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ABSTRACT
Traditionally, information retrieval systems aim to maximize the
number of relevant documents returned to a user within some win-
dow of the top. For that goal, the probability ranking principle,
which ranks documents in decreasing order of probability of rel-
evance, is provably optimal. However, there are many scenarios
in which that ranking does not optimize for the user’s information
need. One example is when the user would be satisfied with some
limited number of relevant documents, rather than needing all rel-
evant documents. We show that in such a scenario, an attempt to
return many relevant documents can actually reduce the chances of
finding any relevant documents.

We consider a number of information retrieval metrics from the
literature, including the rank of the first relevant result, the %no
metric that penalizes a system only for retrieving no relevant re-
sults near the top, and the diversity of retrieved results when queries
have multiple interpretations. We observe that given a probabilistic
model of relevance, it is appropriate to rank so as to directly op-
timize these metrics in expectation. While doing so may be com-
putationally intractable, we show that a simple greedy optimiza-
tion algorithm that approximately optimizes the given objectives
produces rankings for TREC queries that outperform the standard
approach based on the probability ranking principle.

Categories and Subject Descriptors: H.3.3 [Information Storage
and Retrieval]: Information Search and Retrieval—Retrieval Mod-
els

General Terms: Algorithms

Keywords: Information Retrieval, Formal Models, Machine Learn-
ing, Subtopic Retrieval

1. INTRODUCTION
It is a common rule of thumb in that the Probability Ranking

Principle (PRP) is “optimal.” Under reasonable assumptions, one
can prove that ranking documents in descending order by their
probability of relevance yields the maximum expected number of
relevant documents, and thus maximizes the expected values of the
well known precision and recall metrics [14].
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Simply returning as many relevant documents as possible, how-
ever, is not the only possible goal. For example, since a single
relevant result often provides “the answer” to the user’s query, we
might be concerned only with whether our system returns any rel-
evant results near the top. This is plausible for question answer-
ing, or for finding a homepage. It also captures a notion of “bare
minimum success” that can be meaningful for hard queries. The
TREC robust track, focusing on such hard queries, defines and uses
the %no metric—the fraction of test queries on which a system re-
turned no relevant results in the top ten [20].

As we shall argue below, the probability ranking principle is not
optimal in such a case. For if the system’s model of relevance is
wrong, it will be wrong over and over again, returning an entire
list of irrelevant documents—one might say that the expected num-
ber of relevant documents is large, but the variance in the outcome
is also high. Similarly, it is common wisdom that some queries
such as “Trojan horse” can express multiple, distinct information
needs—about a type of malware, a Trojan war artifact, or other mi-
nor usages. A PRP-based approach may choose one “most likely”
interpretation of the query, and provide results that satisfy only that
interpretation, leaving users with rarer interpretations unsatisfied.

Given that we have stated a clear metric (success in finding at
least one relevant document) we argue that under a probabilistic
model of document relevance, there is a particularly natural ap-
proach to designing a retrieval algorithm for it—namely, to rank
documents so as to optimize the expected value of the metric. In
particular, we should rank so as to maximize the probability of find-
ing a relevant document among the top n. While exactly optimizing
this quantity is NP-hard, we derive a greedy heuristic for approx-
imately optimizing it. Intriguingly, our greedy algorithm can be
seen as a kind of blind negative relevance feedback, in which we
fill each position in the ranking by assuming that all previous doc-
uments in the ranking are not relevant.

We demonstrate that our approach is effective in practice. We
evaluate the performance of our greedy algorithm on queries from
various TREC corpora. We show that it retrieves at least one rel-
evant document more often than the traditional ranking (with sta-
tistical significance). We give special attention to the robust track,
where one of the goals is to minimize the chance of returning no
relevant results, and show that our algorithm does well.

In addition to the robust track’s %no metric, we consider a num-
ber of other standard metrics from the literature. For example, we
might be interested in how far down the ranked result list we must
go to find the first relevant document. The search length (SL) [4]
and reciprocal rank (RR) [15] metrics measure this quantity in dif-
ferent ways. On the other hand, if we believe that the results of
a query may have different “subtopics” (facets of the query) or
that multiple queriers might have different relevance judgments, we
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might want to ensure that a result set offers good “coverage” of the
different possibilities. The instance recall metric [9, 21] measures
the number of different subtopics or queriers who are satisfied by a
given result set.

One can apply our approach, of ranking to optimize the expected
value of the metric, to all of these metrics. For each metric the ex-
act optimization problem is different, and in each case it appears
intractable. In a fortunate coincidence, however, our greedy al-
gorithm for the %no metric is also a natural greedy algorithm for
all of the metrics listed above. We report results for all of these
metrics over TREC corpora, and show that our greedy algorithm
outperforms the PRP baseline on them. Conversely, our analysis
leads us to the possibly surprising conclusion that PRP ranking is
not optimal for the heavily used mean average precision metric.

We also explore the goal of perfect precision, where the objec-
tive is to not retrieve any irrelevant documents. We show how blind
positive relevance feedback arises naturally as a greedy heuristic for
achieving this goal. To tie together the disparate goals of nonzero
precision (at least one relevant document) and perfect precision, we
introduce k-call, a class of metrics that ranges smoothly between
the two extremes. We argue that it captures a desire to trade “qual-
ity” for “diversity,” and discuss the application of our approach to
these metrics.

