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ABSTRACT
A search engine that can return the ideal results for a person’s
information need, independent of the speci�c query that is used to
express that need, would be preferable to one that is overly swayed
by the individual terms used; search engines should be consistent
in the presence of syntactic query variations responding to the
same information need. In this paper we examine the retrieval
consistency of a set of �ve systems responding to syntactic query
variations over one hundred topics, working with the UQV100
test collection, and using Rank-Biased Overlap (RBO) relative to a
centroid ranking over the query variations per topic as a measure
of consistency. We also introduce a new data fusion algorithm,
Rank-Biased Centroid (RBC), for constructing a centroid ranking
over a set of rankings from query variations for a topic. RBC is
compared with alternative data fusion algorithms.

Our results indicate that consistency is positively correlated to a
moderate degree with “deep” relevance measures. However, it is
only weakly correlated with “shallow” relevance measures, as well
as measures of topic complexity and variety in query expression.
�ese �ndings support the notion that consistency is an indepen-
dent property of a search engine’s retrieval e�ectiveness.

CCS CONCEPTS
•Information systems →Retrieval e�ectiveness; Test collec-
tions;
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1 INTRODUCTION
Evaluating search e�ectiveness has several aspects. One aspect that
has been especially popular is calculating average scores according
to some relevance measure (such as NDCG or AP) over a set of
topics and associated queries for some common corpus of informa-
tion. In the batch evaluation methodology, di�erent systems are
compared using the same measure, and statistical tests are applied
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to determine whether the di�erence in performance is likely due
to factors other than chance. Alternative methods for determin-
ing relevance include user studies, online interleaving, and A/B
testing. What is important to note is that retrieval e�ectiveness
encompasses more than just relevance.

Batch evaluation has typically used only a single query per topic,
although a number of researchers working on early test collections
advocated and explored the e�ect of using multiple queries per
topic (see work by Spärck Jones and van Rijsbergen [35], Belkin
et al. [5] and Buckley and Walz [7] among others). Recent work
by Bailey et al. [3] and Koopman and Zuccon [22] has returned to
this theme, resulting in new test collections with large numbers of
query variations responding to each topic’s information need.

�e availability of such test collections allows us to consider a
new dimension in assessing the retrieval e�ectiveness of search
engines – namely, how consistent they are when returning results
in response to query variations that address the same information
need. �e importance of consistency can be understood when we
consider simple examples like mis-spellings. For example “face-
book”, “facebok”, and “faecbook” pre�y clearly all want to �nd the
Facebook home page. Consistency also applies to more complex
examples involving synonyms (for example, “health bene�ts of vita-
min c” and “health bene�ts of ascorbic acid”) or entirely rephrased
needs (for example, “how much does a raspberry pi cost” and “price of
raspberry pi computer”). In each of these cases, we can contemplate
that there exists an ideal ranked set of relevant results drawn from
the corpus. Test collections are premised on this principle, where
the ideal set for a topic is discovered through judging a document
pool formed from di�erent rankings. An ideal search engine would
return (only) this set of results given a query for a topic, and the
di�erence in relevance from what is actually returned and this ideal
ranking is captured by a relevance measure. Equally, given a set
of syntactic query variations, an ideal search engine would return
this ideal ranking of results, independent of the query variation.

Indeed, much research in information retrieval seeks to tackle
exactly this problem of �nding an ideal set of results without relying
solely on the original query’s syntactic expression. For instance,
query re-writing techniques such as spelling correction [11], term
stemming [24], query expansion [33], and query substitutions [19]
are used to manipulate the user-entered query and thereby extract
a be�er set of documents from the index. Stemming and stopword
removal [23, 25] may also be used in indexing processes or within
the matching algorithms at query execution time.

Two strands of research have investigated how to combine rank-
ings to improve relevance e�ectiveness: data fusion (for example,
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Belkin et al. [6]), which merges rankings from di�erent query rep-
resentations; and distributed information retrieval or meta-search
(for example, Callan [8]), which merges rankings from di�erent
underlying search engines or indexes. �ese techniques have been
assessed principally from the standpoint of improving relevance
overall, as measured by the relevance score of the resulting ranking.

People use many di�erent expressions to describe the same in-
formation need (see, for example, Furnas et al. [15]). Even when
re�nding a single information resource, the same person may use
di�erent queries [37]. Bailey et al. [2] give evidence that the e�ect
of query variation on relevance scores dwarfs that of system and
topic e�ects. We believe that these �ndings make it important to
consider new approaches to characterizing e�ectiveness, including
ones that address query variation for a single information need.

We propose that the consistency in rankings of a system when
faced with many di�erent query variations for a single topic can be
one such measure. �e Rank-Biased Overlap measure developed
by Webber et al. [38] is adopted to characterize consistency, and
used with the UQV100 test collection [3] to investigate consistency
across a set of �ve systems. Due to the scale of variations within
UQV100 (19–101 unique query variations per topic, for 100 topics),
each individual topic has a similar number of queries as might be
found in an entire query-only processed test collection like the
TREC 2014 Web track [10].

To determine relative consistency for a single system and topic
combination, RBO requires us to declare some reference ranking
against which the individual rankings for each query variation
can be compared. We develop a new fusion algorithm, the Rank-
Biased Centroid (RBC), drawing inspiration from both RBO and
Rank-Biased Precision [27], to determine this reference ranking.

We consider these research questions in regard to RBC fusion:
RQ-F1 Do RBC rankings outperform the initial query rankings

for a system?
RQ-F2 How does RBC compare to other data fusion algorithms in

relevance e�ectiveness?
RQ-F3 Does combining both query variations and systems for

RBC outperform query variations-only RBC?
�en, in connection with consistency, we ask:
RQ-C1 Do topics vary in consistency?
RQ-C2 Does consistency vary with the number of query variations

or with changes in topic complexity?
RQ-C3 Do systems vary in consistency?
RQ-C4 Are increases in per-topic consistency for a system inde-

pendent of increases in relevance for a system?

