure 5, we present the similarity between the list of
documents that are most popular at each individual search
site, and the documents that are globally popular, among

0.6 T T T T S, ——
055 | R
SS
05} L —
o 045
«
5 04
3
0.35
03 |- .
0.25 | -
02 1 1 1 1

0 20 40 60 80 100
Popularity of documents (in %, from most popular to least popular)

Figure 5: Similarity between documents locally pop-
ular and documents globally popular

0.4 T T T T

0.35 p
Munqmmm o

0.3 | i

gt

0.25 | _

NNNNNNNNNU
RWWNON S ===
e
DNNNNNNNNUD
QUOBROROARWON

0.2 | S

Overlap

0.15 F~
0.1
0.05 | i

0
0 20 40 60 80 100
Popularity of documents (in %, from most popular to least popular)

Figure 6: Similarity between locally popular docu-
ments at 2 sites

all the search sites taken together. On average, the set of
the x documents most popular at a given site and the set of
the x documents most popular considering the activity of all
sites globally only overlap by 40%. This observation clearly
illustrates how users from different regions have diverse in-
terests. This argues in favor of an index replication policy
that relies on local user activity and optimizes the replicated
data for each site individually.

The comparison of popular documents between pairs of
sites, presented in Figure 6, shows even more differences.
The pair of sites exhibiting the highest similarity is un-
der 40%. This similarity is due to the language used in
queries, as those two regions share the same regional lan-
guage. Note that the similarity of the very few most pop-
ular documents is typically higher. This is due to very few
documents being popular across different regions.

4.2 Cache impact

The results cache generates a hit when identical queries
are submitted to the search engine within its TTL interval.
Longer queries typically present lower frequency compared
to short ones [1], and therefore the results cache affects them
differently. In our experiments, the average hit rate of the
results cache is 48.4%. Figure 7 illustrates the distribution of
queries depending on their length. Queries of length 2 repre-
sent the largest fraction of the workload, followed by single
term queries. As expected, the hit rate of the cache drops

837

T T
query length before cache ——
query length after cache ---x---
cache hitrate ---%--- |

Proportion

3
Query length

Figure 7: Queries distribution and cache efficiency

as we increase the length of queries; long queries are more
likely to be unique. Hence, the workload of a search engine
is often dominated by the processing of longer queries. This
observation significantly hardens the task of the forwarding
heuristic. Indeed, long queries involve more posting lists,
and generally have results whose partial scores are lower:
they require more replicated data to be indexed locally.

4.3 Replication and query forwarding

We evaluate RIP and its query forwarding heuristic by
running queries in our logs against the collection of docu-
ments. First, we warm up the replication algorithm and
the cache using the training queries. Next, we process the
testing queries to evaluate the amount of query forwarding.
For these experiments, we use the forwarding heuristic of
Section 3.3.1 and one of the following replication schemes:
Static global documents replication (SDR): Using the
training queries, we determine which documents are globally
popular and replicate this static set across all sites [2, 8].
In this case, FI contains an upper bound per term for non
replicated documents, which corresponds to the thresholds
of Baeza-Yates et al. [2].

Reactive documents replication (RDR): Each search
site reactively determines which documents are most fre-
quently part of the results of their users and replicate the
most popular ones. This setup computes a different set of
replicated documents for each site to match the activities of
their users. As with SDR, FI contains one bound per term,
dynamically adjusted to reflect document replication.
Reactive Indexing Protocol (RIP): Each site reactively
replicates blocks of documents and posting lists, as well as
individual documents when they generate false positives.
This is the approach we describe in Section 3.3.3. Each
site replicates data matching the needs of its users, while
preserving the continuity of information in posting lists.

Overall performance.

We evaluate the three different replication schemes us-
ing different replication budgets and present the results in
Figure 8. The budget is represented as the maximum num-
ber of documents replicated, and we assume, as explained
in Section 3.3.2, that 250 individual posting list entries use
the same space as a fully indexed document. The results
clearly indicate that the two algorithms based on local in-
formation outperform the static documents replication us-

o

" SDR ——
RDR -----
- RIP - =%,

© O oo oo
oo oo oo
RO oNoOo o =
T
1

o o
[
N ©

0.51 -

Proportion of queries executed locally

iaaal n
100000
Replication budget (in documents)

o
”

100 1000 10000

Figure 8: Query locality wrt replication budget

ing global statistics. Indeed, as observed in Section 4.1, the
users of each site are interested in different documents.

