RUBRIC
An Environment for
Full Text Information Retrieval

. Richafd M. Tong
Victor N. Askman, James F. Cunningham, Carl J. Tollander

Advanced Information & Decision Systems
201 San Antonio Circle, Suite 286, Mountain View, CA 94040.

1. INTRODUCTION

This paper describes an ongoing investigation into
the application of ideas from Artificial Intelligence (Al)
in the development of a computer-based aid for
Information Retrieval (IR). The prototype system,
called RUBRIC, is designed to help IR professionals gain
easy access to large unformatted full text databases.
Knowledge about retrieval requests is encoded in
RUBRIC as a collection of rules with attached
uncertainty values. This representation provides an
appropriately expressive query language that can
represent partial relevance and which is easily
understood and modified. When coupled with an

effective user interface, the rule-based approach can, we’

believe, give significant improvements over commereially
available Boolean keyword systems such as DIALOG,
LEXIS, and MEDLARS. At the same time, it avoids
the theoretical and computational problems associated
with full scale natural language processing of documents
(e.g., as proposed by Lebowitz {1]), and the difficulties
users have in understanding the mechanisms used in
statistical approaches (e.g., Salton’s SMART system
(20).

RUBRIC differs in several important ways from
traditional approaches, (1) matching is
performed over the whole document, (2) documents are
given relevance values in the range [0,1], (3) queries are
expressed in a language of rules that allows the user to
develop hierarchical knowledge structures of retrieval
concepts, and (4) users are provided with a collection of
tools to help develop and modify queries, and to analyze
the retrieval results.

namely:

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

$00.75

© 1985 ACM 0-89791-159-8/85/006/0243

243

In providing these characteristics RUBRIC makes use of
several key ideas from Al. In particular, RUBRIC is an
example of a production system that can perform
evidential reasoning. In this view, the text of the
document is the “evidence” on which the system
determines the relevance of that document to the
request. The knowledge on which this
judgement rests is embodied in the rules which link
retrieval concepts. In contrast to conventional expert
systems, the knowledge is entered directly by the user
of the system who thereby acts as his or her own
expert. In addition, RUBRIC makes use of an object
oriented presentation system to provide the necessary
flexibility at the user interface.

retrieval

2. THE RETRIEVAL MODEL

In developing our model we start from the premise
that the function of a retrieval system is to select a
sub-set of the documents in the database as defined by
their relevance to the user’s query. The inherent
imprecision in the concept of relevance requires that
this be a fuzzy sub-set [3] rather than a classical one.
Suppose, then, that the user has a finite set of retrieval
concepts, C, of interest:

cé{clvc‘lv"'ch}

and that the database, S, contains a finite number of

documen*s:

s2 {sr82 - sa}

then there is a fuzzy relevance relation, R, from C to
S such that:

R (m ,n) = the relevance of document s,

to concept ¢,

If we now assert that relevance can be quantified as a
real number in the interval [0,1], then for any particular
concept, ¢, which is an element of C, we can extract
from R a row-tuple, R*(¢), which then defines a fuzzy
sub-set of §. This sub-set is the ground truth against

which we wish to measure the performance of our
retrieval system. Our goal therefore is to build a
system that can generate an R(c) which accurately
“estimates” R*(c); with an ideal retrieval system giving
R(¢) = R*(¢) for every cin C

To make our fuzzy set theoretic interpretation of
the IR problem operational we need a calculus for the
representation and propagation of relevance values.
Since we assume that relevance can be represented as a
numerical value in the interval [0,1], and that there is
an obvious fuzzy set theoretic interpretation of these
values, we can draw upon work on many-valued logics
(4], and on the use T-norms as models of fuzzy set
intersection [5], to help us construct a caleulus of
relevance values.