2 RELATEDWORK
2.1 Data fusion
Data fusion – combining evidence from di�erent sources – is a
widely-studied problem. In IR fusion is typically applied when
evidence from multiple ranked answer lists needs to be combined
into a single ranked list, for example in meta-search, where results
from multiple independent search systems are combined into a
single ranking [1], and in multi-lingual retrieval, where results from
searches across collections in di�erent languages are combined into
a single answer list [16].

Data fusion approaches can be broadly grouped into those that
use the ranker’s score (that is, the value assigned by a ranking
function) of each document in a results list, and those that make
use only of the rank position of each document in the answer list.
Perhaps the most well-known approaches in the former category
are by Fox and Shaw [13], including CombMAX, where the �nal
score of a document is the maximum of the ranker scores that
it received in any input ranked list; CombSUM, where the �nal
document score is the total of the ranker’s scores that it received
in the input lists; and CombMNZ, where the �nal document score
is calculated as in CombSUM but further multiplied by the number
of input lists in which the document appears, thereby promoting
those documents that were retrieved inmultiple lists. �e document
ranker scores in the input ranked lists may also be normalized in
di�erent ways, including linear re-scaling into a chosen range [39],
or by controlling an upper bound based on the sum or variance of
the input scores [28].

For fusion based only on rank information, techniques from so-
cial choice theory such as the Borda count and Condorcet criterion
have been applied. In the Borda count [1], each candidate (docu-
ment) receives a score determined by how many other candidates
were ranked lower, with these scores summed across all ballots (in-
put lists). �e Condorcet criterion instead determines an outcome
based on which candidate achieves the highest number of wins
based on pairwise comparisons with all other candidates [12, 29]

�e impact of data fusion techniques on e�ectiveness can vary
from case to case, leading Wu and McClean [40] to investigate ap-
proaches for predicting the performance impact of applying fusion.
�eir results showed that the selective application of fusion, based
on features such as the number of component result lists and the
overlap of items in these lists, can further enhance the positive
impact on �nal retrieval e�ectiveness.

Prior work that has speci�cally considered data fusion in the
context of multiple queries for the same underlying information
needwas carried out by Belkin et al. [5], who investigated the e�ects
of combining �ve independent Boolean query formulations for ten
TREC topics, and demonstrated that fusing results can substantially
boost performance. Subsequent work using the TREC-2 collection
further demonstrated that good methods for fusing the results of
multiple queries can lead to results that are be�er than those of
the best single query [6]. Pickens et al. [30] also con�rmed that
combining multiple queries for the same intent boosts e�ectiveness.

2.2 Measuring consistency
In IR, as in many other domains, it can be important to compare the
similarity, or consistency, of groups of things. �ese groups may be
conjoint (consisting of the same items) or disjoint (one group may
include items that do not occur in the other group), and may be set-
based (where there is no known or inferred ordering of the items)
or ordered (where the sequence in which the items occur ma�ers).
Typical examples where one might wish to compare groups include
measuring the similarity of the answer lists returned by two search
engines in response to the same query; or the similarity of the
e�ectiveness ranking of a set of several di�erent retrieval systems,
when evaluated over two di�erent test collections. A wide range of
list similarity measures have been proposed and applied.
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One of the similarity measures most commonly used in IR is
Kendall’s τ , a rank correlation coe�cient that calculates the normal-
ized number of concordant pairs (items that are ordered the same in
two rankings) minus discordant pairs (items that are ordered di�er-
ently in the two rankings), resulting in a score between 1 (perfect
agreement between the two rankings) and −1 (perfect disagree-
ment) [9]. Kendall’s τ is a measure that assumes conjoint ranked
lists, that is, the lists are permutations of the same set of items; it is
also an unweighted measure, where each pair contributes equally
to the outcome, wherever it occurs in the ranking. However, when
comparing ranked answer lists, items that are higher in the rank-
ing are more important (users pay more a�ention to top-ranked
results); similarly, when comparing rankings of system e�ective-
ness scores, di�erences between the top systems are generally of
greater interest than di�erences between systems that perform less
well. TauAP [41] addresses a number of these weaknesses, while
Rank-Biased Overlap (RBO) [38] addresses even more. RBO is a
generalized measure of similarity between rankings based on a
probabilistic user model, and readily handles non-conjoint lists. It
applies a geometric sequence of weights to items in the lists; with
the emphasis of the weighting adjustable via a user persistence pa-
rameter ϕ, which also determines the probability that the user will
reach a certain rank. Inspired by RBO, Tan and Clarke [36] de�ne
a family of Maximized E�ectiveness Di�erence (MED) measures,
each based on an IR e�ectiveness metric (and hence a di�erent
underlying user model).

Jiang et al. [18] examine ranking consistency in web search from
the basis of �nding similar classes of queries (based on sharing
common entity types in a knowledge base), and preserving the
relative ordering of URL domains in the rankings for queries be-
longing to the same class, for example, people who are professional
basketballers but also appear in movies. Large scale web log click
data is used to derive their models of class similarity, based on
URL pa�erns. Jiang et al. develop a consistency measure based on
Kendall’s τ across all pairs of queries belonging to the same class.

Finally, Zuccon et al. [43] present an evaluation framework using
mean variance analysis over retrieval e�ectiveness, for both inter-
topic and intra-topic sources of variation. Systems are preferred,
all other things being equal, when one system is more stable than
another in the presence of such variation.

3 RANK-BIASED CENTROIDS
As noted in the previous section, a range of methods have been
proposed for constructing fused rankings, given an initial set of
same-basis source rankings. In this section we introduce a further
approach: the rank-biased centroid, or RBC.

