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Abstract

Information retrieval (IR) systems provide individual
remote access to centrally managed data. The current prol-
iferation of personal computer systems, as well as advances
in storage and communication technology, have created new
possibilities for designing information systems which are
easily accessible, economical, and responsive to user needs.
This paper outlines methods of integrating personal comput-
ers (PCs) into large information systems, with emphasis on
effective use of the storage and processing capabilities of
these computers. In particular we discuss means for caching
retrieved data at PC-equipped user sites, noting that cach-
ing in this environment poses unique problems. An event-
driven simulation program is described which models infor-
mation system operation. This simulator is being used to
examine caching strategies. Some results of these studies
are presented.

1. INTRODUCTION

Information systems constitute one of the oldest appli-
cations of digital computers, and one whose relevance and
importance increase with time. In part because of their age
and established nature, information systems today operate
in much the same way as they did twenty years ago. Yet
certain technological advances have been made in recent
years which, if carefully integrated with modern systems,
could substantially improve their availability, economy of
operation, and ease of use.

Perhaps the most significant of these advances is the
personal computer or workstation, part of a larger evolution
toward inexpensive, small-scale, distributed computation.
Along with microcomputers have emerged personal, portable
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storage media, primarily disks and diskettes. Add to these a
widening choice of digital communication media, and excit-
ing possibilities begin to appear. We believe that these ele-
ments together have the potential not only for improving
the operation of existing information systems, but also for
dramatically expanding their role in society.

1.1 Characteristics of information systems

Although many varieties of information system exist,
ranging from broadcast videotex services to home shopping
and banking, we will in this paper assume a definition which
is characteristic of the mainstream of current systems.
First, we assume that the service and its users are indepen-
dent of each other. This leaves out management informa-
tion systems and others which are internal to an organiza-
tion. Most users connect to the system over telephone lines
with the aid of modems.

Secondly, the service takes all responsibility for acquir-
ing, organizing, and updating the information it provides,
and for defining the means of access. Users only read the
data, having no other control over it. Thirdly we assume
that interaction is in the form of a short query followed by a
fixed response from the system. Users do not submit pro-
grams or complex queries of a procedural nature. Most
queries consist of a single command with operands, or an
indication of a choice from a menu. Very few are longer
than one input line on a terminal.

Lastly, the output is in display format (e.g. ASCII),
intended to be read directly by the user at a terminal. This
is because the typical information service presumes that its
users operate terminals (not computers) and have no use for
machine-readable data. Many systems limit response length
to the capacity of a single screen for the same reason. This
lowest-common-denominator approach by information ser-
vices, while easy to implement and maintain, frustrates
many users as it severely limits their means of interaction
with a system that is potentially much more useful.

1.2 Adding desktop computers to IR systems

The desktop microcomputer has become widely avail
able in recent years, to the point where the great majority
of subscribers to online information services use personal



computers rather than terminals to access them [Gold85].
At present PC-based users are scarcely better off than users
of so-called dumb terminals; the special capabilities of per-
sonal computers — storage, computational power, and
potentially high-level user interfaces — have not yet been
put to work in the information system environment. Infor-
mation services today operate in a highly centralized
manner, defining a single interface for all users. This inflexi-
bility, together with the substantial expense of interactive
telecommunication, causes most PC users (an estimated 80-
85% of them [Dunn84]) never to use any information system
at all. Personal computers offer a remedy for this unhappy
situation. An information system, generally viewed as a
monolithic mainframe-based database to which users occa-
sionally “attach”, can instead take on the role of auxiliary
processor or server, providing data on demand to supple-
ment the otherwise autonomous operation of personal works-
tations. It is now possible to place. each user at the center
of the system, rather than at the periphery, and to tailor
the user’s view to suit individual needs. It is our claim that
this decentralization is the next logical evolutionary stage
for information systems; a new dimension of usefulness can
be achieved through recognition and use of small computer
capabilities. Among the benefits that can be expected are:

Greater autonomy for the user. When users can down-
load information and manipulate it locally, they have more
control over their own use of it. Every user can build a per-
sonal database, gleaned from many sources, containing the
information of interest to him or her — much as people now
assemble personal libraries of printed material over time.
Each user can employ private software to process the data
in ways not provided by the information service. This
makes the service much more valuable to its subscribers.
Availability of the system is also increased in the sense that,
even when the host site is down, it is possible for users to
have the data and programs they need available locally.