The first task is to define a set of operators for
conjunction (the and connective}, and disjunction (the
or connective). There are many we could choose, but
we shall consider four pairs as shown in Table 1. Here
v[A] and v[B] denote the relevance values of the
primary propositions, with v[A and B] and v[A or B
denoting the relevance value of their conjunction and
disjunction respectively. The conjunction operators are
T-norms, the disjunction operators are T-conorms, and
the negation (the unary operator not) is defined by
vinotA]=1-v[A]

The second task is to define a mechanism for
performing rule-based inference. In two-valued logic the
modus ponens syllogism allows B to be inferred from A
and A =>B. In an infinitely-valued logic, we need to
extend thiz idea so that the relevance of B, denoted
v[B], can be computed from any given v[A]| and
v{A=>B]|, where “=>" is some infinitely-valued
implieation. Functions that allow us to compute v[B|
are calied ‘etachment operators {and are denoted *). It
is usual to “ofine them so that for a given definition of
=>, v[A]* v[A =>B] is a lower bound on the value
of v[B]. Five of these are shown in Table 2, together
with the corresponding implications.

Let us denote a particular calculus by L(i,j) where
“i” is an index over the conjunct-disjunct operator pairs
and “j" is an index over the detachment operators.
Then we see that some of the L{i,j} are well known; in
particular, L(3,3) is Lukasiewicz’s nondenumerably
infinite logic [6], and L(3,0) is a logic proposed by Zadeh
[7]. Another calculus of interest is L(2,2), which we can
view as a “pseudo-probability’ logie in which A and B

are independent events.
The way in which RUBRIC generates R(c) is to

interpret the rules as a hierarchy of retrieval concepts
and sub-concepts. Thus by naming a single concept,
the user automatically invokes a goal oriented search of
the tree defined by all of the sub-concepts that are used
to define that concept. The lowest-level sub-concepts

Table 1 Conjunct-Disjunct Operators

v(A and B) v(A or B)
0 Tlvia), w(m ¥ stv(a),wm) ¥
1 max(0,v(A)+v(B)-1] winll,v(A)w(B)]
2 v(A).v(®) v{A)ev(B8)=v{A).v(B)
3 winfv(a),v(B)] max{v(A),v(B)]

*r(1,1) =1, T(x,1] = 7(1,x] = x,
Tix,y) =0 ¥x,y €{0,1)

*3(0,0] =0, slx,0] =s{0,x) ~x,
s{x,yl =1 ¥x,y €(0,1]

Table 2 Detachment and Implication Operators

Detachment (*) Implication (=>)
[v(B) = min{v(A),v(a=>8)] sin(v(A),v(3)]
1 v(B) = min(v(A),v(a=>B)] max{l-v(a),v(3)]

if v(A)ev(A=>B) > 1

-0 othervise
2 v(B) = v{A).v(A=>B) mia{l,v(B)/v(a}]
3 v(8) = nax{0,v(A)+v(A=>B)-1)] minll,1~v(A)+v(B)}
4 v(3) = max[0,({v(A)+v(A=>8)~1)/v(a))] 1-v(A)+v(A).v(B)

are themselves further defined in terms of pattern
expressions in a text reference language which allows
keywords, positional contexts, and simple syntactic and
semantic notions. The relevance values attached to
each rule then provide, together with an appropriate
calculus of relevance values, a mechanism for
determining the overall relevance of a given document
as a function of those patterns which it contains.

3. THE RULE LANGUAGE

RUBRIC is a system that uses a rule-based
reasoning process and in this section we describe the
nature of a rule and its constituent parts. In Figure 1
we indicate the most general form of rule that can exist
within the system. Its two parts consist of the primary
inference which links the primary antecedent to the
consequent concept, and the secondary inference which
describes how the auxiliary antecedent modifies the
primary inference. The motivating idea behind the
secondary inference is that there are cases in which the
existence of additional evidence would cause us to

Primary alpha 3] Consequent
Antecedent Y
Auxiliary beta
Antecedent

Figure 1 The General RUBRIC Rule

modify our original inference, with the proviso that this
auxiiiary evidence is by itself of no direct interest. Our
new rule form models the effect of such evidence by
changing the weight attached to the primary inference.