3.1 User model for Borda fusion
To motivate the discussion, consider the four alternative rankings
R1, R2, R3, and R4 shown in the le� side of Figure 1, with each
of the elements denoted by a le�er of the alphabet. One run has
ordered all of the seven di�erent elements, while the other three are
truncated and omit one or more of the items – a typical situation.
Moreover, note that even if they are all of the same length, the runs
might contain di�erent subsets of a larger group of elements – they
need not be permutations of each other. Finally, note that in the

Rank R1 R2 R3 R4
1 A B A G
2 D D B D
3 B E D E
4 C C C A
5 G – G F
6 F – F C
7 – – E –

ϕ = 0.6 ϕ = 0.8 ϕ = 0.9
A (0.89) D (0.61) D (0.35)
D (0.86) A (0.50) C (0.28)
B (0.78) B (0.49) A (0.27)
G (0.50) C (0.37) B (0.27)
E (0.31) G (0.37) G (0.23)
C (0.29) E (0.31) E (0.22)
F (0.11) F (0.21) F (0.18)

Figure 1: Example of RBC fusion: four example rankings (le�); and
three di�erent fused orderings (right). Note that the RBC weights
are shown to two decimal places only, and there are no score ties.

most general scenario, there are situations in which the provided
rankings are pre�xes of longer lists, themselves of unknown (and
perhaps even in�nite) length.

�e Borda scoring process assigns a weight to itemA of 7+7+4 =
18 (note that A does not appear in ranking R2), tying it with B, and
placing it behind item D, which gets 6 + 6 + 6 + 5 = 23 points. �e
overall Borda ordering is D, A=B, C, G, E, F. In the Borda regime,
swapping the two adjacent items at any pair of consecutive ranks
gives one of the items a +1 score change, and the other item a −1
change. �is occurs regardless of whether the swap takes place at
rank 1, at rank 10, or at rank 100. �at is, all binary item preferences
as expressed in the visible input rankings are regarded as being of
equal merit; and any preferences that may not have been surfaced
(in the case that the provided rankings are pre�xes) are ignored.

To create a usermodel that captures this behavior we can imagine
a universe of agents, each of whom acts independently of the others,
but follows the same simple rule: they randomly pick a depth d
according to some probability distribution, they examine all of the
input rankings to depth d (at most – but less if the rankings are
shorter), and they sort the pool of items according to decreasing
order of the number of times they saw each item in their set of
length-d pre�xes. �e �nal fused ranking is then a probabilistic
expectation over all agents of the orderings that were constructed.

Given this overall probabilistic structure, the Borda ordering
is derived when the probability distribution used by the agents is
taken to be P(d = x) = 1/n; that is, each agent is equally likely
to select a pre�x of any length between 1 and n, where n is the
number of items. �e Borda score for an item is then proportional
to the expected value of the total number of times it was observed
in the individual top-d sets of the probabilistic universe of agents.

3.2 An alternative weighting regime
Because there are many situations in which the supplied rankings
are assumed to be pre�xes of arbitrary-length ones, we contend
that swaps near the heads of each of the rankings are somehow
more indicative of preference than swaps deeper in the rankings.
In the example shown in the le� side of Figure 1, swapping A and
D in ranking R1 has the same net e�ect on A’s Borda score as does
swapping A and F in ranking R4, but the la�er swap might seem to
be somewhat less damaging to A, since in R4 it has already been
deprecated by the person or system that generated that ordering.
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Instead of assigning a Borda weight of (n − x + 1)/n (in a nor-
malized sense) to each item at rank 1 ≤ x ≤ n when the rankings
are over n items, we suggest that a geometrically decaying weight
function be employed, with the distribution ofd over depths x given
not by 1/n, but instead by (1 − ϕ)ϕx−1 for some value 0 ≤ ϕ ≤ 1
determined by considering the purpose for which the fused ranking
is being constructed. �e parameter ϕ is the persistence, or patience
of the imagined universe of probabilistic agents; and use of a geo-
metric sequence models the same behavior as is embedded in the
e�ectiveness metric RBP [27] and in the rank correlation coe�cient
RBO [38] – namely, that the person examining the rankings always
examines the �rst item in each, and therea�er proceeds from the
i th to the i + 1 st with conditional probability ϕ, and ends their
search at the i th with conditional probability (1 − ϕ). In an imple-
mentation the fused ranking is determined by assigning a weight
of (1 − ϕ)ϕi−1 to each item at depth i in any of the rankings, and
then summing over items and sorting by total weight.

�ere are a number of bene�ts of this proposed approach:

• as already motivated, greater emphasis is placed on the earlier
preferences than on deeper ones in each ranking;
• an upper bound on the lengths of the rankings is not required,
nor are the rankings required to be the same length (the Borda
method shares this �exibility, albeit somewhat awkwardly);
• if further items are added at the tail of any of the rankings, the
resultant item scores converge smoothly.

As extreme values, consider ϕ = 0 and ϕ = 1. When ϕ = 0, the
agents only ever examine the �rst item in each of the input rankings,
and the fused output is by decreasing score of �rst preference; this
is somewhat akin to a �rst-past-the-post election regime. When
ϕ = 1, each agent examines the whole of every list, and the fused
ordering is determined by the number of lists that contain each item
– a kind of “popularity count” of each item across the input sets. In
between these extremes, the expected depth reached by the agents
viewing the rankings is given by 1/(1 − ϕ). For example, when
ϕ = 0.9, on average the �rst 10 items in each ranking are being
used to contribute to the fused ordering; of course, in aggregate,
across the whole universe of agents, all of the items in every ranking
contribute to the overall outcome.

In practice, what this means is that di�erent values of ϕ be-
tween 0 and 1 give rise to di�erent fused orderings, balancing top-
weightedness and exhaustivity. �e right side of Figure 1 shows the
orderings generated for the rankings R1, R2, R3, and R4, discussed
earlier, for three di�erent values of ϕ. �e total weight associated
with each item (to two decimals) is also shown. Note how item A is
top-ranked when the ranking agents are relatively impatient, and
(on average) abandon the ranking early (ϕ = 0.6), but that if the
fused ranking is assembled on a more patient basis (ϕ = 0.8 and
ϕ = 0.9), items D and C become preferred, and A is demoted.

As with Borda fusion, unanimous preferences are respected: in
the example, because C is below D in all of the four input rankings,
it must also fall below D in the fused ranking, regardless of the
value of ϕ. �e di�erences that arise as ϕ varies are limited only
to the elements where there is disagreement in the input rankings
as to their respective ordering. �ese are, arguably, exactly the
elements that we might be interested in focusing on.