Better utilization of resources. If some processing and
storage responsibilities can be delegated to user computers,
there will be less contention for resources at the host site.
This should result in quicker system response overall, as well
as the ability of the service to accommodate more users at
one time. Since personal computers are single-user
machines, their processors are typically idle during online
sessions; they therefore constitute a source of “free’ process-
ing power.

Communication between
central site and user is an expensive part of system opera-
tion. Our studies show that a high percentage of online
session time is spent in data transmission, a result of using
standard telephone lines which necessitate slow transmission
speeds. The more work that the user is able to do locally,
the less need there is to communicate with the host system.
For example, consecutive queries accessing the same data
should be processable locally, rather than through the cen-
tral site each time.

Lower communicalion costs.

Improved user interface. Query languages can be
confusing and difficult to use, especially for users who need
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to work with many different systems. Studies of interactive
information systems have found that a surprisingly large
number of queries contain errors and must be redone
[Borg83,Penn81]. A PC can be programmed to help users
formulate queries, checking for wvalidity and syntactic
correctness, providing menus of command choices, displaying
subject term thesauri, and so on. It can do this within the
environment to which the user is accustomed, using windows,
menus, a light pen or mouse, and other tools to make
interaction easier. Perhaps most importantly, each user can
have a different interface, customized to meet individual
needs. This is impossible within the mainframe/terminal
paradigm, one reason why today’s systems are underused.

Increased functionality. Many valuable enhancements
to IR systems have been proposed, but are seldom imple-
mented in practice because of the great expense and effort
required to make significant changes to an already-working
system. Some of these functions may be performed by user
computers with little or no centralized effort. Current-
awareness service is a simple example. A user computer can
maintain locally a profile of subject areas of interest, and
automatically query the service periodically to update the
user’s personal database in those subjects. Another facility
might permit a user to weight the keywords used in a query
according to their importance; the PC can then post-process
the responses received, assigning a relevance value to each
and sorting them by decreasing relevance for the user’s
perusal.

2. RELATED WORK

Several promising attempts have been made at giving
small computers a place in IR systems. Jamieson’s intelli-
gent terminal [Jami79], built before PCs were commercially
available, was designed to implement and test sophisticated
retrieval strategies without modifying the operation of the
central system. More recently, commercial information ser-
vices have begun to provide the means for users to download
data and manipulate it locally. IRS, a European service, has
a DOWNLOAD facility which supplies bibliographic citations
in a format that can be easily processed by user software
[King86]. The users themselves must supply such software.
Dow Jones News/Retrieval, on the other hand, sells PC
software to capture data from its financial databases and
produce graphic output [Glos83). While a step in the right
direction, the software applies to only a small subset of the
system’s information and performs a very limited set of
operations on it. Users still have little control over their use
of the data.

An interesting project is the Boston Community Infor-
mation System (BCIS), a pilot service developed at M.LT.
|Giff85]. This system broadcasts information of community
interest (such as current news) over FM radio to IBM PCs
which have been provided with data management software.
The entire database is transmitted repeatedly, in cyclic
fashion. The PC software filters incoming data, storing only
the files which match criteria previously specified by the
user. When the user needs access to the system’s informa-



tion, the files of interest are waiting. In this way the selec-
tion process is completely offloaded to each user site. A
drawback of a pure broadcast system is that the database
to which a user has access at any given time is limited to
the size of available local storage. Access of an unstored file
must wait until that file is next broadcast. To remedy this
problem, BCIS will provide dialup access so that users may
solicit and receive specific data files when needed.

Our work differs from this approach in a few important
ways. We place no restrictions on the size or content of the
database; it may be quite large and diverse, containing data
that changes rapidly (perhaps many times per day) in addi-
tion to longer-lived data which might remain fixed for years.
Some items will be of interest to many users, but most will
only rarely be accessed. Volatile data, to be useful, must be

retrievable on demand and rapidly replaceable. Cyclic

broadcast of data cannot accommodate this need for direct .

interaction, nor can it distribute very large databases in a
timely manner. We are also interested in automating the
decisions of what data is to be downloaded and when, rather
than requiring that users specify those choices in advance.
Ideally, decision-making should adapt dynamically to each
user’s changing access patterns.