The broad applicability of using probabilistic models to optimize
for specific metrics suggests a general principle, which we call the
Expected Metric Principle (EMP). The EMP states that, in a proba-
bilistic context, one should directly optimize for the expected value
of the metric of interest. The PRP is a special case of the EMP for
the precision and recall metrics.

One possible criticism of the EMP is that it “teaches to the test”—
it encourages the algorithm to do well only on the evaluation crite-
rion. This has led to much gaming of the SPECFP benchmarks for
numerical computation, for example, as companies incorporated
special purpose code for solving only the SPECFP instances. But
this gaming is a consequence of the evaluation criterion failing to
accurately measure what is wanted out of the system. We argue that
the metrics that we study are truly the metrics that matter in certain
cases, so that algorithms optimized for them are desirable.

1.1 Retrieving for Diversity
Intriguingly, while explicitly aiming only to find one relevant

document, we demonstrate the unplanned effect of increasing the
diversity of documents at the top. This highlights one way in which
seeking one relevant document is different from seeking many. If
a query has multiple interpretations (as was the case for “Trojan
horse” above), or if there are multiple subtopics, it may be hard
to decide which is the proper one. PRP ranking puts all its eggs
in one basket—it identifies the most likely interpretation, and finds
many results for that one. But an algorithm that needs only one rel-
evant document can do better by retrieving one document for each
case, thus satisfying the goal whichever interpretation or subtopic
is desired.

Recent work [3, 21] has developed heuristics for increasing di-
versity for this precise purpose, but our approach appears to be the
first in which diversity arises automatically as a consequence of
the objective function rather than being manually optimized as a
proxy for the true objective of interest. As a benefit, there are no
new “parameter knobs,” beyond those already used in probabilis-
tic document models, that must be tweaked in order to tune our
algorithms.

We give anecdotal evidence that our approach promotes diver-
sity by looking at ambiguous queries on the Google search engine.
We observe that while the probability ranking principle tends to re-

turn documents only relevant to the “majority vote” meaning of the
query, our approach satisfies that meaning but simultaneously re-
turns results relevant to other, rarer meanings of the query. We fol-
low with more quantitative evidence based on TREC results with
multiple raters, where our approach satisfies more raters than PRP,
and TREC results with subtopic annotations, where our approach
retrieves more subtopics than PRP.

2. RELATED WORK
Our discussion of related work splits into three categories: defi-

nitions of and motivations for retrieval metrics, algorithms for op-
timizing those metrics, and approaches to diversity in result sets.

2.1 Beyond Precision and Recall
The main metric we examine is essentially the %no metric, which

is studied by Voorhees [19]. She finds that the metric was less sta-
ble than traditional measures. However, this instability does not
affect our ability to probabilistically model and optimize for it.

Cooper [4], who introduces the search length metric, argues that
trying to retrieve as many documents as possible is not necessar-
ily the appropriate objective for meeting user information need.
Cooper explicitly divides an information request into a “relevance
description” (i.e., a query) and a quantification that specifies the de-
sired number of relevant results. He defines a class of search length
metrics, which measure the number of irrelevant documents a user
would have to examine before finding a “sufficient” number of rel-
evant documents. Our paper focuses on the case of “one document
sufficiency,” though we also touch on the “k document sufficiency”
case when we define k-call later in the paper.

Shah and Croft [15] explore the problem of high accuracy re-
trieval, where the objective is to have high precision in the top doc-
ument ranks. They argue that mean reciprocal rank is a useful met-
ric for this scenario. As previously mentioned, we also demonstrate
the applicability of our heuristics to MRR.

2.2 Algorithms
Our approach fits within a general risk minimization framework

propounded by Zhai and Lafferty [22]. They observed that one
could define an arbitrary numeric loss function over possible re-
turned documents rankings, which measures how unhappy the user
is with that set. The loss function generally depends on unavailable
knowledge about the relevance of particular documents. But given
a probabilistic model, one can compute an expected value for the
loss function, or expected loss, and return a result that optimizes
the expected loss. Much of our paper deals with the loss function
that is (say) -1 when the top ten results contain a relevant document
(indicating a positive satisfaction) and 0 when it does not.

Like us, Gao et al. [6] follow the approach of letting the met-
ric directly drive the retrieval algorithm. However, instead of us-
ing a document model from which the optimal algorithm can be
determined through analysis, they train a system to weight doc-
ument features so as to optimize the metric (average precision in
their case) and show that such training leads to an algorithm that
achieves good performance on the metric with new queries.

Bookstein [1] proposes a sequential learning retrieval system that
bears some similarity to ours. He argues that a retrieval system
should sequentially select documents according to the probability
of relevance conditioned on the selection and relevance of previ-
ous documents (essentially relevance feedback). However, his pro-
cedure requires explicit user feedback after each result retrieved,
whereas our system proposes an objective function and then uses a
sequential document selection algorithm to heuristically optimize
that objective without further user input.
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Our greedy algorithm for achieving perfect precision seems re-
lated to pseudo-relevance feedback, an approach commonly used
in the literature to improve overall retrieval performance on stan-
dard metrics [2, 5]. Our metric for retrieving at least one relevant
document, on the other hand, produces an algorithm that appears to
be doing negative pseudo-relevance feedback. In either case, rather
than feeding back all of the top documents at once, we progres-
sively feed back more and more top relevant documents in selecting
latter-ranked documents.