3.3 Discussion
We have de�ned RBC in terms of a one-state user model [27]. An-
other way of looking at it is as an estimation of the normalized
document scores used in CombMNZ and CombSUM. By assigning
decreasingly small weights to documents further down the rank-
ing, RBC can be viewed as seeking to approximate the long tail of
document-query similarity scores generated by disjunctive ranked
retrieval systems. Functions other than the geometric sequence
might also be suitable for use, for example, Zip�an weightings.

4 FUSION OVER QUERY VARIATIONS
�is section explores the practical bene�t of fusing over query
variations, and also shows that fusion over systems retains some of
its power even a�er query variations have been incorporated.

4.1 �e UQV100 collection
�e UQV100 test collection is made up of 100 topics and associated
information need statements, with approximately 100 individual
query variations per topic; 10,835 in total [3]. When spelling cor-
rection and normalization are applied there are between 19 and
101 unique query variations per topic; 5,765 in total. �ere are also
55,587 relevance judgments available in regard to those 100 topics,
covering ClueWeb12-CatB documents pooled from �ve systems,
spanning three separate search engine code bases, and �ve di�erent
ranking algorithms [26]. We again employ the runs for those �ve
contributing systems, anonymized here as Systems 1, 2, 3, 4, and 5.
Due to some processing anomalies we observed in the run data,
the overlapping set of unique query variations processed by all �ve
systems contains 5,736 queries. Each system run contains a ranking
of length 200 for each of those distinct queries. For de�niteness we
ordered the set of queries for each topic by decreasing frequency
according to crowd-based process used to originally collect them
[2], with ties broken randomly.

4.2 Fusion over query variations
Table 1 provides a detailed evaluation of approaches for fusion as
applied to query variations. Each pane of the table gives results
for one e�ectiveness metric, and within each pane the columns
represent increasing numbers of query variations v (note that for
v ≥ 20, the legend v = x indicates that as many as x query varia-
tions were used – some topics had fewer than the listed number
of variations). Note that v = 1 makes use of the most frequently-
suggested query for each of the UQV100 topics; v = 2 adds the
second most frequently suggested one; and so on. Stepping across
each row thus involves more and more input runs being used to
form each output run, and as can be seen, e�ectiveness scores (with
a few exceptions) increase. Many of the fusion methods give very
similar e�ectiveness. Even so, there are some notable pa�erns:
• using as few as v = 2 query variations gives improved e�ective-
ness (relative to the v = 1 baseline) for all metrics and all fusion
methods;
• for all of the metrics, RBC with high values of p provides good
fused outcomes, comparable with or be�er than those achieved
by CombMNZ and Borda;
• for the two recall-based metrics, RBC-based fusion provides
markedly be�er outcomes than Borda and CombMNZ;
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Fusion Number of variations per query
v = 2 v = 4 v = 10 v = 20 v = 40 v = all

RBC, ϕ = 0.9 0.491 0.490 0.510 0.516 0.524 0.522
RBC, ϕ = 0.95 0.497 0.504 0.516 0.526 0.529 0.526
RBC, ϕ = 0.98 0.505 0.511 0.522 0.535 0.533 0.532
RBC, ϕ = 0.99 0.511 0.520 0.525 0.534 0.533 0.534
Borda 0.511 0.522 0.527 0.534 0.532 0.535
CombMNZ 0.513 0.521 0.527 0.534 0.532 0.531

Fusion Number of variations per query
v = 2 v = 4 v = 10 v = 20 v = 40 v = all

RBC, ϕ = 0.9 0.490 0.490 0.506 0.516 0.523 0.522
RBC, ϕ = 0.95 0.496 0.504 0.514 0.526 0.528 0.527
RBC, ϕ = 0.98 0.503 0.510 0.519 0.533 0.533 0.532
RBC, ϕ = 0.99 0.508 0.519 0.523 0.532 0.531 0.532
Borda 0.507 0.520 0.525 0.530 0.528 0.532
CombMNZ 0.509 0.517 0.524 0.531 0.528 0.528

(a) RBP0.85, common baseline 0.474 (b) INST, common baseline 0.471

Fusion Number of variations per query
v = 2 v = 4 v = 10 v = 20 v = 40 v = all

RBC, ϕ = 0.9 0.222 0.230 0.248 0.265 0.288† 0.299†
RBC, ϕ = 0.95 0.223 0.234 0.256 0.280† 0.297† 0.303†
RBC, ϕ = 0.98 0.225 0.239 0.260† 0.275† 0.281† 0.284†
RBC, ϕ = 0.99 0.226†0.241† 0.254† 0.264† 0.266† 0.270†
Borda 0.226 0.239 0.251 0.260 0.262 0.267
CombMNZ 0.227 0.240 0.252 0.260 0.273 0.266

Fusion Number of variations per query
v = 2 v = 4 v = 10 v = 20 v = 40 v = all

RBC, ϕ = 0.9 0.437 0.454 0.484 0.505† 0.539† 0.553†
RBC, ϕ = 0.95 0.438 0.458 0.489† 0.519† 0.545† 0.554†
RBC, ϕ = 0.98 0.440 0.462 0.492† 0.510† 0.521† 0.525†
RBC, ϕ = 0.99 0.442 0.464 0.481† 0.494† 0.499† 0.505†
Borda 0.442 0.464 0.478 0.489 0.493 0.502
CombMNZ 0.442 0.463 0.479 0.490 0.494 0.500

(c) AP, common baseline 0.204 (d) NDCG, common baseline 0.409
Table 1: Fusion over query variations, average e�ectiveness across 100 UQV topics for runs generated from di�erent numbers of query
variations and according to di�erent fusion approaches for System 1: (a) RBP0.85 scores; (b) INST scores; (c) AP scores; (d) NDCG scores.
�ery variations are sorted in decreasing order of occurrence frequency in the UQV100 collection. �e baseline scores for v = 1 (that is,
executing the single most popular query variation) are shown under each table. So that pa�erns of behavior can be seen, the two largest
values in each column are highlighted in bold. Daggers indicate arrangements in which the RBC-based system was signi�cantly be�er than
the corresponding Borda run (one-sided paired t-tests with p < 0.05). No signi�cant di�erences were detected for CombMNZ fusion, or
using RBP0.85 or INST. Similar behavior was observed for other combinations of system and metric (not shown here).