We would like to develop mechanisms for distributing
data to users which are applicable to a wide variety of sys-
tems, handling arbitrary data and not restricted to worksta-
tions of a particular make. This is an ambitious goal, given
the unstandardized state of personal computer systems. It
therefore seems wise to begin with general, straightforward
methods that can be put into operation quickly without
major restructuring of system operation. '

3. DATA CACHING

Downloading to common storage devices as part of an
ordinary online session is probably the simplest way to pro-
vide data, requiring the least modification of the way
current systems operate. No novel communication or
storage media are required, and software changes at the cen-

tral site are minimal.

Because a user is concerned with only a small portion
of the available information, we must be selective about
what is downloaded, and when. We expect the greatest
benefit from local storage when the data downloaded will be
accessed many times in the future before it becomes
obsolete. While it is impossible to predict future use, the
technique of caching has proven valuable in other environ-
ments when decisions about data placement must be made
[Smit82}. Caching appears promising here as well. By cach-
ing we mean downloading data as ¢t is accessed into the
user’s available local storage. A rudimentary form of cach-
ing would simply store the output from a query for review-
ing. A more sophisticated (and useful) version would cache
whatever data items are necessary to re-execute locally the
query which was just processed at the central site, and
presumably other queries on that data as well.
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As in a CPU cache, data is brought physically closer to
where it is actually used. This is done in the expectation
that the same data will be referenced again in the near
future. As with standard caching, appropriate replacement
policies are needed for efficient operation, and some mechan-
ism must exist for recognizing when cached data has become
out-of-date and so must be reacquired.

Although well understood in the context of hardware
memory caches, caching in the information system environ-
ment has not been fully studied. There are several signifi-
cant differences between standard memory caching and the
kind we are presenting here. First, since users do not per-
form updates, there is no need to keep track of changes and
write modified data items back to the central site. When a
cached item is to be replaced by another, it can simply be
discarded (overwritten).

~ On the other hand, keeping a cache up to date is much
more difficult because updates originate at the central site,
not at the site holding the cache. Solutions to the multiple-
cache problem within multiprocessing systems do not apply,
for two reasons. There is no continuous connection over
which updates might be propagated as they occur, since
users are free to disconnect from the service whenever they
like, and it is clearly impossible for the service to know
which users have which versions of which data so that it
might transmit updates to each at their next session. In
addition, user needs will vary; some may want to receive
updates automatically, but others may not want updates at
all or may want to receive them only when they specifically
request them or only for certain data items.

There is also the issue of conversion. When moving
data between two very different systems it is likely that
conversions in coding scheme, word length, numeric preci-
sion, character set, file organization, and/or structure of
addresses, indexes, and pointers must be made. Software at
the user site must understand the format of cached data and
be capable of accessing and manipulating it.

There is a choice of storage areas for a cache. The
most obvious are main memory, disks, and diskettes,
although high-density write-once optical disks can be
expected to gain acceptance in the near future for storage of
data of long-term value [Rose83). Among these various
media there are tradeoffs between capacity, convenience,
speed, and cost.

The items being cached are not of a fixed, small size.
They may range from a few words to many hundreds of kilo-
bytes. The question arises of how best to organize them in
local storage for subsequent retrieval. Varying size results
in varying communication delays as well. When large items
are to be transmitted we must ensure that normal interac-
tive use of the system is not greatly impeded.

An important consideration is that normal query out-
put is not necessarily suitable for caching. Output is pro-
vided in display format for immediate viewing, not for
machine storage or manipulation. It is clear that the cach-
ing of a record or file will involve an extra transmission of



“raw” data in addition to the screen-oriented response to
the user’s query. For example, a request for the average
price of a stock over the previous seven days normally
returns a single value, coded in ASCII and displayed on a
screen. It is desirable to cache the price for each day as a
separate machine-readable value, so that, for instance, the
average price over the previous five days can be computed
locally. Thus the action of caching is not “free’” as it is in
standard single-system caching environments. Any caching
mechanisms employed must perform well enough to offset
this expense.

Because this type of caching is not subject to strict
timing constraints as is hardware memory caching, much
more complex decisions can be made during system opera-
tion concerning what should be cached and where, and what
should be replaced when a cache is full. Indeed, the factors
mentioned above make it imperative that sophisticated
caching techniques be explored. Communication is a poten-
tial bottleneck in an information system and any form of
caching must involve additional communication.