2.3 Diversity
In their subtopic retrieval work, Zhai et al. [21] posit, as we do,

that there may be more than one meaningful interpretation of a
query. They assume that a query may have different subtopic in-
terpretations, and reorder the results so that the top includes some
results from each subtopic. Their system involves separate consid-
eration of novelty and redundancy in a result set, which are then
combined via a cost function. Our approach, in contrast, aims di-
rectly at the goal of maximizing the chances that the user will get
an answer to “their” interpretation of the query. Aiming directly
arguably is beneficial in that it reduces the number of system ele-
ments, such as novelty and redundancy, whose interactions we have
to design and tweak. Conversely, it is possible that by modeling
novelty and redundancy richly, the Zhai et al. model can outper-
form our simpler one.

The work of Zhai et al. is in turn based on Carbonell and Gold-
stein [3]’s maximum marginal relevance (MMR) ranking function.
They argue for the value of diversity or “relevant novelty” in the
results of a query, and propose MMR as an objective that intro-
duces such diversity in a ranked result set. Our greedy heuristic
for optimizing the “one relevant document” objective simplifies to
a computation that bears some relation to the MMR computation.
However, MMR is advanced as a heuristic algorithm for reducing
redundancy and achieving the hard-to-define notion of diversity,
which in turn is believed to be related to the desired objective. Our
ranking algorithm arises naturally from the application of a simple
greedy heuristic to the optimization of a clear, natural, formally de-
fined objective function. In addition, while the iterative greedy ap-
proach is implicit in the definition of MMR, our greedy approach is
simply one heuristic applied to optimizing our well-defined objec-
tive function; we expect that better optimization algorithms such as
local search would yield improved values for our objective, which
should translate into improved retrieval performance.

Our goal of retrieving one relevant document, and its inherent
diversifying tendency, bears superficial similarity to clustering, in
the sense that clustering is also used as an approach to quickly
cover a diverse range of query interpretations [10]. Our technique
sidesteps the need for clustering interface machinery, utilizing the
standard ranked list of documents instead. Furthermore, we aim to
directly optimize the probability that a user finds a relevant docu-
ment, rather than going through the intermediate notion of separate
document clusters. Again, this avoids the need to define and tweak
new algorithmic parameters.

3. EVALUATION METRICS
We consider several metrics in this paper. Search length [4] (cf.

section 2) is the rank of the first relevant document in a result list
minus one, and reciprocal rank [15] is one over the rank of the
first relevant result. With multiple queries we can take the mean of
both quantities, yielding the mean search length (MSL) and mean
reciprocal rank (MRR) metrics.

Introduced for the TREC robust track [20], the %no metric mea-
sures the percentage of queries for which no relevant documents

are retrieved. Put another way, it assigns value to any result set
containing at least one relevant document.

In line with Cooper’s [4] notion of quantification, we generalize
the %no metric with a new class of binary metrics under the name
k-call at n. Given a ranked list, k-call at n is one if at least k
of the top n documents returned by the retrieval system for the
given query are deemed relevant. Otherwise, k-call at rank n is
zero. In particular, 1-call is one if a relevant document is found
and zero otherwise. Averaging over multiple queries yields mean
1-call, which is just one minus the %no metric used in the TREC
robust track. On the other hand, n-call at n is a measure of perfect
precision: returning only relevant documents. Varying k between
n and 1 offers a way to express “risk tolerance”: do we wish to aim
for many relevant documents and take the chance of finding none,
or will we settle for fewer documents if it improves our chances of
finding them?

When we explicitly have a notion of different subtopics of a
query, and of different documents covering different subtopics, we
can define instance recall [9] at rank n (also called S-recall [21])
as the number of unique subtopics covered by the first n results,
divided by the total number of subtopics.

4. BAYESIAN RETRIEVAL
Our work is rooted in standard Bayesian information retrieval

techniques [11, 16]. In this approach, we assume that there are two
distinct probability distributions that generate the relevant and irrel-
evant documents respectively. Let d be a document, and r a binary
variable indicating the relevance of that document. The probabil-
ity ranking principle suggests that documents in a corpus should be
ranked by Pr[r | d]—that is, the likelihood that a document was
generated by the relevant distribution. An application of Bayes’
Rule followed by a monotonic transformation gives us a ranking
value for documents:

Pr[d | r]

Pr[d | ¬r]
. (1)

Here, Pr[d | r] and Pr[d | ¬r] represent respectively the prob-
abilities that the relevant and irrelevant distributions assign to the
document.

We thus need to compute Pr[d | r] and Pr[d | ¬r]. In our
paper we emphasize the objective function, rather than the mod-
eling issues associated with Bayesian retrieval. Therefore we use
the familiar and simplistic Naı̈ve Bayes framework, with multino-
mial models as the family of distributions. A document is thus a
set of independent draws from a word distribution over the corpus.
A multinomial distribution is described by parameters θi, one for
each term (word) i in the corpus. A document’s probability is the
product of each of its term’s corresponding θi, normalized so the
distribution sums to one. In our experiments, we used the heuristic
of applying a log-transformation to the term frequencies (that is,
substituting log(1+ ti) for ti), which has been shown in the litera-
ture to improve Naı̈ve Bayes performance for text applications [13].