Formally we model this as:

v [consequent | = v [primary_antecedent | * v [rule|
with
v(rule] = {a + (8- a)X v{auziliary_antecedent |}

where alpha and beta are the relevance values
associated with the primary antecedent and the
auxiliary antecedent respectively, * denotes an
appropriate detachment operator, and v || denotes the
relevance value of a variable. Notice that we have
chosen to model the effect of the auxiliary antecedent
by a simple linear interpolation function. Given our
current understanding of the impact of this rule form it
seems to be an appropriate choice. Notice too that we
allow at most one secondary antecedent. In the future
may want to allow multiple secondary antecedents and
will then have to define mechanisms to deal with
conflict resolution.

3.1. Rule Types in RUBRIC

We provide a variety of rule types in RUBRIC.
They have similar syntactic and functional forms but
their semantics are intended to capture the different
types of inferential relations that can exist between
retrieval concepts. That is, we provide a rule language
that allows the user of RUBRIC to express the required
relationships between the concepts of interest. Since
the rules carry semantic information they can be used
to help perform more efficient searches of rule trees.

245

We briefly discuss the five rule types and then
consider the elements used in constructing antecedent
expressions:

The IMPLIES rule. This is the principal rule type
implemented in RUBRIC. It is intended to link
retrieval concepts and then be invoked in a generalized
modus ponens inference. That is:

v{b|=v(a] * v[IMPLIES(a,})]

where * is the appropriate detachment operator. Note
that v[IMPLIES (a,b)] is given as part of the rule
definition (i.e., it depends on the values of alpha and
beta and is given by the expression in braces in the
definition above) whereas v [a] is derived by the system
from the application of other rules.

The EVIDENCE rule. This rule type is used to link
text references to concepts. It is intended to capture
the notion that text expressions are used as direct
“evidence” in determining the relevance of the
document to the retrieval topic. Functionally, this rule
is similar to IMPLIES but we want to distinguish
between inferences made using EVIDENCE and
IMPLIES so as to provide better control of search. We
have:

v(b]=v[“a "] * v[EVIDENCE(*a ", b)|

where * is a detachment operator, and “a " is a text
reference expression.

The SUBSET rule. This rule type allows us to express
the relationship between a sub-set of a set and the set
itself. It seems that these rules perform no modification
of relevance values, but the reason we introduce them is
to allow ourselves to take account of the length of the
reasoning chain used to establish the relevance of a
document.

The INSTANCE rule. A rule that allows us to express
the relationship between an element of a set and the set
itself. As with the SUBSET rule, there seems to be no
need to modify relevance values.

The ATTRIBUTE rule. This rule is intended to
capture the idea that concepts have components (or
attributes), and that knowledge of these components
may be used to help establish the presence of the
concept itself,

3.2. Antecedent Operators in RUBRIC

These operators the
developing the primary and
expressions. There are three main classes: (1) those
which take concepts and text as arguments (i.e., the
“logical” operators), (2) those which take only text (i.e.,
the “distance’” and “boolean’ operators), and (3) those
which perform miscellaneous functions (i.e., the “scope”
operators, the ‘‘proximity’’ operator and the ‘‘macro”
function).

are primitives used in

secondary antecedent

The Logical Operators. These operators take either
concepts or text, or both, as their arguments, which
themselves can be arbitrarily complex expressions using
other antecedent operators. We allow generalized (i.e.,
multi-valued) forms of AND, OR, NOT, as well as two
non-traditional operators BEST-OF and WEIGHT-OF
which capture the idea that (1) any one of the
arguments would be appropriate so we might as well
take the best, and (2) the more arguments that are true
the better.