Fusion Metric
RBP0.85 INST AP NDCG

RBC, ϕ = 0.9 0.503 0.501 0.217 0.441
RBC, ϕ = 0.95 0.508 0.506 0.219† 0.442
RBC, ϕ = 0.98 0.506 0.504 0.220† 0.443†
RBC, ϕ = 0.99 0.505† 0.502 0.217† 0.440
Borda 0.503 0.500 0.215 0.440
CombMNZ 0.506 0.505 0.219† 0.442†

Table 2: Fusion over �ve di�erent retrieval systems, based on one
query variation (v = 1). All numbers are average e�ectiveness
scores over the 100 topics in the UQV100 collection. Single-system
scores for the four metrics are shown in the �rst two columns of
Table 3. �e largest two entries in each column are shown in bold.
Daggers represent signi�cance relative to Borda fusion (p < 0.05).

• moreover, the greater the number of query variations being
fused, the smaller the value of ϕ needed to obtain those out-
comes.

We also explored round-robin fusion and CombSUM fusion; the
former was never competitive (and e�ectiveness decreased as query
variations were added); and CombSUM typically gave performance
slightly inferior to CombMNZ.

Metric Initial, v = 1 Fused, v = all Fused2, s = 5
mean max mean max mean gain

RBP0.85 0.474 0.487 0.530 0.557 0.559 +18%
INST 0.470 0.481 0.532 0.558 0.563 +20%
AP 0.190 0.204 0.268 0.303 0.303 +59%
NDCG 0.400 0.411 0.517 0.554 0.561 +41%

Table 3: Summary of e�ectiveness gains achieved by fusing �rst
over query variations, and then second over systems. �e �rst four
data columns are mean and maximum average scores over �ve
systems; the “gain” is relative to the initial system average in the
�rst column. All fusion is carried out using RBC0.95.

4.3 Fusion over systems
Table 2 shows the outcome of applying fusion across the �ve sys-
tems used in our experiments. A single query is used in each input
run (v = 1), and fusion applied to the �ve rankings for each topic.
In this se�ing, all methods give comparable improvements in e�ec-
tiveness, with Borda fusion marginally the worst of them.

4.4 Double fusion
Table 3 provides an overall summary of the e�ectiveness gains
that can be achieved by fusing over query variations and then over
systems, with RBC0.95 used at all fusing steps. Starting on the le�,
�ve systems each execute one query variation (v = 1) for each of the
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Description RBP0.85 INST AP NDCG
All queries (v = all) 0.405 0.394 0.151 0.336
First queries (v = 1) 0.474 0.471 0.204 0.409
Best query per topic 0.712 0.718 0.271 0.503

Table 4: Average metric scores for all queries per topic; for the most
popular query per topic; and for per-metric per-topic “omniscient”
query selections. System 1 is used throughout. �ese scores can be
directly compared with those shown in the four panes of Table 1.

UQV100 topics; this can be regarded as being the starting baseline
condition (no fusion performed) for both this table and Table 2. �e
�ve-way mean “average over 100 topics” and �ve-way maximum
“average over 100 topics” values show typical behavior for �ve
good retrieval systems when measured using a single query per
topic. If each of those �ve systems is given more query variations,
and generates a single fused run for each of the 100 topics as its
output, the values in the middle pair of columns arise. Substantial
performance improvements can be observed, and the means of the
�ve “fusion over query variations” systems handsomely exceeds
the best average score of the �ve original systems.

�e third pair of columns in Table 3 then shows the outcome
of fusing the �ve system runs generated a�er the query variations
have been folded in. �e mean scores shown (now with just a single
ranking for each of the 100 topics) exceed the previous maximum
scores in three of four cases, and exceed the middle-column mean
scores in all four cases. �e �nal column shows the end-to-end gain
in e�ectiveness that has been achieved by the compound fusing
(“initial mean” to “fused2 mean”). �at is, fusing �rst over query
variations, and then over systems, gives rise to average e�ectiveness
gains of 18% and higher. In terms of statistical signi�cance, and
looking at the various relativities summarized in Table 3:
• across the �ve systems and four metrics (twenty paired runs
in total), the largest p-value computed by a two-tailed paired
Student’s t-test comparing the corresponding v = 1 and v = all
conditions was less than 0.005;
• when the �ve v = all fused runs are compared with the �nal
“fused2” run, each metric yields one relatively large p-value,
arising when the system that happens to be the “max” is com-
pared with the �nal fused run (p ≈ 0.8, 0.7, 0.9, and 0.3 re-
spectively across the four metrics, with two di�erent systems
represented twice each as the “max” one), and a range of other
smaller p-values, the largest of which was 0.059 (INST, compar-
ing System 2 with v = all against the �nal fused run), and the
remainder of which were 0.01 or smaller.

�at is, we are highly con�dent that fusion over queries helps
retrieval e�ectiveness regardless of system and regardless of metric;
and also con�dent that additional fusion across systems is also
bene�cial, helping ensure that the outcomes are as good as, or
be�er than, what would have been a�ained if by chance we were
already working with the best system for that metric.

4.5 An unrealistic target?
Hindsight is a wonderful guide, a fact that is also true in IR. Table 4
shows the result of a post-hoc evaluation of the runs generated

for System 1. �e �rst row shows the (unweighted) average metric
scores across all of the UQV100 topics, and for each topic across
the (approximately, on average) 55 distinct query variations. �e
second row shows the baseline e�ectiveness scores used in Table 1,
arrived at by selecting the most popular of the query variations for
each topic. �e third row then shows results for four “oracle” query
subsets, one for each metric, each incorporating (based post hoc
on the relevance judgments and the computed metric scores) the
“best” query variation for each of the UQV100 topics.