It remains to determine the parameters θi for each distribution.
To model the fact that we do not know exactly what terms appear in
relevant and irrelevant distributions, we specify a prior probability
distribution over the parameters (a distribution over possible docu-
ment distributions). The prior reflects our initial beliefs (e.g. that a
given θi parameter is likely to be small). We proceed to revise our
beliefs about those parameters by incorporating observed data. We
use a standard Dirichlet prior, centered on the background word
distribution over the entire corpus. We then take the user query as
“training data”—a sample from the relevant document distribution
that gives evidence about the parameters of that distribution. This
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evidence leads us to a new posterior estimate of the probability of
parameters of the relevant distribution (in particular, one in which
the query term’s parameters are likely to be large). Given these two
distributions, we are able to measure the probabilities that certain
sets of documents are relevant or irrelevant. For our baseline PRP
model, this is all the training we do. As we will show later, our new
EMP-based algorithms will feed back selected corpus documents
into the document distributions as additional “training data.”

Our use of priors creates a “linkage” between documents. Al-
though each document is assumed to be generated independently
from its (relevant or irrelevant) distribution, positing one document
to be relevant leads us to believe that the parameters associated
with that document’s words are stronger in the relevant distribu-
tion, which in turn leads us to believe that similar documents are
more likely to be relevant.

5. OBJECTIVE FUNCTION
In many systems, the evaluation metric (e.g., mean reciprocal

rank) is different from the objective function used to rank docu-
ments (e.g., probability of relevance). The EMP posits that the right
objective function is the (expected value of the) evaluation metric
itself. Consider optimizing for the k-call at n metric. Since k-call
is always 0 or 1, this is equivalent to maximizing the probability
that we find k relevant documents among the first n.

Let di denote the ith document of the ranked result set, and ri

denote a binary variable indicating that the di is relevant. Result
numbering is 0-based, so the first result is d0.

The k = 1 version of our objective function is the probability
that at least one of the first n relevance variables be true, that is:

Pr [r0 ∪ r1 ∪ · · · ∪ rn−1 | d0, d1, . . . dn−1] . (2)

In general, the objective function for arbitrary k is the probability
that at least k documents are relevant, that is:

Pr [at least k of r0, . . . , rn−1 | d0, d1, . . . dn−1] . (3)

Contrast these objectives with the PRP ranking by Pr[r | d]—by
defining a objective in line with the metric, we are explicitly aiming
for results that the metric rewards.

Note that our objectives are indifferent to the ordering of docu-
ments within the top n. This is to be expected—because our metric
is insensitive to where the relevant results are within the top n, just
that there are enough of them, our objective function will be insen-
sitive to the same conditions.

The next two sections discuss the optimization and calculation
of the objective function in depth.

6. OPTIMIZATION METHODS
Notably, while the PRP objective could be optimized by select-

ing each document independently, our new objectives (equations 2
and 3) seem to be more complex, requiring us to consider inter-
actions between multiple documents in the result set. It no longer
seems possible to judge each document individually. So more com-
plex optimization algorithms are needed.

One way to perfectly optimize the k-call at rank n objective func-
tion for a corpus of m documents would be to evaluate, for each
possible returned sets of n documents, the probability that that set
has at least k relevant documents. For any specific set of n doc-
uments this evaluation is tractable, but the tremendous number of�

m
n

�
distinct subsets make this approach impractical for most rea-

sonable values of m and n.
In general, finding the optimum subset is NP-hard. Space lim-

itations preclude a full proof, but one can show that by assigning

specific weights to the distributions, one can reduce the NP-hard
clique problem to optimizing the expected k-call. Since solving
our problem would let us solve an NP-hard problem, our problem
is NP-hard as well, implying that exactly optimizing our objective
is intractable. Therefore we consider a greedy approach that re-
duces the search space of result sets.

A greedy algorithm is an algorithm that always selects a locally
optimal intermediary to a solution. They tend to be simple ap-
proaches that work well in a variety of contexts. A greedy algo-
rithm for our problem is to successively select each result of the
result set. Consider finding the optimal result set for k-call at rank
n. We select the first result by applying the conventional probabil-
ity ranking principle. Each result thereafter is selected in sequence.
For the ith result, we hold results 1 through i − 1 to their already
selected value, and consider all remaining corpus documents as a
possibility for document i. We calculate an expected k-call score
for the result set including each such document, and pick the high-
est scoring document as the ith result. If i < k, we maximize the
i-call score instead as a stepping stone towards maximizing k-call.

Unlike PRP ranking, optimizing our objective function exactly
may require knowing both k and n. That is, the set of 10 docu-
ments optimizing the odds of getting a relevant document in the
top 10 need not contain the 5 documents optimizing the odds of
getting a relevant document in the top 5. Thus, it might not be pos-
sibly to simultaneously optimize these two quantities. Our greedy
heuristic, on the other hand, is not affected by the value of n that
we choose; thus, while it may not be returning the best document
subset for any particular n, it may arguably be returning a ranking
that is reasonably good for all n.

If our goal were to maximize precision and recall, then the nat-
ural greedy approach would be to select each successive document
to maximize its probability of relevance (independent of the previ-
ously selected documents). This is exactly the PRP ranking mech-
anism. In this sense, the greedy algorithm we have proposed is a
generalization of the greedy algorithm that optimizes for PRP.

7. APPLYING THE GREEDY APPROACH
In this section we examine how we would use the greedy algo-

rithm described previously to actually optimize our objective func-
tion. We focus on the k = 1 and k = n cases, where the greedy
algorithm has a particularly simple instantiation. We also touch on
the general case for intermediate values of k.