The Distance Operators. These operators take a pair of
text arguments and return a value which represents the
distance between them. Currently we have
implemented three fuzzy operators, and two boolean
operators that also double as scope operators. The
NEAR_W, NEAR_S and NEAR_P operators all return
a value in the interval [0,1] which is a normalized
measure of the distance in words, sentences or
paragraphs between its arguments. The SENTENCE
and PARAGRAPH operators each take a pair of
keywords as arguments and tests to see if they occur
within the same sentence or paragraph in the document.

The Boolean Operators. These operators take only text
as their arguments and return a value from the set
{0,1}. The PRECEDES operator takes two keyword

arguments and tests whether one occurs before the

other. The WITHIN operator takes ‘two keyword
arguments and tests whether they are within some
distance (in words) of one another. The PHRASE
operator takes multiple text arguments and tests
whether the phrase defined by concatenating the
keywords occurs within the document.

The Scope Operators. In their most general forms these
operators are somewhat problematic. Conceptually
they are straightforward, but their implementation is
complicated. The SENTENCE and PARAGRAPH
operators mentioned above are degenerate examples and
are more conveniently thought of as distance operators
with discontinuous functional forms. Scope operators
take only one argument and their intended effect is to
reduce the scope of the pattern matching to the scope
unit indicated. Notice that there is an implied default
scope unit of. “‘document” if no scope operator appears.
Obviously, there are some constraints on the way these
operators can be nested. We allow scoping using two
functions. The *SENTENCE=* operator reduces the
scope of the pattern matching to a single sentence. The
argument can be any expression of antecedent operators
and concepts and text. Similarly, the *PARAGRAPH=*
operator reduces the scope of the pattern matching to a
single paragraph.

The Prozimity Operator. This operator allows the user
to take account of the “‘nearness” of concepts within a
document. This is still an experimental feature and we

are exploring the semantics of concept location together
with appropriate distance measures.

The Macro Function. This is a feature that allows the
rule writer to enter a special synonym symbol in any
place where a text string could appear. When RUBRIC
encounters such a symbol it recognizes it as a ‘“place
holder” for a set of synonymous text strings and
expands the language expression accordingly.

3.3. Aggregation Functions

These functions determine how we will combine
the inferred relevance values from multiple rules having
the same retrieval concept as their consequent. In the
current implementation we have an implied OR (i.e., a
disjunction of the evidence), although the
AGGREGATION function can be specified
independently of any choices we make for the other
operators. We also provide for alternative
AGGREGATION functions, to be implemented as we
consider the effects on nodes with multiple types of
rules.

4. THE USER ENVIRONMENT

The target machine for RUBRIC is a professional
workstation, such as a SUN, with high resolution bit-
mapped display capabilities. In order to exploit the
graphics facilities on such machines we have designed
the user interface for RUBRIC around a multi-purpose
interface system called MPS [8]. MPS utilizes object
oriented descriptions of the information to be exchanged
between the user and RUBRIC, thus allowing a clean
demarcation between the functions of RUBRIC and
those of the user interface. In addition to data about
specific objects to be displayed, MPS maintains generic
descriptions of the contents of presentation surfaces, so
employing a high-level semantic model of the objects to
be displayed. The MPS interface uses a relational
database as the medium of communication, and since
the semantic model is stored directly in this relational
database, it is available to both RUBRIC and MPS. An
important benefit of the cleanly defined interactions
between RUBRIC and MPS is that RUBRIC is freed
from the details of handling numerous user interface
devices.

The current version of the interface supports a
menu driven style of interaction on conventional
alphanumeric terminals. Selection of menu items is
done by positioning a cursor via function keys, input of
information is done through displayed forms, and
presentation of data is done by means of non-
overlapping windows. An example of a RUBRIC
information entry form is shown in Figure 2. This is
the new rule template form. The user can call it from a
menu and is then expected to enter the appropriate

New Rule Template

Concept Name

—
]

Primary Antecedent

L]
Primary Weight E:

Auzxiliory Antecedent

[]
Auxiliary Weight E:

Rule Type

D Halp
D Done

RUBRIC —/

Figure 2 New Rule Template Form

information in the outlined areas. A screen editor with
built-in syntax checking is provided. Notice the
provision of a sub-menu within this form; the user can

ask for help if necessary, and is provided with a -

mechanism for exiting when he or she is satisfied with
the new rule.