4. SIMULATION OF IR SYSTEMS

4.1 Simulator design

We have written an event-driven simulation program
which is capable of modeling the operation of an information
system. Our primary design goals were accuracy and flexi-
bility. We have tried to keep the overall structure simple,
yet with sufficient detail to ensure that all elements signifi-
cantly affecting system operation are represented. We chose
simulation rather than analytic modeling because it seemed
unlikely that an analytic model could capture the complex-
ity of interaction inherent in a large information system
with its diversity of users. Moreover, it is important that
the model be easily extended to test modifications to the
system. The present version supports six levels of caching
and three cache replacement policies. In the future we
expect to simulate other caching strategies as well as data
prefetching, broadcasting, and shared communication lines.
It is hoped that this design is flexible enough to incorporate
these additions easily.

The program was written with the aid of SIMPAS
[Brya81], a tool for constructing event-driven simulators.
SIMPAS generates most of the code for managing the event
queue, advancing the clock, and gathering certain statistics.
It also supplies routines for generating random numbers
from several distributions. We found SIMPAS extremely
helpful in the programming process as it eliminated many
opportunities for error and enabled us to concentrate on
higher-level design issues.

As shown in Figure 1, the basic entities in a simulated
system are the host processor, its secondary storage, the
users, their processors and secondary storage, and the com-
munication lines. We will call these the fized entities.
Although the parameters of secondary storage devices can
be defined to represent different media, we will generally
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refer to them as disks. Currently all communication lines
are point-to-point lines serving one user each.

il
—

HOST
CPU

[LINE i

Figure 1: Model of information system

Queries are temporary entities which represent the
interaction between the user and the information service.
The user generates a query, or request, which travels over
the communication line to the central site, is serviced alter-
nately by the host CPU and disks (queueing behind other
queries if necessary), and returns with the system’s response
via the communication line to the user. The movement of
queries within the system is shown in Figure 1 by arrows.
When data is to be cached, the returning query is accom-
panied by a second temporary entity representing that data.
If the necessary data for a query has already been cached,
then the query does not travel to the central site at all but
is serviced instead by the local CPU and disks. The assump-
tion is made that every PC possesses software to implement
the full functionality of the central system. Upon receiving
the output of a query, the user waits for some period of time
and then initiates a new query. Each user is associated with
exactly one query at a time.

4.2 Purpose
The simulator was designed to serve several purposes:

To provide a good model of current information system opera-
tion. Simulated users can operate terminals instead of com-
puters simply by defining no processor speed or storage
space for them. Such a model has been useful in “getting a
feel for” the interaction between current (noncaching) sys-
tems and their users. By examining the interplay of such
factors as line speed, user population, and database size, we
can determine where performance bottlenecks are most apt
to occur and thereby identify where the most productive
enhancements to the basic system may be made.

To determine an upper limit on the usefulness of PC involve-
ment. To find out how powerful desktop computers must be
if they are to be useful as IR processors, we can simulate
offloading all data and processing to them, varying their
capacity and speed if necessary.

To measure the effects of data caching on system perfor-
mance. We can model different degrees of caching and vari-
ous replacement policies to determine the conditions under
which caching improves response time and lessens central-
site congestion, as well as those under which performance
degrades.



4.3 Parameters and model validation

The results of any simulation experiments, of course,
depend on the choices of input parameter values. Our simu-
lator takes as input about 30 parameters. Acquiring reason-
able, realistic values for some of these has been straightfor-
ward. With others, however, substantial uncertainties
remain. The following sections discuss each parameter in
detail, explaining these uncertainties as they arise, so that
the reader may understand the operation of the program
well enough to interpret its results with confidence.

4.3.1 User configuration parameters

We associate with each user a personal computer, the
specification of which is called a user configuration. From
one to eight different user configurations may be active dur-
ing a given run. Disks are characterized by four parameters:
capacity (in bytes), track size (in bytes), data transfer speed
(in bytes per second), and overhead for each track access (in
seconds) due to seek time and rotational delay. Values for
these parameters are all easily obtained from literature
describing peripheral storage devices for modern PCs. Per-
track overhead time is a fixed value, equal to the average
value for the device. We assume that each PC has only one
disk. Multiple disks can be simulated by defining a greater
disk capacity. Thus it is assumed that multiple disks are of
the same type and speed, and that only one is active at a
time. For our present purposes this is sufficiently realistic.

Communication line speed is expressed in bytes per

. second, and is identical in both directions (user to host CPU

and host CPU to user). Typical values for telephone lines

are 30 and 120 bytes per second. We assume no additional
overhead time per transmission.

