
Leveraging Cross-Network Information for Graph 
Sparsification in Influence Maximization  

 

Xiao Shen, Fu-lai Chung, Sitong Mao 
Department of Computing, Hong Kong Polytechnic University 

Kowloon, Hong Kong 
xiao.shen@connect.polyu.hk, cskchung@comp.polyu.edu.hk, sitong.mao@connect.polyu.hk 

 

ABSTRACT 
When tackling large-scale influence maximization (IM) problem, 
one effective strategy is to employ graph sparsification as a pre-
processing step, by removing a fraction of edges to make original 
networks become more concise and tractable for the task. In this 
work, a Cross-Network Graph Sparsification (CNGS) model is 
proposed to leverage the influence backbone knowledge pre-
detected in a source network to predict and remove the edges least 
likely to contribute to the influence propagation in the target 
networks. Experimental results demonstrate that conducting 
graph sparsification by the proposed CNGS model can obtain a 
good trade-off between efficiency and effectiveness of IM, i.e., 
existing IM greedy algorithms can run more efficiently, while the 
loss of influence spread can be made as small as possible in the 
sparse target networks. 
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1 INTRODUCTION 
Motivated by the idea of viral marketing, the influence 

maximization (IM) problem has been extensively studied. 
Domingos et al. [1] were the first to study influence propagation in 
a social network using a probabilistic algorithm. Then, Kempe et 
al. [2] formulated IM as a discrete optimization problem, i.e., to 
select k seed nodes (i.e. initial users) in a given network such that 
the expected number of nodes influenced by the k seeds (i.e. 
influence spread) is as large as possible, under a certain influence 
cascade model. A number of promising greedy algorithms [2-5] 
have been proposed to tackle the NP-hard IM problem.  

However, many real-world networks are with massive number 
of nodes and edges, hampering existing IM algorithms to work in 
practice. To tackle this problem, one effective approach is to 
employ graph sparsification as a pre-processing step for IM, by 

removing a fraction of edges to make the original networks more 
concise and tractable. Several graph sparsification algorithms have 
been developed for IM. For example, Wilder et al. [6] developed a 
Random Walk algorithm to preserve a subset of edges by 
minimizing Kullback-Leibler (KL) divergence between a random 
walk on the original network and the sparse network. 
Mathioudakis et al. [7] presented a SPINE algorithm to detect the 
“backbone” of an influence network, by preserving the edges 
important for influence propagation based on a log of past 
influence propagation traces. This SPINE algorithm, however, is 
impracticable for the networks containing nodes with large in-
degree [7]. Zhou et al. [8] proposed a brute force method to prune 
a subset of the least important edges for weighted graphs such that 
the overall graph connectivity can be best maintained. Lamba et al. 
[9] proposed a model independent approach to remove the least 
informative edges, via aggregating multiple topological feature 
rankings, weighted by the Kendall Tau distances between different 
rankings. In addition, instead of maximizing the influence in a 
single network, recently Hu et al. [10] proposed a Transfer 
Influence Learning (TIL) method to study the cross-network IM 
problem, by viewing seed selection for IM as a node classification 
task. However, this TIL method just directly leveraged a classifier 
trained in a source network to select seed nodes for multiple 
homogeneous target networks with similar sizes, without 
considering the domain discrepancy issue. 