Comparing the �rst and second rows, the most frequently posed
query generated by the crowd-workers for each topic obtains no-
tably be�er e�ectiveness than the average of the variations. �at
di�erence is why we ordered the query variations as we did (Sec-
tion 4.1). Comparing the second and third rows reveals a substantial
further gap – for each of the topics and each of the metrics there
are highly e�ective queries available within the sets created by the
crowd-workers. For two of the metrics the single-query oracle runs
are outperformed by the best of the fused approaches (Table 1), but
for two metrics they are considerably be�er. Also worth noting is
that the oracle runs have non-trivial di�erences, with di�erent best
queries arising for di�erent metrics in many cases. Across the four
metrics, a total of 193 best queries were identi�ed.

5 CONSISTENCY DEFINED
5.1 De�nition
As discussed in Section 2, Rank-Biased Overlap (RBO) [38] mea-
sures the top-weighted rank similarity between two non-conjoint
inde�nite rankings. As the rankings increase in similarity, espe-
cially towards the start of the rankings, the value of RBO trends
towards 1.0. Due to the geometric sum of weights, governed by
parameter ϕ, the total overlap score is bounded, ranging from 0.0
(no overlap) to 1.0 (total overlap).

To use RBO to measure consistency across query variations for
a topic, we �rst select a common reference or objective ranking
(the centroid) for each system-topic pair, making use of the RBC
algorithm described in the previous sections. �e persistence factor
ϕ for RBC is set to 0.90, to mirror a user whose expected depth
of examination into a ranked list is 10, a reasonably deep level of
examination relative to standard web search; also, the UQV100
pooling ensured at least depth-10 judging for each query from each
system. Di�erent persistence factors could be selected, whichwould
emphasize shallower or deeper probabilities of inspection of the
lists forming the centroid or the depth of overlap. �e centroid for
all-systems might also have been considered; however we sought
to measure a system’s self-consistency, rather than with respect to
a centroid that requires knowledge of other systems.

Given a centroid, we compute the RBO score for every query
variation, using the same value of ϕ = 0.90. Computation of RBO
provides both a point-estimate, and a minimum, residual, and max-
imum value. Since system runs typically report 200 or more docu-
ments, when ϕ = 0.90 the residual is less than 10−10, and the point
value is essentially equivalent to the minimum and maximum.

Formally, given a set of query variationsVi = {vi .1,vi .2, . . . ,vi .k }
for a topic ti ∈ T = {t1, t2, ..., tn }, given a system S and its rankings
for this set of variations Di = {dvi .1 ,dvi .2 , ...,dvi .k }, and given the
corresponding RBC ranking for S and topic ti , denoted di .rbc, we
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measure topic consistency Cti with respect to S as

Cti =

∑k
q=1 RBO(dvi .q ,di .rbc)

k
, (1)

and the collection consistency CT as the average topic consistency
over the set of topics T , again with respect to S , as

CT =

∑n
i=1Cti
n

. (2)

�at is, consistency is the average RBO score relative to the per-
topic centroids generated for the system, expressed either as a set of
per-topic scores, or aggregated over topics for a per-collection score,
but alwayswith regard to a system S . We can also speak of a system’s
consistency, which is simply topic (or collection) consistency for
a particular system. Note that the near-zero RBO residual means
that issues of averaging over RBO scores with di�erent residuals
can be ignored. We choose the average of averages for CT because
the number of variations per topic may vary, and topics with large
numbers of unique variations should not unduly bias �nal scores.

Unlike for RBC, where we explored the consequence of adding
more variations and thus needed an ordering, for consistency we
use all unique query expressions without repeats (unweighted). In
UQV100, each topic typically has a small number of commonly
chosen variations which occur multiple times, and a large number
of variations that occur only once. We wished to avoid biasing the
consistency measure unduly by counting the contribution of the
more popular variations multiple times. �e choice of unweighted
query variations also reinforces the decision to compute average of
averages forCT ; in UQV100 the number of unique query variations
per topic ranges from 19 to 101, so double averaging helps avoid
undue in�uence from the topics with more diverse variations.

5.2 Why this de�nition of consistency?
Test collection-based evaluation reduces many sources of variance
that occur in information seeking in the wild to a level that is
tractable from the standpoint of statistical analysis. Our de�nition
of consistency is predicated on having test collections that embody
some plausible set of query variations per information need. We
do not claim that it can address all possible sources of, or needs for,
desirable consistency (or inconsistency) in information seeking.

Our de�nition of consistency might be brought into question
by queries that exhibit extrinsic diversity [31] or intrinsic diver-
sity [32] or searching as learning [14]. Extrinsic diversity occurs
when a query has many di�erent information needs that might be
associated with it, while intrinsic diversity addresses cases where
there are multiple sub-tasks associated in satisfying the information
need. Searching as learning involves evolving query expression
throughout a session. For cases involving extrinsic diversity, test
collections without query variations typically declare one infor-
mation need and judge relevance with respect to that information
need; other plausible information needs are ignored. From the
standpoint of assessing consistency, our approach is the same and
has the same �aw of ignoring other information needs. For cases
involving intrinsic diversity and searching as learning, approaches
have been developed that target aspects of such complex evaluation
situations, including TREC’s Web track’s Diversity task [10] and

the Session [20] and Tasks [42] tracks. For assessing just consis-
tency, we suggest that test collections should involve more narrow
information needs, with an emphasis on developing speci�c unam-
biguous topic statements. Despite this, we believe that consistency
is also important for systems that are able to accurately detect and
respond to intrinsic diversity queries, and just as with narrower
information needs, there will be a wide range of query variations
for an information need that is intrinsically diverse.

One more question the reader might have is why measure consis-
tency at all, and why not just go straight to average relevance. Two
issues arise: �rst, relevance judgments are a substantially more ex-
pensive resource to accumulate, particularly when dealing with test
collections with thousands of query variations. Second, although
two rankings may have identical relevance scores, they may be com-
pletely di�erent. Consider an information need such as “You are
worried about the prevalence of fake news, and decide to �nd authori-
tative newspapers to read instead, just like people did last century.”
Now consider two rankings in response to two query variations,
one of which lists [theguardian.com, zeit.de, �.com, washington-
post.com] and one of which lists [wsj.com, lemonde.fr, nytimes.com,
theglobeandmail.com]. From a relevance standpoint, these rank-
ings are e�ectively identical, but from a consistency perspective,
they share nothing. If we accept that a searcher cares about re-
�nding the same information for an information need, even if they
forget the precise query variation they used previously [37], then
it is clear that being able to quantify consistency in rankings is not
captured by relevance equivalence alone.