CPU speed is expressed in MIPS. This has proven to be
a difficult parameter to define. What is wanted is some
measure of the time required to perform a ‘“standard”
sequence of operations involving the retrieval and processing
of data. This is a nebulous concept to begin with, since we
do not have actual instruction sequences to examine and so
cannot state exactly what takes place. In any case, instruc-
tion mix would vary greatly depending on the type of pro-
cessing being done (searching, sorting, formatting output,
etc.). Characterization of a typical mix is further compli-
cated by the intrinsic differences between large and small
computers. If a mainframe and a microcomputer had identi-
cal instruction sets, then MIPS alone would be sufficient to
differentiate between the processing power of the two
machines once an instruction mix had been established. But
instruction set differences are so great that measurements of
relative CPU speed are approximations at best. However,
we do not expect processing speed to be a limiting factor in
an IR system.

4.3.2 Application parameters

An application definition characterizes the type of
access a user engages in, and incorporates quite a bit of flex-
ibility. From one to eight applications may be defined for a
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given run, in any combination with the available user confi-
gurations. Statistics are gathered for each group of users
which share the same configuration and application.

Think time is the average time (in seconds) that elapses
while the user examines the output from a query and formu-
lates a new one. This includes the time required to type the
next request. Input size is the average number of bytes used
to transmit a query to the host; it includes both what was
typed and any necessary overhead bytes. Output size is the
average number of bytes returned to the user in response to
a query. Note that output size pertains only to the screen-
oriented response; it does not include any machine-readable
data which may be sent in conjunction with the standard
response.

Typical values we have used for the think time, input
size, and output size parameters are 10-60 seconds, 100
bytes, and 1000 bytes, respectively. Sample values in each
case are drawn from a normal distribution with a standard
deviation of p/5.15, which places 99% of the values between
©/2 and 3u/2. This choice of distribution and of the mean
values themselves is primarily an educated guess arrived at
by examining user manuals for two systems — Compu-Serve
and Dow Jones News/Retrieval — and by using each system
for a short period of time. Although we have no precise
measurements for these values over a wide range of usage, it
is clear that those chosen are certainly reasonable.

Next are specified the average quantity of data read
from disk, and the average number of machine instructions
executed, per query. Again we use a normal distribution as
described above to choose the exact values for each query.
The experiments reported on in this paper all assumed an
average of 10,000 bytes accessed per query; this is roughly
equivalent to 50 bibliographic citations or 3 printed pages of
full text. The average number of instructions was fixed at
2.5 times the number of bytes; we cannot be sure that this is
reasonable, but it is based on the assumption that informa-
tion system activity is not computation-intensive. We hope
that in the future we will have the opportunity to trace
periods of use on an actual system to get a better idea of
the ratio of computation to disk access.

Also part of an application definition is database size,
or more specifically the size (in bytes) of whatever portion of
the system’s data might be accessed by a user of the appli-
cation in question. All results presented here are based on
10 megabytes. This parameter reserves an appropriate
number of central-site disk blocks for the application.

Locality of reference is defined by dividing an
application’s blocks into three groups and specifying what
percentage of accesses are made within each group. We
defined six levels of reference locality, based on the Bradford
distribution [Broo69], which states that given some collection
of journals arranged in decreasing order of the number of
“interesting” articles contained therein, and then parti-
tioned into k groups of journals each containing the same
number of relevant articles, the number of journals in the
groups fit the 2 We

proportion l:m:n“:---: have



adapted this idea to a database environment by dropping
the journal boundaries and specifying groups of blocks each
containing the same number of relevant blocks (i.e., each
group is accessed with equal frequency). Levels are identi-
fied by the Bradford multiplier (n) used; level 1 represents
uniform access. Although the analogy is rough, it permits
an organized way to specify increasing degrees of locality.
The values used are shown in Figure 2.

Locality Percent of data accessed 1/8 of the time
| level
1 331/3 331/3 331/3
2 57 29 14
3 69 23 8
5 81 16 3
10 90 9 1
15 93.4 6.2 04

Figure 2: Increasing levels of reference locality

Lastly we assign a lifetime to the data blocks in each of
the three groups. Cached blocks are timestamped upon
arrival and are automatically deleted from the cache when
they expire. It is not difficult to estimate good values for
this parameter based on a knowledge of the types of infor-
mation supplied by a system. Simulations need not address
the far more difficult question of how a block’s expected life-
time might be determined in a real system.