All the existing graph sparsification algorithms [6-9] developed 
for IM only leveraged the information in a single network. 
Motivated by [10], we propose a Cross-Network Graph 
Sparsification (CNGS) model to leverage the cross-network 
information to conduct graph sparsification. Here, we consider 
graph sparsification as an edge prediction problem, with the goal 
of removing the edges least likely to contribute to influence 
propagation. To detect the influence backbone, the SPINE 
algorithm [7] requires a log of past influence propagation traces in 
a specific network, which are difficult to obtain in many real-
world datasets. With respect to this issue, our proposed CNGS 
model leverages the knowledge pre-learned in a smaller source 
network, to detect the influence backbone for multiple 
heterogeneous target networks with larger sizes. Firstly, in a 
source network, we simulate the influence propagation traces by 
running an influence cascade model. Then, one can label each edge 
as active or inactive, where active edges indicate that they actually 
make contribution to the influence propagation during the 
simulations. We assume active edges should be with 
discriminative topological structures w.r.t. inactive edges, as in [9]. 
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However, unlike [9] which learns relative weights based on the 
distances between different feature rankings in a single network, 
the CNGS model utilizes a cross-network learning approach to 
transfer the feature weightings learned from a source network to 
multiple heterogeneous target networks. To address the domain 
discrepancy issue, a feature incompatibility measure [11] is 
incorporated to impose stronger effects to the features which 
perform more similar for backbone detection between the source 
and the target networks. Also, a semi-supervised approach [11] is 
utilized to iteratively train the model based on not only the fully 
labeled data in the source network, but also the most confident 
prediction data in the target network. After the domain 
discrepancy has been reduced, we adapt the CNGS model to the 
target networks to predict the probability of each edge to be active 
for influence propagation. Then, by removing the edges least likely 
to be active, 1) existing IM greedy algorithms can run more 
efficiently in the sparse networks; and 2) the loss of influence 
spread in the sparse networks can be made as small as possible. To 
the best of our knowledge, the proposed CNGS model is the first 
work to study the cross-network graph sparsification problem for 
IM. Experiments on four real-world datasets show the capability of 
the CNGS model. 

2 CROSS NETWORK GRAPH 
SPARSIFICATION (CNGS) MODEL 
Firstly, we briefly introduce several criteria widely used to 

capture the topological structures of a node in a given network, as 
in the literature [9-10]. 1) Degree. It calculates the number of 
edges adjacent to a node. 2) Weighted Degree. It computes the 
degree by considering the weight of each edge adjacent to a node. 
3) Eigenvector Centrality. It evaluates a node’s influence in the 
scenario of information diffusion. 4) HITS Hub. It is estimated 
based on the outgoing links from a node. 5) PageRank Score. It is 
computed based on the structure of incoming links to a node. 6) 
Clustering Coefficient. It reflects the fraction of a node’s friends 
who are also friends with each other. In the CNGS model, we build 
edge features based on the average topological feature values of 
two nodes on each edge, as in [9]. To make the feature values to be 
network independent, we normalize all the absolute values to [0, 
1]. Note that it is also flexible to employ other informative features 
in the CNGS model as long as they can be efficiently computed in 
the large-scale networks.  

The CNGS model is presented in Algorithm 1. Firstly, in a 
source network, we run an influence propagation model l times to 
simulate the influence propagation traces, induced by the k seed 
nodes selected by a greedy algorithm. Note that the CNGS 
framework is model independent, meaning that it can work with 
any existing IM greedy algorithms and any influence propagation 
models. After simulations, one can label each edge as active or 
inactive. In an undirected network, if node u successfully 
influences node v, or node v successfully influences node u, then 
edge (u,v) is denoted as “active”. While in a directed network, edge 
(u,v) is denoted as active, if and only if node u successfully 
influences node v during the influence propagation simulations. 
Then, in the source network, with active edges labeled as “1” and 

inactive edges labeled as “0”, a supervised learning method can be 
devised to train a logistic regression (LR) model with the following 
cost function: 

𝐽(𝜃) = −
1

𝑚𝑆
∑𝐼𝑢,𝑣 [

𝑦𝑆
(𝑢,𝑣)

𝑙𝑜𝑔⁡(ℎ𝜃 (𝑥𝑆
(𝑢,𝑣)

)) +

(1 − 𝑦𝑆
(𝑢,𝑣)

)𝑙𝑜𝑔⁡(1 − ℎ𝜃 (𝑥𝑆
(𝑢,𝑣)

))
]

𝑢,𝑣

 (1) 

where 𝑚𝑆 is the number of edges in the source network S;  𝐼𝑢,𝑣 is 
an indicator to represent whether node u and v are directly 
connected by an edge, if they are directly connected, 𝐼𝑢,𝑣 = 1, 

otherwise, 𝐼𝑢,𝑣 = 0;  𝑥𝑆
(𝑢,𝑣)