6 ANALYSIS OF CONSISTENCY
6.1 Consistency and topics
We address RQ-C1 by assessing Cti over the �ve contributed runs
described in Section 4.1. RQ-C1 asks whether topics vary in consis-
tency, and to do this we plot the average and standard deviation of
Cti against all 100 topics of UQV100, sorted by increasing Cti . We
characterize this in two ways: Figure 2 shows the results for System
1 (where standard deviation is of the RBO scores per variation for
the topic), while Figure 3 shows the results when aggregating over
the Cti scores obtained from the �ve systems. Even with the large
standard deviations that can be observed in both plots (while being
clearly smaller in the second), we can conclude that di�erent topics
have di�erent consistency. For persistence ϕ = 0.9, approximately
25% of topics have consistency under 0.25, while around 12% have
consistency greater than 0.5. We also observe that some topics have
great variation in their consistency scores, and others much less;
and, overall, that consistency does indeed vary across topics.

6.2 Consistency and topic attributes
In the �rst part of RQ-C2 we ask whether there is a relationship
between the number of query variations per topic ti and corre-
sponding consistency scores Cti . Intuitively, we might expect that
the more unique query variations there are for a topic, the lower the
consistency scores. We address this aspect through a correlation
analysis, using Spearman’s ρ, a non-parametric rank correlation
statistic. Unlike Pearson’s product-moment coe�cient statistic, this
does not rely on the data having equal variance or having few to
no outliers. A sca�er plot, not shown, demonstrated that these
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Figure 2: Consistency scores Cti for System 1, ordered by score,
for 100 topics. Bars are ±1 s.d. of the underlying RBO values.
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Figure 3: Average consistency scores Cti from �ve systems, or-
dered by increasing score, for 100 topics. Bars are ±1 s.d. Note that
the topics may not be in the same order as in Figure 2.

requirements might not hold. In Table 5(a), we show the results
for all systems. As expected, the direction of the association is
negative (Cti goes down when the number of query variations goes
up). However, the correlations are relatively weak weak magni-
tude (0.3 < ρ < 0.5) so although there is an association, it is not
something we can reliably anticipate. �e corresponding sca�er
plot of values is not shown for space reasons, but con�rms that
there is a broad range of consistency scores as the number of query
variations per topic changes. �ese outcomes are a li�le surprising,
suggesting that the causes of increased consistency are complex.

In the second part of RQ-C2 we ask whether there is a relation-
ship between the estimated topic complexity and corresponding
consistency scores. Estimated topic complexity is available as the
average of the estimates of the number of useful documents (and
the number of queries) expected by each person providing a query

System (a) (b) (c)
Num. variations Est. docs Est. queries

1 −0.35‡ −0.30‡ −0.43‡
2 −0.43‡ −0.27‡ −0.43‡
3 −0.42‡ −0.35‡ −0.45‡
4 −0.36‡ −0.25‡ −0.39‡
5 −0.37‡ −0.36‡ −0.43‡

Table 5: Correlation measured using Spearman’s ρ between Cti
and: (a) number of unique query variations per topic; (b) average
estimated useful documents per topic; and (c) average estimated
useful queries per topic, for each (system, topic) pair. In all cases,
p < 0.01(‡).
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Figure 4: Consistency scores Cti for �ve systems and 100 topics.
�e diamond marks the median, and the horizontal line marksCT .

variation for a topic description in UQV100. More complex top-
ics have higher values for these two averaged estimates. Again,
intuitively we might expect that the more complex a topic is, the
lower the consistency score. As above, we assess the relationship
using Spearman’s ρ, for both the average estimated documents and
average estimated queries per topic ti and corresponding consis-
tency scores Cti . Results are shown in Table 5(b) and (c), and just
as before indicate a negative association, as surmised. However,
once again the correlations are weak at best, at best of weak magni-
tude, meaning that increases in estimated topic complexity are only
loosely associated with decreases in consistency. Interestingly, the
estimates of the required number of queries all have a stronger cor-
relation than the corresponding estimates of the required number
of useful documents. �is outcome might in part arise because the
complexity estimate providers may be be�er at estimating changes
in small numbers than in larger ones, but there are other possible
explanations.

Session 4A: Evaluation 2 SIGIR’17, August 7-11, 2017, Shinjuku, Tokyo, Japan

402



System 2 3 4 5
1 −9.756‡ −10.497‡ −14.362‡ −1.030
2 −0.930 −6.821‡ 9.107‡
3 −8.035‡ 8.490‡
4 12.330‡

Table 6: System di�erences measured using a paired Student’s
t-test between all pairs of systems over the corresponding Cti per
topic. Values reported are the t statistic, df = 99 in all cases, and
signi�cant di�erences at p < 0.05 (†) and p < 0.01 (‡).

6.3 Consistency and systems
If consistency was identical across di�erent retrieval systems, then
it would be uninterestingwhen selecting an e�ective system. InRQ-
C3, we examine the relationship between collection consistencyCT
and the �ve systems which contributed to UQV100. In Figure 4 we
report on the consistency scores for each system, using boxplots to
show the spread of values. From this we can observe that Systems
1 and 5 are very similar to each other (CT ' 0.32); Systems 2 and 3
are very similar to each other and more consistent (CT ' 0.40), and
System 4 is di�erent and yet more consistent (CT = 0.44). Using
a two-tailed paired Student’s t-test, we also assessed each pair of
systems; Table 6 con�rms our observations.