For a low replication budget, below 100,000, we observe
that simply replicating the results of the queries is more
efficient than replicating blocks of documents and posting
lists. However, as the budget increases, the blocks replica-
tion scheme clearly outperforms the replication of individ-
ual documents. This difference grows with the amount of
space dedicated to replication. With a replication budget of
1,000,000 documents, each search site has an average index-
ing capacity of 7,119,982 documents (22.5% of the total col-
lection), which represents an overhead of 14% over a setup
without any replication. In this configuration, RIP raises
the amount of queries processed locally by 23%, while RDR
raises it by 13%. Note that the a parameter of RIP, used
to compute replication thresholds, is set to 0.6. In practice,
any value between 0.55 and 0.65 obtains good performance,
above 59.7% with a budget of 1,000,000.

Detailed performance analysis.

We detail the performance of RDR and RIP in Figure 9.
With a small replication budget, it is most efficient to focus
replication on single term queries. They only require lit-
tle replicated data to be answered locally, as the results are
simply the documents with the highest scores for the query
term. RDR performs well for these easy queries. Given
that one-term queries are less likely to be unique, the tem-
perature of their results increases over time and they are
replicated. However, when the replication budget increases,
it becomes more interesting to also replicate data for longer
queries. The results show that RDR is unable to answer
these queries, even with a large budget. The documents
that are part of the results may be replicated. However,
given that the corresponding posting lists are not replicated,
the search engine is unable to ensure that the query results
are optimal, and the forwarding heuristic returns a false
positive. RIP can compute low thresholds, even for longer
queries, and is able to answer locally over 10% of long queries
by replicating continuous blocks of documents and postings.

Query replication cost analysis.

Figure 10 presents the position of the query results in
the posting list blocks of RIP’s forwarding index, depending
on the query length. For a one term query, the result set
comprises the documents with the highest partial scores for

1e+06

838

o
o

T T
RDR (budget=10,000) —+—
RIP (budget=10,000) ---x---
RDR (budget=1,000,000) ---%--
RIP (budget=1,000,000)

o
[6)]
T

o
~

Prop. ans. locally, ignoring cache hits
o
w
T
1

0.2 |
0.1
(R . A ——— * *
1 2 3 5+
Query length
Figure 9: Query locality wrt query length
1 T T T T T T T T 7
query length=2 —— {
09 query length = 3 ------- fa
G 0.8 | query length =4 -------- e
e query length = 5+
207 .
g 0.6 [fil
505 s i
504 |
‘go.s = L |
F02r) L |
0.1 F e N
0 e FP T TE L : .)) |
1 2 3 7 8 9 10

4 5 6
Posting list block number

Figure 10: Depth of results in posting lists

the term. Hence, they are all located in the first posting
list block, which is a small amount of information for RIP
to replicate to answer these queries correctly. However, as
the length of the query increases, the matching documents
are less frequent, due to the conjunctive nature of the query
processing. As a consequence, they are located in deeper
blocks, and require more replicated information to enable
local processing. For example, 67% of the results of 5-term
queries are located in the 10'" block. Given that the size
of blocks is a power of two, this data is costly to replicate,
making forwarding more frequent for long queries.

New queries.

The replication algorithms rely on previous queries to
compute a replication scheme and increase the probability of
answering future queries locally. When a query is repeated,
it can be answered by the results cache, if it falls within the
TTL, or by the data replicated upon the first occurrence
of the query. New queries however are more challenging.
We examine the query processing locality for new queries
on Figure 11, with a replication budget of 1,000,000.

SDR is particularly efficient at processing new one-term
queries locally, since it benefits from document popularity
information from all search sites. A query that is processed
for the first time in a site might have been present at another
site during the training period. Consequently, the static
replication has included it in the computation of the list of
replicated documents.

o
3

0.45

o
© w 9
w o

Proportion answered locally
o o
o9
a n o

o
o ©
S =

o

3
Query length

Figure 11: Query forwarding rate for new queries

RDR has higher overall performance than SDR, since it
targets the set of replicated documents for each site. How-
ever, since it only relies on the queries processed at a given
site to build the list of replicated documents, the perfor-
mance for new queries is low. New queries can only be
processed locally if their data has been replicated due to
previous distinct queries executed at this site. As RDR only
replicates the documents in result sets, it is unlikely that the
site has replicated all the results of the new query and the
data necessary to ensure that local results are sufficient.

RIP performs well for new queries. Although it only relies
on local knowledge, as it is the case for RDR, the block
replication pattern favors new queries. Instead of precisely
replicating the documents answering a particular query, RIP
transfers blocks of data, which contain additional documents
and postings related to the query terms. When a new query
arrives, the algorithm is more likely to have replicated a
sufficient amount of information for each of the query terms,
which increases the probability of processing it locally.

False positives analysis.