4.3.3 Central site definition

The central site consists of a single mainframe proces-
sor which services queries in round robin fashion. Each
query alternates between executing instructions and reading
disk blocks. If a query has not finished or requested disk ser-
vice after 50 milliseconds of CPU use, it is interrupted and
requeued at the end of the CPU queue.

CPU speed is specified in MIPS but, as mentioned ear-
lier, this is only an approximate measure of real computing
speed. It is important, however, that the ratio of mainframe
speed to PC speed be accurately represented. The simula-
tion runs reported upon in this paper used values of 4.0 and
0.5 MIPS for the mainframe and PCs respectively.

The remaining central-site parameters describe secon-
dary storage characteristics: capacity, blocksize, average
seek time, average rotational delay, and data transfer speed.
These are all straightforward. We have been using values
representing IBM 3350 disks with a blocksize of 4096 bytes.
Disk capacity is 300 megabytes (a convenient approximation
to the actual value of 317.5 MB), average seek and latency
times are 25 msecs and 8.33 msecs respectively, and transfer
speed is 1.198 MB per second.

In general we do not intend to experiment with many
different central site configurations, but it is convenient to
parameterize these characteristics so that we can test
whether reasonable variations in their values greatly affect
our results.
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4.3.4 Run parameters

The few remaining parameters define certain charac-
teristics of the run as a whole. The length of the simulation
is given in minutes, as is the time interval between succes-
sive printings of output statistics. Generally we run for 60
minutes and generate output every 10 minutes. This is rea-
sonable because most real sessions are less than an hour in
length.

Each run employs one of six caching options: cache
every block accessed to local secondary storage, cache every
block accessed to local main memory, cache to disk only
blocks which have been requested more than once, cache to
disk only long-lived blocks, assume that the disk cache ini-
tially contains all data blocks (all processing is local), or do
no caching at all (all processing is central). All but the last
two options require a replacement policy. One of three can
be chosen: replace the oldest block (FIFO), replace the least
recently accessed block (LRU), or stop caching new items
until some cached block expires (replace only expired blocks).

From 0 to 900 users may be specified for each combina-
tion of a user configuration and an application (we call each
such combination a ‘“group”), provided that the total
number does not exceed 900. Population not only affects the
overall workload of the system, but large user groups serve
to “even out’ the output values obtained, since totals and
averages are reported by group rather than by individual
user.

Output values include: average and maximum queue
sizes at the central CPU and disks, average and maximum
response times and volume of data transmitted per query,
and the average percentage of time spent during each ses-
sion for processing, I/O, transmission, waiting in queues, and
thinking.

5. RESULTS AND DISCUSSION

Performance measurement of an information system is
a complex issue, encompassing not only such tangible
phenomena as response time and queue lengths at shared
resources, but also the more slippery concepts of suitability
to the users’ purposes, adaptability, and ease of use. Simu-
lator output gives us clear insights into the quantifiable
metrics; from these measurements we must infer the others.
Cache hit ratio, for example, has a strong bearing on
response time; but a high hit ratio also means that the user
is more likely to be able to continue processing should the
central site go down. The degree to which users “possess”
the data and can use it to advantage is perhaps the most
important performance criterion and, although it cannot be
measured directly, we must keep it in mind as we examine
more concrete results.

5.1 Effect of line speed on standard operation

For reference, we begin by measuring a “baseline” sys-
tem of 400 users, each accessing at most 10 megabytes of a
1200-megabyte database contained on four IBM 3350-type
disks at the central site. No caching is performed, and



access of the database blocks is uniformly distributed. A
request requires 100 bytes of input and elicits 1000 bytes of
display output, on the average. Think time averages 10
seconds. Users differ only in their data transmission speed;
100 each transmit at 30, 120, 480, and 960 bytes per second.
All users are active simultaneously for one hour.

Response time is good; even at 30 bytes per second it
averages less than 4 seconds. Contention for CPU process-
ing is low, with the CPU active only 15% of the time. Some
disk contention is evident; each disk is busy about 65% of
the time. Still, less than 193 of the duration of the average
query is spent queued for disk service. Figure 3 shows
response time for this no-caching, or standard, case. (Note
that response time is graphed on a logarithmic scale
throughout this paper.)