7.1 k = 1

Consider the case where k = 1. The first result is obtained in the
conventional fashion—by choosing the document d0 maximizing
Pr[r0 | d0]. Having chosen the first document d0, we want to select
the second document d1 so as to maximize Pr[r0 ∪ r1 | d0, d1].
This is merely an instantiation of equation 2 with n = 2. We can
expand this expression by partitioning the event of interest r0 ∪ r1

into the disjoint events r0 and r1 ∩ ¬r0:

Pr[r0 ∪ r1 | d0, d1]

= Pr[r0 | d0, d1] + Pr[r1 ∩ ¬r0 | d0, d1]

= Pr[r0 | d0, d1] + Pr[r1 | d0, d1,¬r0] · Pr[¬r0 | d0, d1]

= Pr[r0 | d0] + Pr[r1 | d0, d1,¬r0] · Pr[¬r0 | d0]

where the simplification in the last line follows because r0 is in-
dependent of d1. We wish to choose the document d1 maximizing
this quantity. Only one of the three probabilities in the equation
depends on d1, however, so it is sufficient to maximize that term:

Pr[r1 | ¬r0, d0, d1]
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A similar analysis shows that we can select the third result by max-
imizing Pr[r2 | ¬r0,¬r1, d0, d1, d2]. In general, we can select
the optimal ith document in the greedy approach by choosing the
document di that maximizes:

Pr[ri | ¬r0, . . . ,¬ri−1, d0, . . . , di]

This expression tells us that for each new result, we should assume
that all the past results were irrelevant, and find the document of
greatest relevance conditioned on that assumption. This makes in-
tuitive sense—if a previous document were able to satisfy the user
query (i.e., was relevant), then we would not care about what doc-
uments were displayed subsequently. Thus we try to select the best
new document assuming that all previous documents were irrele-
vant. This formula also fits nicely with the Bayesian information
retrieval model: the assumption that the previous documents are ir-
relevant is incorporated in a straightforward fashion as an update
to the probability distribution associated with the irrelevant docu-
ments; the relevance probabilities of new documents are then com-
puted using that updated irrelevant document distribution.

7.2 k = n

We can perform a similar greedy-algorithm derivation for the
case where k = n. In that case, we find that we should select the
ith document according to:

Pr[ri | r0, . . . , ri−1, d0, . . . , di]

Again this is intuitive—if we want to maximize the odds of per-
fect precision then once we select even one irrelevant document we
have failed; thus, we must forge ahead on the assumption that all
documents ranked so far are relevant. As in the k = 1 case, this
leads to a simple update rule for the prior probability distributions.

Because these simplified forms for k = 1 and k = n do not
involve addition of probabilities, they have the advantage that we
can use the ranking value form of Pr[r | d] (equation 1) rather than
the full Bayesian expansion, just as in PRP.

7.3 1 < k < n

We briefly turn to the more general problem of trying to get an
arbitrary k relevant documents among the top n. In this case, our
objective be to maximize the probability of having at least k rele-
vant documents in the top n. Using the same technique of breaking
the objectives into chained conditional probabilities, we can derive
a ranking value formulation for each step of the greedy algorithm.
For brevity we omit the actual derivation here, and focus the re-
mainder of the paper on the k = 1 and k = n cases.

8. OPTIMIZING FOR OTHER METRICS
We have remarked on two other metrics aimed at “the first rel-

evant document”—search length and reciprocal rank. Using our
EMP approach, our goal should be to optimize the expected values
of these quantities: minimize expected search length and maximize
expected reciprocal rank (note that E[1/X] �= 1/E[X], so these
two objective may optimize differently).

Let us consider the expected (over result sets) search length1 and
develop a greedy algorithm for it. Suppose that the first i docu-
ments in the ranking d0, . . . , di−1 have been chosen and we wish
to greedily select di. For those events in which there is a relevant
document already in the ranking, our choice does not affect the
expectation. So, we should choose greedily conditioned on there

1Our terminology overloads Cooper’s [4] definition of expected
search length, which addressed ties in the ranking by randomly or-
dering tied results.

being no previous document relevant. Subject to this condition, the
natural document to choose is the one that has the largest prob-
ability of relevance subject to this condition, since this greedily
maximizes our chance of “terminating the search” at document di.

In other words, we should choose the document di that has max-
imum probability of relevance subject to no previous document in
the list being relevant—exactly the same heuristic as we used for
optimizing 1-call.

A similar argument shows that our greedy algorithm is also a
natural heuristic for optimizing expected reciprocal rank. These
observations mean that we can experiment with three metrics for
the price of one. Our tables report all three metrics, and demon-
strate that our greedy algorithm improves on PRP for all of them.

Now consider the instance recall metric, which measures the
number of distinct subtopics retrieved. If a query has t subtopics,
then instance recall can be written as (S1+S2+ · · ·+St)/t, where
Sj is an indicator variable that is 1 if a document from the jth in-
stance (subtopic) is included in the result set. Our approach calls
for maximizing the expectation of this quantity, which (due to lin-
earity of expectation) is proportional to

P
E[Sj ]. Our algorithm

greedily optimizes for each Sj separately (since Sj is simply the
1-call metric for the jth subtopic) and thus for the sum as well.

It is important to note that although we have described a heuristic
that is effective for four metrics, they are in fact distinct metrics,
and it is conceivable that more sophisticated algorithms could lead
to divergent results that optimize one at the expense of the others.
On the other hand, it is also conceivable that since these metrics are
closely related, there is a ranking that (in expectation) optimizes
several or all of them simultaneously.