Another way of understanding the relationship between consis-
tency and systems is to treat each topic as an “assessor” and each
system as the “subject” being assessed with regards to its degree
of consistency. Since topics in UQV100 contain a similar number
of query variations (average of 55 per topic) as many existing test
collections have queries, and past practice has been to examine
rank order correlation of systems by comparing sets of systems
across two or more collections, we will adopt a similar method
here. We assess how similar the relative ordering of systems is
using one-way Intraclass Correlation [4], Kendall’s Coe�cient of
Concordance [21] (commonly wri�en as Kendall’sW ), and Krip-
pendor�’s α [17]. All of these measures address inter-assessor
agreement, for three or more assessors, and can accommodate ordi-
nal data (and for ICC and α , interval or ratio data). In Table 7, we
report the results for these measures of rank agreement, where the
score is the topic consistency Cti . We use these measures rather
than pair-wise comparisons of topics using Kendall’s τ , since we
have 100 topic “assessors” involved, and the measures allow us
to consider multiple “assessors” with a single test statistic, while
Kendall’s τ only supports two “assessors”. Due to the di�erences
between ICC and Kendall’sW , it is expected that ICC scores may be
lower than Kendall’sW scores over the same data, since it considers
not just relative rank order but also the magnitude of di�erences,
as discussed by Sheskin [34]. In all three measures, 1 indicates
perfect agreement among the assessors, and 0 indicates no agree-
ment beyond what would be expected by chance. Both ICC and α
can report small negative values, which also signify no agreement.
�e values from ICC and Krippendor�’s α both indicate there is a
very low degree of inter-assessor agreement in rank ordering the
systems by consistency; and although Kendall’sW is 0.491 for Cti ,
this is still a relatively low degree of agreement.

From these two analyses, we conclude that although these sys-
tems do have di�erent overall collection consistency CT , they are

Agreement (a) (b) (c)
ICC Kendall’sW Krippendor�’s α

Cti 0.111‡ 0.491‡ 0.090
NDCG −0.002 0.169‡ −0.003
INST −0.005 0.033† −0.006

Table 7: Rank agreement over all �ve systems measured using (a)
Intraclass Correlation; (b) Kendall’sW ; and (c) Krippendor�’sα . For
ICC andW , signi�cance is reported as p < 0.05(†), and p < 0.01(‡);
for α it is not reported. �e top row usesCti as the ranking score for
each system; the bo�om two rows use NDCG and INST (averaged
by topic, as for Cti ).

System AP NDCG Q RBP INST
1 0.61‡ 0.68‡ 0.56‡ 0.32‡ 0.35‡
2 0.62‡ 0.70‡ 0.58‡ 0.33‡ 0.37‡
3 0.55‡ 0.62‡ 0.53‡ 0.32‡ 0.36‡
4 0.59‡ 0.65‡ 0.55‡ 0.39‡ 0.40‡
5 0.59‡ 0.65‡ 0.53‡ 0.25† 0.30‡

Table 8: Correlation measured using Spearman’s ρ between topic
consistencyCti and corresponding relevance measures (AP, NDCG,
Q measure, RBP0.85, and INST), for each (system, topic) pair. In all
cases, there is a signi�cant correlation, with p < 0.01 (‡), except
for System 5 and RBP, signi�cant only at p < 0.05 (†).

not systematically ordered on the basis of topic consistency Cti .
�at is, for one topic a particular systemmay have high consistency,
while for another topic a completely di�erent system may have
high consistency, and the earlier system may have low consistency.

6.4 Consistency and relevance
Our last investigation, addressingRQ-C4, concerns the relationship
between consistency and relevance. �e construction of UQV100
guaranteed relevance judgments to at least depth 10 for all query
variations for the �ve systems being analyzed. �us we are able
to explore the degree of correlation between consistency and rele-
vance, across a range of relevance measures, including AP, NDCG,
Q measure, RBP0.85, and INST. �e results, calculated using Spear-
man’s ρ, are displayed in Table 8. While there is moderate cor-
relation for the “deep” relevance measures (AP, NDCG, and Q),
there is only weak correlation for the “shallow” relevance measures
(RBP0.85 and INST). Sca�er plots of the data, not shown, indicate
considerable spread of scores for all measures as Cti increases.

As a comparison with consistency, we repeat the topics-as-
“assessors” inter-assessor agreement analysis, with results reported
for average-by-topic NDCG and INST scores in rows two and three
of Table 7. While any degree of agreement was only just observable
for consistency, with these relevance measures, any agreement on
the ordering of systems by relevance is e�ectively random.

7 CONCLUSIONS
Consistency – the ability to give similar results for a topic even
when presented with di�erent queries – is desirable for search en-
gines in a variety of circumstances. We have de�ned a consistency
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measure and explored it across a set of 5,736 query variations across
100 topics, using a novel relevance-based centroid algorithm.

�e RBC algorithm for fusing rankings has the bene�t of incor-
porating a persistence parameter that allows modeling of di�erent
depths of a�ention into rankings, and adds another strand to the
“RB-” family. RBC is competitive or be�er than existing algorithms,
and like Borda count has no reliance on system scores. We con-
�rmed previous �ndings that data fusion over queries and over
systems is bene�cial, and fusion over both is even be�er. With the
oracle runs we have also demonstrated that substantially be�er
e�ectiveness performance is possible, at least hypothetically.

Based on the various analyses, we can also state that the con-
sistency measure informs us about something di�erent to existing
measures. Consistency varies by topic and by system, tends to
decrease as topic complexity and the number of query variations
increases, and has weak-to-moderate correlations with several rel-
evance measures. However, in no circumstance is consistency
strongly correlated with any of these existing test collection dimen-
sions, con�rming that it measures a di�erent property altogether.
Neither the measures of consistency nor relevance reliably order the
�ve systems over the UQV100 topics, indicating there are no clear
systemwinners or losers for this test collection on these dimensions
of e�ectiveness when examined topic by topic.

More investigation is required into the nature of consistency
and its e�ect on perceptions of the retrieval e�ectiveness of search
systems. Such work might include user studies, low-level analysis
of the root causes of variable ranking within one or more systems,
and broadening the current analysis to similar test collections with
multiple query variations per topic.
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