⁡and 𝑦𝑆
(𝑢,𝑣)represent the feature vector 

and true label of edge (u,v) in S, respectively;⁡⁡𝜃 = {𝜃𝑗}𝑗=1
𝑛

 denotes 

a vector of weights of the n topological features for active edge 
prediction. After the 𝜃 minimizing (1) has been learned in S, one 
can firstly estimate the probability of an edge (u,v) to be active in 
the target network T, using the following formula:  

𝑦̂𝑇
(𝑢,𝑣)

= (1 + 𝑒−𝜃
𝑇𝑥𝑇

(𝑢,𝑣)

)−1 (2) 

However, the same feature might have different level of relative 
importance in different networks. Thus, we further adopt a self-
training for domain adaptation (SEDA) algorithm [11] to measure 
the incompatibility of each feature 𝑋𝒋 between S and T, as below: 

𝐼𝐶(𝑋𝒋) = (1 − 𝑃𝑐𝑐(𝑋𝑆,𝑗 , 𝑌𝑆)𝑃𝑐𝑐(𝑋𝑇,𝑗 , 𝑌̂𝑇)) (3) 

where 𝑃𝑐𝑐(𝑋𝑆,𝑗 , 𝑌𝑆) denotes the Pearson correlation coefficient 
(PCC) between the j-th feature and the label of all the edges in S;  
𝑃𝑐𝑐(𝑋𝑇,𝑗 , 𝑌̂𝑇) indicates PCC between the j-th feature and the 
predicted probability of all the edges in T. The smaller the 
incompatibility, the more similar the feature performs between the 
source and the target networks. Then, a feature incompatibility 
based regularization term can be defined as below: 

𝑅1(𝜃) =
1

2
∑ 𝐼𝐶(𝑋𝑗)
𝑛
𝑗=1 𝜃𝑗

2  (4) 

Via minimizing 𝑅1(𝜃), stronger weights will be assigned to the 
features with smaller incompatibility between S and T.  Also, to 
prevent overfitting, a L2-regularization term is defined as below: 

𝑅2(𝜃) =
1

2
∑ 𝜃𝑗

2𝑛
𝑗=1   (5) 

By incorporating (4) and (5) into (1), an overall loss function can be 
developed as: 

𝐿(𝜃) = 𝐽(𝜃) +
𝜆1

𝑚𝑆
𝑅1(𝜃) +

𝜆2

𝑚𝑆
𝑅2(𝜃)  (6) 

where 𝜆1, 𝜆2 ≥ 0 are the parameters to balance the effects of the 
two regularization terms. Next, gradient descent algorithm can be 
utilized to find the θ minimizing loss function (6), as follows: 

𝜕𝐿(𝜃)

𝜕𝜃𝑗
=

1

𝑚𝑆
∑ [𝐼𝑢,𝑣 (ℎ𝜃(𝑥𝑆

(𝑢,𝑣)
) − 𝑦𝑆

(𝑢,𝑣)
) 𝑥𝑆,𝑗

(𝑢,𝑣)
+𝑢,𝑣

𝜆1𝐼𝐶(𝑋𝑗)𝜃𝑗 + 𝜆2𝜃𝑗]  
(7) 

𝜃𝑗 = 𝜃𝑗 − 𝛼
𝜕𝐿(𝜃)

𝜕𝜃𝑗
  (8) 

where 𝛼 > 0⁡denotes learning rate.  
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So far, we have considered the feature incompatibility between 
S and T. However, the training data of the prediction model are 
merely obtained from S. To make the prediction model also 
consider the data in the target network, a self-training algorithm 
[11] is employed to iteratively move the top-c most confident 
prediction data (i.e. both feature vectors and predicted labels) from 
T to S. By this end, the parameters can be iteratively updated based 
on not only the fully labeled data in the source network, but also 
the newly added most confident prediction data in the target 
network. After t iterations, we leverage the latest learned model to 
predict and remove the edges least likely to be active in the target 
network, and consequently making the loss of influence spread in 
the sparse target networks as small as possible.    
Algorithm 1: CNGS 

Input: Source network 𝐷𝑆 = {(𝑥𝑆
(𝑢,𝑣)