We briefly consider one other metric, mean average precision.
This is one of the most commonly used metrics for evaluating re-
trieval systems. As with the standard precision metric, it is nat-
ural to assume that the PRP holds as the (easy) way to optimize
it. Note, however, that when there is only one relevant document,
average precision simplifies to RR. Our discussion above, which
argues that one should “hedge” one’s retrieval in order to optimize
RR, thus indicates that PRP does not yield the optimum ranking for
average precision.

9. GOOGLE EXAMPLES
In the introduction, we argued that optimizing 1-call would au-

tomatically lead a system to select a more “diverse” result set. To
explore this, we first present results from running our procedures
over the top 1000 results returned by Google for two canonically
ambiguous queries, “Trojan horse” and “virus.” We used the titles,
summaries, and snippets of Google’s results to form a corpus of
1000 documents for each query.

The titles of the top 10 Google results, and the PRP and greedy
rerankings, are shown in figure 1. (The titles have been shortened
for fit.) Our greedy algorithm was set to optimize for 1-call—that
is, the probability of returning one relevant document. Different
table cell shadings indicate different broad topic interpretation of a
result (e.g., white for computer Trojan horses and various grays for
other interpretations). In the “Trojan horse” example, the greedy al-
gorithm returns a significantly more diverse set of results in the top
10 (spanning five distinct interpretations) than PRP and the original
Google results, which return respectively three and two interpreta-
tions. The diversity for “virus” is also notable; greedy returns the
most medical (non-computing) virus results in the top ten, beating
PRP. Interestingly, Google does not return any medical virus infor-
mation in its top ten, so a user looking for that interpretation would
be disappointed by Google.
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Figure 1: Example results from Google; different shadings indicate different interpretations
Query “Trojan horse” (T.H.) Query “virus”

Google PRP Greedy for 1-call Google PRP Greedy for 1-call
T.H. Attacks T.H. Removal T.H. Removal Symantec McAfee Virus Defs. McAfee Virus Defs.

T.H. - Webopedia T.H. Removal T.H. Detector Symantec Virus Hoaxes Anti Virus Directory Anti Virus Directory
Symantec - T.H. T.H. Detector T.H. Inn Symantec Security Response Virus Threat Center Latest virus descriptions

Symantec Glossary Symantec - T.H. T.H. Info Norton AntiVirus Virus Threat Center Virus Threat Center
T.H. - Wikipedia Symantec - T.H. Achilles in T.H. Trend Micro Latest virus descriptions West Nile Virus

Trojan War history Achilles in T.H. T.H. - Wikimedia McAfee Vaccinia virus Vaccinia virus
T.H. Myth T.H. Inn Gay Activism as T.H. Virus Bulletin Symantec - FatCat Hoax Summary virus table

What is T.H.? T.H. Info T.H. Removal AVG Anti Virus Symantec - Londhouse Hoax alt.comp.virus FAQ
CERT Advisory T.H.s T.H. - Wikimedia T.H. game expansion Vmyths.com West Nile Virus Panda Software

T.H. - Whatis.com T.H. Scandal Acid T.H. Sophos Anti-Virus Symantec - Hairy Palms Hoax Sophos virus analyses

10. EXPERIMENTS
In this section, we discuss our results with the greedy algorithm

on various TREC corpora. We denote the greedy algorithm that op-
timizes for (expected) 1-call as 1-greedy. We also look at using the
greedy approach to optimize for 10-call (perfect precision), which
we denote as 10-greedy. All experiments are done with result sets
of size ten. Each corpus was filtered for stop words and stemmed
with a Porter stemmer. For both PRP and k-greedy, the query was
weighted at one fiftieth of the relevant distribution prior (this was
the best weighting for PRP, and we kept it unchanged for 1-greedy).
In each case, we ran k-greedy over the top 100 results from PRP.
(Generally we found that our algorithms would select from within
the top 100 PRP results even when given a choice from the entire
corpus.)

Because we did not rank the entire corpus in our results (as doing
so would be prohibitively slow), we compute search length only
over the first ten results. If there are no relevant results in the top ten
positions, we assume a search length of ten. Similarly, we assume a
reciprocal rank of zero if a relevant result is not found in the top ten.
Therefore our reported MSLs and MRRs are slight underestimates
of what their values would be over a full ranking.

We used the set of ad hoc topics from TREC-1, TREC-2, and
TREC-3 to set the weight parameters of our model appropriately.
Using the weights we fond, we then ran experiments over the TREC
2004 robust track, TREC-6, 7, 8 interactive tracks, and TREC-4 and
TREC-6 ad hoc tracks.

10.1 Tuning the Weights
As with any model, our model has a set of tweakable weights

that could greatly affect retrieval performance depending on how
they are set. For our model, the key weights to consider are the
strength of the relevant distribution and irrelevant distribution pri-
ors with respect to the strength of the documents that we add to
those distributions.

To tune these weights, we used the corpus from the TREC-1,
TREC-2, and TREC-3 ad hoc task, consisting of about 742,000
documents. There were 150 topics for these TRECs (topics 51
through 200).

We find that when the prior weight is well tuned, 1-greedy out-
performs PRP on the metrics where it should—that is, 1-call at
10, MRR, and MSL. Similarly, with a well tuned prior weight, 10-
greedy outperforms PRP on 10-call. For brevity, we do not report
the full weight tuning results in this paper.

Our tuning shows that 1-greedy performs best when the irrele-
vant distribution prior is set very low, to less than the weight of
one document, whereas 10-greedy performs best when the relevant
distribution prior is set at an intermediate value of approximately
the weight of 10 documents. The former indicates that feeding
back negative documents strongly is important for diverging the
results away from PRP, whereas the latter indicates that we may be

“drowning out” the query if our feedback documents are weighted
too strongly.