The primary bottleneck is in the transmission of queries
and their results. 10% of session time is spent in data
transmission at 960 bytes per second, 18% at 480, 47% at
120, and 78% at 30. Currently few information system users
can transmit at higher rates than 1200 baud. In light of this
it is clear that caching will carry with it substantial
overhead.

5.2 The addition of simple caching

Next we provide each user with a single diskette which
can hold a 320 KB cache, or about 3% of the database.
Again, uniform access is assumed. We implement the simple
policy that every block accessed is cached, and if all blocks
necessary for a particular query have been cached then that
query can be executed locally. We assume for now that no
block expires — once it has been cached, its contents are
valid for the remainder of the session. FIFO replacement is
used. Each query now causes the transmission of 11,700
additional bytes on the average. This has a disastrous effect
on response time, as seen in Figure 3. While at 960 bytes
per second it remains under 3 seconds, it leaps to 14 seconds

400 —

100 —
40 -

average
Response 10

Time
(seconds) 4 |

at 480, 86 at 120, and neariy 6 minutes at 30. Worse still,
the average response time does not decrease over the course
of the one-hour session; the cache is useless.

One reason for this behavior is that an average of three
blocks are needed to execute a single query, all of which
must be in the cache if the query is to execute locally. (In
this context, “hit ratio” is the ratio of locally executed
queries to all queries). Conjecturing that a single diskette is
too small to serve as a cache for a database of this size, we
increase the cache size to one 5-megabyte hard disk, or over
50% of the database. Yet this change produces nearly
identical results. At 9600 baud, although response time
drops from 2.74 to 2.08 seconds, the hit ratio reaches only
2%% after an hour of operation. At slow speeds no improve-
ment is seen.

The primary problem is that it takes a very long time
to fill the cache to a point where it becomes useful. It is
interesting to note that even at 9600 baud it would require
about 90 minutes of continuous transmission to fill a 5
megabyte disk. When the database is accessed randomly,
virtually every query requires a large transmission of data to
the cache, and this delays the transmission of the following
query’s response.

5.3 Effect of locality of reference on caching

Our assumption of uniformly distributed access is, for
most applications, unnecessarily strict. When most of a
user’s access is within a small portion of the data base (a
“hot spot”), caching must be more effective. We repeated
our “simple caching” simulations (5 MB cache), but with
increasingly localized access. At the higher line speeds hit
ratio increases significantly as locality increases (Figure 5).
After an hour’s operation, 9600-baud users are processing
over 25% of their queries locally. The slower lines, however,
cannot build the cache quickly enough to have much effect.
Even with very high locality response times are much worse
than with no caching at all (Figure 4).

simple caching, 320 KB diskette

simple caching, 5 MB disk

- prefetched to CD ROM
------ ~ prefetched to diskette
------ ~ prefetched to hard disk

«— cache on 2nd access, 5 MB disk
" no caching

1 |
30 120 480

!
960

Line Speed (bytes per second)

Figure 3: Caching and full prefetching compared to standard access,
uniforin reference
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Figure 4: Simple caching (5 MB disk), with hot spots
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Figure 5: Simple caching (5 MB disk), with hot spots

It is evident that caching must be restricted in some
way if low-speed users are to experience acceptable response
times. We applied a simple heuristic: cache blocks only on
the second access, rather than the first. In this way time is
not wasted caching rarely used blocks. This first cut at bas-
ing the caching strategy on actual patterns of use produced
interesting results. The reduced transmission volume does
improve response times substantially (although they are still
unpleasantly high for low-speed users), but the improvement
is greatest when locality is low (Figure 6), demonstrating
again the extreme sensitivity of system operation to
transmission time. The slower the line speed, the greater
value a data item must have to make its downloading
worthwhile. At high speeds hit ratios decreased; transmis-
sion lines were often idle when they might have been caching
(Figure 7). At low speed the hit ratio increased; more
queries were processed during the hour, and more high-value
blocks were cached.
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Figure 6: Caching on 2nd access (5 MB disk), with hot spots
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Figure 7: Caching on 2nd access (5 MB disk), with hot spots

5.4 Effect of think time

Recall that the foregoing simulations assumed an aver-
age think time of 10 seconds. Although suitable for some
applications, this value is quite low for others. We examined
the effects of longer think times. Interestingly, this “idle”
time during the session can be crucial to caching perfor-
mance. Increasing think time lessens the demand for data
transmission while providing more time during which to
transmit. Figure 8 (solid lines) shows the resulting decrease
in average response time. For comparison, the no-caching
case is also shown (dotted lines) for think times of 10 and
100 seconds.