Our forwarding heuristic always forwards a query if there
another search site may improve its results. As a conse-
quence, the forwarding heuristic does not generate false neg-
atives. For some queries, the search site has the query results
in its index but forwards the query nevertheless, because it
cannot prove that those are the best results. These cases
constitute false positives, as forwarding the query does not
modify its results. Considering a setup with a replication
budget of 1,000,000, the proportion of false positives among
the forwarding decisions is 51%, 53% and 46% for SDR,
RDR, and RIP respectively.

Allowing the search engine to return non-optimal results
by allowing false negatives reduces the query forwarding
rate. The forwarding heuristic computes a score that corre-
sponds to the limits of its knowledge. We use this score, as
well as the fact that long queries are more difficult to pre-
dict, to rank forwarding decisions. We display, on Figure 12,
the distribution of true and false positives (ROC curve [12]).
As one-term queries only involve one posting list, making it
impossible to generate a false positive, we ignore them in
this experiment. The remaining query lengths generate dis-
tinctive curve fragments. These fragments remain relatively
close to a diagonal, which means that separating true and
false positives using solely the knowledge score and query

839

o
©

o
[e2)
T
\

!

True Positives
o
~
T
1

o
N
T

D
!

0 1 1 1 1
0 0.2 0.4 0.6 0.8 1
False Positives

Figure 12: Forwarding ROC curve

length is difficult. Indeed, scores can vary significantly de-
pending on the query term, and cannot be easily compared.
Note that the curve representing RIP is bellow the one of the
other algorithms. This is because RIP presents an overall
higher performance, and therefore forwards fewer queries.
The remaining false positives are therefore harder to detect.

5. RELATED WORK

The problem of assigning documents to sites in distributed
search engine has been studied in previous work, and two
main approaches have been developed to assign documents
to sites. Baeza-Yates et al. propose to replicate a set of
global, high quality documents to all search sites [2]; Cam-
bazoglu et al. follow the same approach [8]. As shown in
Section 4.2, the documents users are interested in signifi-
cantly differ across regions. Thus, it is more efficient to
perform fine grain replication, and select different replicated
documents for each search site. Our experiments presented
in Section 4.3 show that per-site replication algorithms sys-
tematically outperform global replication decisions.

Brefeld et al. propose to use machine-learning techniques
to statically assign documents to search sites [4]. This ap-
proach optimizes the replication of documents for each site,
but it relies on attributes, such as the language of the docu-
ment, which are weakly correlated with its popularity. Con-
trary to this approach, the algorithm we propose is reactive,
and only replicates documents when it observes that users
actually request them. The algorithm we propose also ex-
plicitly prioritizes pieces of replicated data depending on
their size and temperature. The approach of Brefeld et
al. relies on an algorithm that simply assigns documents
to search sites, and it does not enable an operator to vary
the indexing capacity.

Existing query forwarding algorithms rely on the compu-
tation of upper bounds to estimate the score of documents
that are not indexed locally. Baeza-Yates et al. [2] compute
a bound for each term and each search site. Cambazoglu
et al. [8] refine this approach and show that maintaining
bounds on pairs of terms more precise estimates of scores
and can reduce the amount of query forwarding. In the case
of a static index, these bounds can easily be computed dur-
ing the generation of the index, and do not vary at runtime.
However, when the index and the set of replicated docu-
ments are dynamically selected, these bounds need to be
updated. This process can become particularly costly when

each site keeps track of many bounds, which is the case in
the algorithm of Cambazoglu et al. [8]. In that case, one
possibility is to maintain these bounds lazily using a sliding
window scheme. Yet, it reduces the effectiveness of the re-
sults cache, since results computed using these bounds will
be time-stamped with the oldest bound used during their
computation. The approach we propose explicitly maintains
two bounds per term, which is a reasonable trade-off between
their accuracy and the maintenance cost.

The main difference between the algorithms we propose
and previous work [7, 8] is the interaction between the repli-
cation algorithm and the forwarding heuristic. While other
algorithms focus on replicating popular documents, our ap-
proach also maintains single posting lists elements to ensure
the continuity of the information on the scores for a given
term. As there is no “hole” in the forwarding index, the
upper bounds for each term are lower. In addition, by repli-
cating postings further, we efficiently lower the bounds com-
puted for longer queries. Overall, this significantly reduces
the amount of query forwarding.

Ding and Suel [10] developed an algorithm for fast top-k
processing on document ID-ordered posting lists. By main-
taining upper bounds on the partial scores of compressed
posting list segments, they significantly reduce both the
amount of computation and the processing time. Our ap-
proach for block replication could be adapted to replicate
document ID-ordered blocks using these thresholds. How-
ever, this would lead to a significant overhead for storing the
index, since documents obtaining low scores would also be
replicated if they belong to a segment with a high thresh-
old. Consequently, we opted for strictly following the order
of partial scores to replicate information.