Since TRECs 1, 2, and 3 were used for tuning weights, retrieval
results on them were not meaningful. Instead, for evaluation we
applied 1-greedy and 10-greedy with the prior weight settings we
found in this section, to a different corpus and set of topics.

10.2 Robust Track Experiments
We turn our attention to the TREC 2004 robust track. The robust

track uses a standard ad hoc retrieval framework, but is evaluated
with an emphasis on the overall reliability of IR engines—that is,
minimizing the number of queries for which the system performs
badly. There were 249 topics in total2, drawn from the ad hoc task
of TREC-6,7,8 (topics 301 to 450), the 2003 robust track (topics
601-650), and the 2004 robust track (topics 651-700). The cor-
pus consisted of about 528,000 documents. Note that there is no
overlap between this corpus and the TREC-1,2,3 corpus, in either
documents or topics.

From the 249 robust track topics, 50 were selected by TREC as
being “difficult” queries for automatic search systems. We sepa-
rately call out the results for these 50 topics.

Table 1: Robust Track Results (249 Topics)
All topics

Method 1-call 10-call MRR MSL P@10
PRP 0.791 0.020 0.563 3.052 0.333

1-greedy 0.835 0.004 0.579 2.763 0.269
10-greedy 0.671 0.084 0.517 3.992 0.337

50 difficult topics only
Method 1-call 10-call MRR MSL P@10

PRP 0.580 0.000 0.303 5.500 0.160
1-greedy 0.620 0.000 0.333 5.000 0.158

10-greedy 0.420 0.000 0.254 6.500 0.152

Table 1 presents the results for the robust track. We show a no-
ticeable improvement in 1-call by using 1-greedy instead of PRP.
When we restrict our attention to just the 50 difficult queries, the
results overall are lower, but 1-greedy is still more likely than PRP
to return relevant results. Similarly, 10-greedy’s 10-call score is
higher than the corresponding PRP and 1-greedy scores. The dif-
ficult queries live up to their name for 10-call—none of our algo-
rithms satisfy the strict 10-call criterion over that subset.

We also note that 1-greedy actually has worse precision at 10
than PRP. However, as we argued earlier, precision is not the appro-
priate metric for our task, so a lower precision score is not problem-
atic. Interestingly, 10-greedy does not affect precision noticeably,

2One topic was dropped because the evaluators did not deem any
documents relevant for it.
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Figure 2: Robust Track Earliest Relevant Ranks

likely because precision rewards result sets that have lots of rele-
vant documents, and 10-greedy is more likely to have every result
be relevant.

Finally, our performance on the other metrics for which we are
greedily optimizing, namely MRR and MSL, is better under 1-
greedy than with PRP. Because our 1-greedy procedure attempts
to diversify the result set after selecting the first result, we would
expect that it would be more likely to find a relevant result for the
next few positions than PRP (recall that both methods choose the
first result identically). In other words, if the first result was not rel-
evant, 1-greedy will be more likely to select something different,
and thus, something relevant, for the second result. On the other
hand, PRP will stick with the same interpretation of the query, so if
the first document was of the wrong interpretation (and thus irrele-
vant) the second document would more likely continue that trend.
To examine the gains we are making in MRR and MSL, consider
figure 2, which graphs the location of the first relevant document
for the topics. As the figure demonstrates, it is more often the case
that 1-greedy chooses a relevant document for the second position,
but the effect disappears for higher ranks, as we would expect.

We conducted statistical significance tests on the robust track
experiment’s results to compare our greedy algorithms against the
PRP baseline. For 1-greedy vs. PRP on 1-call, a one-tailed McNe-
mar test gives p = 0.026, which indicates significance at the 5%
level. For 10-greedy vs. PRP on 10-call, p = 0.0002, which indi-
cates significance at the 1% level. Using a one-tailed Wilcoxon test,
we find that for 1-greedy vs. PPR on MRR and MSL, p = 0.314,
which is not statistically significant. The MRR and MSL gains are
interesting but too minor to be significant.

10.3 Instance Retrieval Experiments
As described in section 8, optimizing for 1-call has the side-

effect of seeking diversity in the result set—it returns more distinct
interpretations of the query in expectation. The TREC-6, 7, and
8 interactive track runs afford us a unique opportunity to test the
performance of our system for diversity, because each run’s top-
ics were annotated with multiple “instances” (i.e., subtopics) that
described its different facets [9]. The document judgments were
also annotated with the instances that they covered. In total, there
were 20 topics, with between 7 and 56 aspects each, and a corpus
of about 210,000 documents.

Table 2 lists the instance recall at rank ten results, along with
instance recall scores computed on result sets from the subtopic

Table 2: Interactive Track Results (20 Topics)
Method Instance recall at 10

PRP 0.234
1-greedy 0.315

LM baseline [21] 0.464
Cost-based, ρ = 1.5 [21] 0.429
Cost-based, ρ = 5 [21] 0.465

retrieval work, corresponding to configurations presented in table 2
of Zhai et al.’s paper [21]. In their work, they looked at reranking
a mixed pool of relevant and irrelevant documents drawn from the
top documents selected by a language model baseline. For parity of
comparison, we simulated their experiment conditions by reranking
the same starting pool of documents as they did.