With a think time of only 30 seconds, simple caching
becomes feasible for 4800-baud users. With 60 seconds,
response time is finally reduced to the no-caching level;
caching is now free. The improvement at 9600 baud is even
more pronounced. We conclude that in an IR environment
the performance of caching is dominated by the speed and
bandwidth of the communication channel, and the propor-
tion of session time during which that channel is idle.
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5.5 Prefetching and local mass storagé

960

Perhaps the most reliable solution to the transmission -

bottleneck is to cache only while the line is otherwise idle, or
at least to place a limit (based on the user’s line speed and
think time) on the quantity of data which may be cached
during any query. This would keep response times reason-
able while still permitting data to slowly accumulate in local

storage. Another solution is to prefetch data. Prefetching

may be viewed as caching ahead of time; that is, acquiring
data before it is requested at all. This might be done
between user queries during a session, or an hour before the
user is expected to log on, or further in advance, depending
on both the quantity of data in question and its volatility.

We are beginning to study approaches to prefetching.
An upper bound on performance can be obtained by suppos-

ing that all necessary data had been prefetched before the -

session begins. All queries can then be processed locally. We
simulated this with hard disk storage. Average response
time is one second, representing an improvement over stan-
dard operation for users of 300- and 1200-baud lines, though
not for higher speeds (see Figure 3). Even using slower
diskettes, response time averages only 1.7 seconds. Because
the time required for each transaction is dependent only on
the quantity of data involved and the amount of processing,
it is predictable and reliable. Users are no longer affected
by changing system loads or contention for heavily used files.
These results are encouraging, for they imply that a small
computer system is sufficiently power{ul to run an IR system
for a single user.

Several services have begun to distribute the full con-
tent of their databases on read-only compact disks (CD
ROM) [Chen86]. It is certain that in the near future the use
of small, portable, mass-storage media for distributing large
quantities of data will increase. This practice is, in a sense,
massive prefetching. CD ROM, videodiscs, and optical disks
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‘local. database current by

are all potential media for this type of use [Pari83]. While
compact disks exhibit slower data transfer speeds than mag-
netic disks, they still performed well in our simulations, with
an average response time of about 3 seconds. Furthermore,
a CD can hold 500 to 600 megabytes of data. Having this
large store of information available at all times is of enor-
Although the need for remote
interactive access to volatile and short-lived data will
remain, local mass storage is very attractive for large and
relatively fixed bodies of information. When rewritable opti-
cal storage becomes available it will be possible to keep a
downloading updates when

mous benefit to the user.

necessary.

6. FUTURE WORK

More work needs to be done regarding mechanisms for
distributing data to users. We expect to investigate policies

for -prefetching and broadcasting, particularly those which

vary dynamically based on observed patterns of usage, and
to'examine what effect new communication media, such as
all-digital phone lines, cable television, and satellite

‘transmission, may have on information system access. We

also hope to incorporate promising data distribution stra-

‘tegies into an experimental small computer- system accessing

a commercial information system. This prototype will likely
be implemented on a cluster of Sun workstations which are
joined via a local area etwork. Using a single connection to
the information service we can then investigate strategies
which take advantage of such clustering. The value of cach-
ing and prefetching will certainly increase for clustered
users, as each can benefit from data downloaded by others.
Decision making, however, becomes more complex. In decid-
ing what data to store, where to store it, and when to dis-
card it, members of the cluster may compete, cooperate via
a voting mechanism, or rely on one member which acts as a
coordinator.

7. CONCLUSIONS

We have discussed issues concerning the addition of
caching capability to workstations accessing information
systems. Results of simulations were presented which indi-
cate that while even simple caching strategies can be of
benefit when communication lines are not heavily loaded,
heuristics restricting the amount of caching must be used to
produce acceptable performance at slow transmission rates.
The speed of the user (think time) greatly affects the quan-
tity of data that may be cached without seriously degrading
performance. It is expected that data prefetching can be
used to advantage when transmission is slow, provided that
the range of data required is not too broad. Emerging
small-scale mass storage media offer the opportunity to
bypass -telecommunication altogether when accessing long-
lived data.
greater potential power over the information they acquire.

All data distribution mechanisms give users

This research is supported by the State of New Jersey
Governor’s Commission on Science and Technology, Con-
tract 85-990660-6.
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