, 𝑦𝑆
(𝑢,𝑣)

)}  with 𝑚𝑆  labeled 

edges; Target network 𝐷𝑇 = {𝑥𝑇
(𝑢,𝑣)

}  with 𝑚𝑇  unlabeled edges; 

Self-training iteration t; Top-c most confident prediction; Edge 
removal fraction f. 
Output: Predicted probability of all the edges in 𝐷𝑇 to be active 

{𝑦̂𝑇
(𝑢,𝑣)

}. 
1. 𝐷𝑇

′ = 𝐷𝑇 
2. In 𝐷𝑆, train a model to obtain 𝜃∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ⁡(1); 
3. for t iterations, do: 

a) Based on 𝜃∗, apply (2) on 𝐷𝑇 to predict {𝑦̂𝑇
(𝑢,𝑣)

}; 
b) Measure feature incompatibility via (3); 
c) Based on  {𝑦̂𝑇

(𝑢,𝑣)
} , move top-c most confident 

predicted active edges, i.e., {(𝑥𝑇
(𝑢,𝑣)

, 1)|𝑦̂𝑇
(𝑢,𝑣)

∈

𝑇𝑜𝑝⁡𝑐⁡ℎ𝑖𝑔ℎ𝑒𝑠𝑡⁡{𝑦̂𝑇
(𝑢,𝑣)

}}  and top-c most confident 

predicted inactive edges, i.e., {(𝑥𝑇
(𝑢,𝑣)

, 0)|𝑦̂𝑇
(𝑢,𝑣)

∈

𝑇𝑜𝑝⁡𝑐⁡𝑙𝑜𝑤𝑒𝑠𝑡⁡{𝑦̂𝑇
(𝑢,𝑣)

}} from 𝐷𝑇 to 𝐷𝑆; 

d) In new 𝐷𝑆 , train a model to obtain 𝜃∗ =
𝑎𝑟𝑔𝑚𝑖𝑛𝜃 ⁡(6); 

        end for 

4. Based on updated 𝜃∗, apply (2) on 𝐷𝑇
′  to predict {𝑦̂𝑇

(𝑢,𝑣)
}, 

and remove a fraction 𝑓 of edges with the lowest predicted 
probability to be active. 

3 EXPERIMENTS 

3.1  Datasets 

Table 1: Statistics of Real-World Datasets 

Dataset Type Nodes Edges 
NetHEPT Undirected 15233 31398 

Email-Enron Undirected 36692 183831 
Epinions Directed 75879 508837 

DBLP Undirected 317080 1049866 

The proposed CNGS model was tested on four real-world 
public datasets, namely, NetHEPT, Email-Enron, Epinions and 
DBLP. Both NetHEPT and DBLP datasets are co-authorship 
networks; the Email-Enron dataset is an email communication 
network; and the Epinions dataset is a trust social network. Table 
1 gives some statistics of the datasets. To make CNGS more 

efficient, the smallest network, NetHEPT was employed as the 
source network, while the other three larger networks, i.e., Email-
Enron, Epinions, DBLP were employed as the target networks. 

3.2  Implementation Details 
In the experiments, we set 𝜆2 = 1; 𝜆1 = 10 and divided by a 

factor of 1.1 after each iteration, following [11]. And we set t=3, 
c=200 for self-training. It means that during the 3 self-training 
iterations, the top-200 most confident predicted active edges and 
top-200 most confident predicted inactive edges in the target 
networks were iteratively moved to the model training set. In the 
source network, the Independent Cascade (IC) model [2] (influence 
probability p=0.01 in the experiments) was employed to simulate 
the influence backbone, induced by 50 seed nodes selected by the 
NewGreedy algorithm [4]. Then, for graph sparsification in the 
target networks, the edges with the fractions chosen from [0.1, 0.9] 
were removed to extract the sparse networks. Next, both 
NewGreedy and IC were employed again in each sparse network 
to maximize the influence induced by the same number of seeds 
(50 in our experiments).  