Using MPS
interaction mechanisms so that the
incremental nature of query building can be properly
supported. Our view is that the user first constructs an
initial query by drawing upon existing knowledge in the
rule-base and perhaps adding small amounts of
additional knowledge. Having done that, he or she
checks over the query for obvious flaws and erro:s, and
then applies it to a document database. Most probably,
the initial test of the new query will be on a small
database of documents with which the user is familiar.
Using the results of the test as a guide the user will
make appropriate changes to the query and repeat the
cycle. When the performance is satisfactory, the query
will be applied to the main document database(s). If
the query represents a retrieval concept that the user is
likely to want to use again, then it can be entered into
the permanent rule-base.

allows us to provide eflective

iterative and

Given that query building passes through these
stages then we can see the need for several categories of
tools to support query development. These tools are
really not tools for knowledge elicitation per se, but
rather tools that will provide an ‘“environment” in
which the user can develop queries easily, get useful
feedback about. their performance and quickly make

changes if this performance is not satisfactory. By

247

analogy, we think of this “toolbox” as a collection of
tools that either singly or in combination can help the
user perform some activity.

Let us consider the tools that we provide in a little
more detail:
Query Construction Tools. These tools are needed to
help the user develop and edit new queries. They
include mechanisms for deseribing the retrieval concept
in terms of the knowledge in RUBRIC’s existing rule-
base(s), an editor and a syntax checker.

Rule-Base Access Tools. The purpose of these tools is
to allow the user to explore the rule-base. For example,
a user who is about to develop a new query many want
to browse the rule-base to see if similar retrieval
concepts already exist or to examine sub-concepts that
might form a basis for the new extended query.

Static Check Tools. These tools might be invoked
either by the user or by the system to check that a
newly create query is ‘‘consistent.” For example, such
tools check that there are no circular paths in the
reasoning, that the query can indeed return a relevance
value significantly different from zero, etc.

Performance Analysis Tools. The user needs to be able
to examine the results of the retrieval request in a
variety of ways. A minimum requirement is for the
results to be displayed in graphical as well tabular form.
The user will also certainly want to be able to compute
a variety of performance measures based on our
fuzzified notions of precision and recall. He or she will
also need some mechanism for storing performance
results so that subsequent modifications to the query
can be compared.

Diegnosis Tools. We expect that a large part of the
knowledge elicitation process will be concerned with
trying to understand why the query performed the way
it did. To support this type of activity we provide a
class of tools that allow the user to do things such as
single-step the query, explore the sensitivity of the
query to changes in its structure, generate traces of rule
invocation, create artificial documents for checking
sub-parts of the query and observe bottom-up
propagation of user induced triggering of rules.

Help. Finally, we provide a generalized help facility
within RUBRIC. At any stage in the process the user
should be able to ask for on-line help that would
explain the general features of the RUBRIC system, the
purpose of a tool, or the nature of the response required
at a decision point,.

5. SYSTEM IMPLEMENTATION

RUBRIC is currently implemented in a Berkeley
UNIX'/VAX 11-780 environment. The implementation
is divided into two major modules: the preprocessor
module and the system module. The preprocessor
module is written in the C Language and takes as input
the free format text of a collection of documents and
builds the RUBRIC-readable database that
collection of documents. The primary component of
this database is an inverted structure on the words
{actually, word stems) occurring in the collection of
documents. Each word has one entry in the structure
and 18 accompanied by various contextual information
(such as in which document(s) and in which position(s)
it occurs). The system module, which includes the user
interface, the toolbox and the retrieval sub-systems, is
currently implemented in both Franz LISP and C. In
general, the lower level word matching/database access
functions are implemented in C, while the higher level
query expansion/tree traversal are
implemented in Franz LISP.

for

functions

8. RETRIEVAL PERFORMANCE

We have performed a variety of experiments with
RUBRIC to assess its effectiveness. These include tests

of the impact of using different uncertainty caleuli and .

restrictions on the use of the rule language [9], as well
as timing and sizing tests. However, to illustrate our
methods we will describe some experiments that were
designed to assess the improvements that can be
achieved Boolean keyword

over a conventional

approach.