We note that 1-greedy outperforms our own PRP baseline, as we
would expect. However, 1-greedy underperforms Zhai et al.’s sys-
tem. Zhai et al.’s language model baseline appears to be a much bet-
ter model for aspect retrieval than Naı̈ve Bayes in the first place. If
we had a well-tuned baseline, our 1-greedy would presumably per-
form better as well. Indeed, Zhai et al.’s reranking systems do not
improve upon their baseline on instance recall, though this is proba-
bly due to their focus on optimizing the more sophisticated metrics
of S-precision and WS-precision, and the (W)S-precision/S-recall
curves.

10.4 Multiple Annotator Experiments
Another way of viewing the 1-call goal is from a multi-user

perspective. Different users may intend different interpretations,
as was evident from the Google examples presented earlier. For
TREC-4 and TREC-6, multiple independent annotators were asked
to make relevance judgments for the same set of topics, and over
the same corpus [18, 7, 17]. In the TREC-4 case, these were topics
202 through 250, over a corpus of about 568,000 documents, and
in the TREC-6 case, topics 301 through 350 over a corpus of about
556,000 documents (the TREC-6 topics are a subset of the robust
track topics). TREC-4 had three annotators, TREC-6 had two.

Table 3: TREC-4, 6 Multiple Annotator Results
TREC-4 (49 topics)

Method 1-call (1) 1-call (2) 1-call (3) 1-call (total)
PRP 0.735 0.551 0.653 1.939

1-greedy 0.776 0.633 0.714 2.122

TREC-6 (50 topics)
Method 1-call (1) 1-call (2) 1-call (3) 1-call (total)

PRP 0.660 0.620 N/A 1.280
1-greedy 0.800 0.820 N/A 1.620

The individual 1-call scores for each run and each annotator are
presented in table 3. The last column is the sum of the previous
columns, and can be considered to be the average number of anno-
tators that are “satisfied” (that is, get at least one result they con-
sider relevant in the top ten) by the respective result sets. Over both
corpora, 1-greedy on average satisfied more annotators than PRP.

10.5 Query Analysis
To better understand 1-greedy’s improvements, we also looked

specifically at instances where 1-greedy returned a relevant result
in the top ten (that is, satisfied the 1-call criterion) and PRP did
not. The results for topic 100 from the TREC-1,2,3 weight-tuning
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Figure 3: Example results from TREC topic 100: Controlling the Transfer of High Technology
Rank PRP 1-greedy

1 Data transfer software Data transfer software
2 Disk controllers are getting smarter (SCSI and IDE) Disk controllers are getting smarter (SCSI and IDE)
3 Caching hard-disk controllers (PC Week buyer’s guide) Environmental Protection Agency tech transfers
4 Environmental Protection Agency tech transfers Wax vs. dye printers (PC Week buyer’s guide)
5 Wax vs. dye printers (PC Week buyer’s guide) Engineering corporation tech transfer
6 Engineering corporation tech transfer Serial-to-parallel network transfers
7 Department of Energy tech transfers Whole-Earth technology (international tech transfer)
8 Serial-to-parallel network transfers Department of Energy tech transfers
9 EISA and MCA technology Fiber optic telecom line tech transfer through Soviet Union

10 Panel on tech transfer Simon-Carves PCB tech transfer to Soviet Union

development set is presented in figure 3 (document titles have been
summarized for clarity and space), with the relevant result shaded.

The topic description is:

Document will identify efforts by the non-communist,
industrialized states to regulate the transfer of high-
tech goods or “dual-use” technologies to undesirable
nations.

It is notable that PRP wastes its time on the wrong interpretation of
the title—looking for technologies that control data transfer, such
as hard drive controllers. While 1-call also pulls up that interpre-
tation, it moves away quickly enough that it can bring back more
results on actual tech transfers, including the relevant Soviet Union-
related result. 3

11. CONCLUSIONS AND FUTURE WORK
While the probability ranking principle is appropriate in many

settings, it is not the universally “right” approach for optimizing
all objective functions. We have identified a common scenario in
which the principle is not optimal, and given an approach—the Ex-
pected Metric Principle—to directly optimizing other desired ob-
jectives. We have shown that this approach is algorithmically fea-
sible, and that it does yield better results for the given metrics.

Much remains to be done to explore heuristics that optimize our
new, or other, objective functions. While the greedy approach per-
forms reasonably well, we might expect more sophisticated tech-
niques, such as local search algorithms, to perform better.

We have focused on the “extreme points” k = 1 and k = n.
There is likely to be some value in filling in the middle. For exam-
ple setting k = 3 says that a user wants several relevant documents
but does not need them all to be relevant. As in the 1-call case, this
would seem to allow the optimization algorithm to hedge—it has
room, for example, to include 3 distinct interpretations in the top
10.

Our focus on an objective function means that our approach can
theoretically be applied to any probabilistic model in which it is
possible to discuss the likelihood of relevance of collections of doc-
uments. This includes, for example, the two-Poisson model [8], or
the language modeling approach [12]. Those better models would
hopefully yield better performance.

In general, our work indicates the potential value of “teaching
to the test”—choosing, as the objective function to be optimized in
the probabilistic model, the metric used to evaluate the information
retrieval system. Assuming the metric is an accurate reflection of
result quality for the given application, our approach argues that
optimizing the metric will guide the system towards desired results.
As an example, it may be worth using this approach with the well
known average precision metric as the objective function.
3Result 10, on the PCB tech transfer to the Soviet Union, could
possibly be judged relevant as well, but was not in the document
judgments at all, indicating that it was never judged.
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