The performance of CNGS was compared with several graph 
sparsification algorithms, including 1) Random heuristic which 
randomly selects a fraction of edges to remove; 2) RandomWalk 
algorithm [6] which minimizes KL divergence between a random 
walk on the original network and the sparse network; and 3) 
AggRanks algorithm [9] which aggregates multiple topological 
feature rankings, weighted by the Kendall Tau distances between 
different rankings. We evaluate the performance of the algorithms 
based on how much influence spread will lose in the sparse 
networks. The less the influence spread loses, the better the 
performance. In addition, we are interested in how much running 
time could be saved in return, by utilizing the same greedy 
algorithm in the sparse networks.  

3.3  Performance of CNGS 
As shown in Figure 1, in the Email-Enron target network, if 40% 

of the edges were removed by CNGS, the influence spread was just 
reduced by 8.8%, while the running time of NewGreedy can be 
greatly saved by 47% in return. Similarly, in the Epinions target 
network (as shown in Figure 2), if 40% of the edges were removed, 
CNGS managed to just reduce the influence spread by 6.8% but 
save the running time by 39%. Moreover, in the DBLP target 
network (as shown in Figure 3), even if 80% of the edges were 
removed by CNGS, the influence spread was just reduced by 5.1%, 
while the running time can be greatly saved by 69%. These results 
demonstrate that the CNGS model indeed acts as an effective 
graph sparsification algorithm for IM, since it can greatly reduce 
the running time of greedy algorithm, while still achieve 
satisfactory influence spread in the sparse networks.  

In addition, we can observe that CNGS outperformed (i.e. 
lowest influence spread loss) all the baselines in all the sparse 
networks. Note that both CNGS and AggRanks aim to aggregate 
multiple topological features to remove the least likely active 
edges, while the superior performance of CNGS over AggRanks 
reflects the benefit of leveraging cross-network information to 
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learn the feature weightings for active edge prediction. AggRanks 
is an unsupervised method and tends to assign higher weights to 
more unique features in a specific network. However, the more 
unique features might not necessarily be more important for active 
edge prediction. In contrast to AggRanks, CNGS utilizes a semi-
supervised approach to leverage the cross-network information to 
learn more useful feature weightings for active edge prediction. In 
addition, we can see that both CNGS and AggRanks achieved 
much higher influence spread than random heuristic and 
RandomWalk. This could be explained that for the IM task, the 
influence tends to be propagated through those edges adjacent to 
the highly influential nodes (i.e. active edges), rather than the 
randomly selected edges. Since the influential nodes are with 
discriminative topological features w.r.t. the random nodes [9]. 
The active edges should also be with discriminative topological 
structures w.r.t inactive edges. Moreover, the CNGS model is with 
high efficiency and scalability. For example, even in the largest 
target network (i.e., DBLP containing millions of edges), the time 
taken to measure all the topological features and train the 
prediction model via 3 self-training iterations was only 10 minutes, 
which is extremely short as compared to the save of running time 
of the greedy algorithm in the sparse networks. 

4   CONCLUSIONS 
To obtain a good trade-off between the effectiveness and 

efficiency of large-scale IM problem, one approach is to conduct 
graph sparsification as a pre-processing step to make existing IM 
greedy algorithms more feasible to work on the sparse networks. 
In this work, we proposed an innovative cross-network learning 
approach to study the cross-network graph sparsification problem 
for large-scale IM. A CNGS model was developed to leverage the 
influence backbone knowledge pre-learned in a smaller source 
network, to predict and remove the edges least likely to contribute 
to influence propagation in multiple heterogeneous target 
networks. To reduce domain discrepancy, a feature incompatibility 
measure and a self-training approach have been adopted. 
Experimental results show that conducting graph sparsification by 
CNGS will not cause notable loss of influence spread in the sparse 
networks, while obtaining the advantage of saving a lot of running 
time. Although in this paper, we only focus on graph sparsification 
for the IM scenario, however, the CNGS framework could also be 
transferrable to other cross-network node or link ranking/filtering 
tasks. 
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Figure 1: Performance of CNGS in Email-Enron target 
network. 
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Figure 2: Performance of CNGS in Epinions target 
network. 
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Figure 3: Performance of CNGS in DBLP target network. 
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