As an experimental database for testing the
retrieval properties of RUBRIC, we have used a
selection of thirty documents taken from the Reuters
News Service. Our basic experimental procedure is to
rate the documents in the database by inspection (i.e.,
define the relevance relation row-tuple R*(¢)), construct
a rule-based representation of a typical query, apply the
query to the database, and then compare the rating,
R(c), produced by RUBRIC with the a priori rating
R*(¢).

Given our fuzzy set interpretation of the IR
problem, there are a large number of possible measures
of performance that we could employ. For this
presentation we concentrate on just two. Both of these
are based on the idea of using a selection threshold to
partition the ordered documents so that those above it
are ‘‘relevant” (either fully or marginally) and those
below it are “non-relevant.” In the first we lower the
threshold until we include all those deemed a priors

relevant, and then count the number of unwanted

' UNIX is a Trademark of AT&T Laboratories

248

documents that are also selected (denoted Nz). In the
second we raise the threshold until we exclude all
irrelevant documents, and then count the number of
relevant ones that are not selected (denoted N,/). The
first definition therefore gives us an insight into the
system's ability to reject unwanted documents
(precision), whereas the second gives us insight into the
system’s ability to select relevant documents (recall).

We selected as a retrieval concept *‘Violent Acts of
Terrorism,” and then constructed an appropriate rule-
based query. This is summarized in tree form in Figure
3, where we make extensive use of the extendad rule
form described above. An auxiliary_antecedent is
shown linked to a primary inference by a horizontal
directed arc. Application of this query to the document
database with calculus L(3,2) (i.e., one that models
conjunction/disjunction as min/max and detachment as
product), results in the document profile shown in
Figure 4. (Notice that for presentation purposes the

y

relevance scores have been re-normalized and the
documents ordered such that those determined to be a
priori relevant are to the left in Figure 4.) This is
excellent performance of course; the relevant and non-
relevant documents being correctly partioned into two
disjoint sets. (e.g., setting the selection threshold at 0.3
would make Ng and Ny, simultaneously zero.)

To compare RUBRIC against a more conventional
approach, we constructed two Boolean queries by using
the rule-based paradigm and setting all rule weights to
1.0. (Thus showing, incidentally, that our method
subsumes Boolean retrieval as a special case.) One of
these queries is shown in Figure 5 as an AND/OR tree
of sub-concepts. The only difference between the two
Boolean queries is that in the first we insist on the
conjunction of ACTOR and TERRORIST-EVENT (as
shown), whereas in the second we require the
disjunction of these concepts. Running each of these
queries against the thirty document Reuters database
produces a non-fuzzy subset of documents.
Performance is then assessed in the conventional way
with recall computed as the ratio of the number of
relevant documents retrieved to the total number of
relevant documents in the database, and precision
computed as the ratio of the number of relevant
documents retrieved to the total number retrieved. To
get an equivalent RUBRIC score we construct a non-
fuzzy set from R(e¢) by setting the relevance threshold
and then marking as * retrieved’” all those documents
with higher relevance values, and ‘“‘not-retrieved” all
those with lower values. The conjunctive form of the
Boolean query misses five relevant documents and
selects one non-relevant document, giving:

Precision = .89 Recall = .62

terrorism

+0 reason
.8

terrorist
event

P l¢.’°_____ assassination

action

+0 actor
]

violent
event

g }_'_0____ violent
B offect

violent
act

killing bombing kidnapping encounter takeover

AN /N

shooting slaying ransom
device explosion 3
kidnap
event

regson assassination actor
5

revolution killing politician specific general

N actor actor
opposition

government

Figure 3 Example RUBRIC Query Tree

Story Rating
0

-3

Relevant Stories Non-Relevant Stories

Figure 4 RUBRIC Retrieval Profile

249

terrorist_event

T

violent_event assassination

I A

slaying bombing takeover slaying politician
device explosion

terrorism

octor

T~

specific_actor general_actor

AN

"Basque’ "PLO" "IRA" "cavolutionary" "sniper' "guerifla”

Figure 5 Comparative Boolean Query Tree

The disjunctive form selects all the relevant documents, -

but at the cost of also selecting seven of the non-
relevant ones, giving:

Precision = .65 Recdll = 1.0

However, if we select the relevance threshold to be 0.3,
then the RUBRIC retrieval gives:

Precision = 1.0 Recall = 1.0

While these results represent only a partial test,
believe that they indicate that the RUBRIC
approach allows the user to be more flexible in the
specification of his or her query, thereby increasing both
precision and recall. A traditional Boolean query tends

we

either to over-constrain or under-constrain the search
procedure, giving poor recall or poor precision. We feel
that, given equal amounts of eflort, RUBRIC allows
tetier models of human retrieval judgment than can be
achieved with traditional Boolean mechanisms.

7. SUMMARY

In this paper we have attempted to give an
overview description of RUBRIC and the ideas on which
it is based. Although it is still a research prototype we
believe it shows considerable promise as an advanced IR
system.

We believe that the major

RUBRIC are that it encourages proper structuring of
queries leading to more effective and better understood

contributions of

250

retrievals. Given equal amounts of effort, RUBRIC can
give improved precision and recall when compared to
conventional systems. Further, the provision of an
advanced interface and toolbox gives the user an
environment in which the IR task can be performed
quickly and effectively. Finally, because of its inherent
modularity, RUBRIC is an excellent vehicle for
exploring a wide range of related research issues such as
the problem of the representation and manipulation of
uncertainty, the development of user models based on
training and performance experiments, the
adequacy of various presentation and input formats.

and

8. ACKNOWLEDGEMENTS

As with all systems developed in a co-operative
environment, RUBRIC has benefitted from extended
discussions with other members of the Al&DS technical
staf. We would like to acknowledge
contributions from Sonia Schwartzberg, Dan Shapiro,
Brian McCune and Gerry Wilson.

recent

9. REFERENCES

1

1] Lebowitz, M. (1983) Intelligent Information
Systems. Proc. 6th Int. ACM-SIGIR Conf. on R&D
in Information Retrieval. Bethesda, MD.

[2] Salton, G. (1971) The SMART Retrieval System -
Ezperiments in Automatic Document Processing.
Prentice-Hall Inc., Englewood Cliffs, NJ.

]
(5]

(6]

(7]

[9]

Zadeh, L.A. (1965) Fuzzy Sets. Information and
Control, 8:338-353.

Rescher, N. (1969) Many Valued Logic, McGraw-
Hill, New York.

Dubois, H., Prade, H. (1982) A Class of Fuzzy
Measures Based on Triangular Norms. Int. J.
General Systems, 8:43-61.

Lukasiewicz, J. (1930) Many-valued Systems of
Propositional Logic. In S. McCall, Polish Logic,
O.U.P, 1957.

Zadeh L.A. (1973) Outline of a New Approach to
the Analysis of Complex Systems and Decision
Processes. I[EEE Trans. Systems, Man and
Cybernetics, SMC-3:28-44.

Wilson, G.A., Domeshek, E.A., Drascher, E.L.,
Dean, J.S. (1983) The Multipurpose Presentation
System. Proc. 9th Int. Conf. on Very Large Data
Bases. Florence, Italy.

Tong, R.M., Shapiro, D.G. (1985) Experimental
Investigations of Uncertainty in a Rule-Based
System for Information Retrieval. Int. J. Man-
Machine Studies. (to appear).

251