6. CONCLUSION

We propose RIP, a Reactive Indexing Protocol for dis-
tributed search engines. With RIP, the search engine ini-
tially indexes each document on a single master site, and
monitors the local user activity of each site to generate
an index replication scheme. Our scheme replicates docu-
ments and fragments of posting lists. RIP enables a signif-
icant reduction of the amount of query forwarding between
search sites, and consequently, of query processing latency.
We show experimentally that, by making local decisions,
RIP significantly outperforms previous replication strate-
gies based on global information: in a 5-site setup, when
each site has an index capacity of 22.5% of the documents
collection, 60% of the queries are processed locally. We also
show that replicating fragments of posting lists allows the
query forwarding heuristic to compute lower score thresh-
olds on unknown documents, which increases performance.
Finally, RIP has by design the additional benefit of being
an online approach, supporting both incremental indexing
and a precise index capacity configuration, which simplifies
operations in a production environment.

Acknowledgments

This work has been partially supported by the COAST project
(ICT-248036), funded by the European Community. The
authors have been also supported by the INNCORPORA -
Torres Quevedo Program from the Spanish Ministry of Sci-
ence and Innovation, co-funded by the European Social Fund.

840

7. REFERENCES

[1] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Murdock,
V. Plachouras, and F. Silvestri. The impact of caching on
search engines. In Proceedings of the 30th annual
international ACM SIGIR conference on Research and
development in information retrieval, pages 183—-190, 2007.

[2] R. Baeza-Yates, A. Gionis, F. Junqueira, V. Plachouras,
and L. Telloli. On the feasibility of multi-site web search
engines. In Proceedings of the 18th ACM Conference on
Information and Knowledge Management, pages 425-434,
2009.

[3] R. Blanco, B. B. Cambazoglu, F. P. Junqueira, I. Kelly,

and V. Leroy. Assigning documents to master sites in

distributed search. In Proceedings of the 20th ACM

Conference on Information and Knowledge Management,

pages 67-76, 2011.

U. Brefeld, B. B. Cambazoglu, and F. P. Junqueira.

Document assignment in multi-site search engines. In

Proceedings of the Fourth ACM International Conference

on Web Search and Data Mining, pages 575-584, 2011.

(5] E. Brewer. Lessons from giant-scale services. Internet
Computing, IEEE, 5(4):46-55, 2001.

[6] B. B. Cambazoglu, V. Plachouras, and R. Baeza-Yates.
Quantifying performance and quality gains in distributed
web search engines. In Proceedings of the 32nd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 411-418,
2009.

[7] B. B. Cambazoglu, V. Plachouras, F. Junqueira, and
L. Telloli. On the feasibility of geographically distributed
web crawling. In Proceedings of the 3rd International
Conference on Scalable Information Systems, pages
31:1-31:10, 2008.

[8] B. B. Cambazoglu, E. Varol, E. Kayaaslan, C. Aykanat,
and R. Baeza-Yates. Query forwarding in geographically
distributed search engines. In Proceedings of the 33rd
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 90-97, 2010.

[9] B. B. Cambazoglu, H. Zaragoza, O. Chapelle, J. Chen,

C. Liao, Z. Zheng, and J. Degenhardt. Early exit
optimizations for additive machine learned ranking systems.
In Proceedings of the third ACM international conference
on Web search and data mining, pages 411-420, 2010.

[10] S. Ding and T. Suel. Faster top-k document retrieval using
block-max indexes. In Proceedings of the 34nd International
ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 993-1002, 2011.

[11] I. Ilyas, G. Beskales, and M. Soliman. A survey of top-k
query processing techniques in relational database systems.
ACM Computing Surveys (CSUR), 40(4):11, 2008.

[12] F. J. Provost, T. Fawcett, and R. Kohavi. The case against
accuracy estimation for comparing induction algorithms. In
ICML, pages 445-453, 1998.

[13] I. Tatarinov. An efficient LFU-like policy for Web caches.
Technical report, Computer Science Department, North
Dakota State University, 1998.

[14] S. Tatikonda, B. Cambazoglu, and F. Junqueira. Posting
list intersection on multicore architectures. In Proceedings
of the 34th international ACM SIGIR conference on
Research and development in Information, pages 963-972,
2011.

[15] J. Zhang and T. Suel. Optimized inverted list assignment in
distributed search engine architectures. In Parallel and
Distributed Processing Symposium, 2007. IPDPS 2007.
IEEE International, pages 1-10. IEEE, 2007.

[4

