
Data Caching in Information Retr ieval Sys tems

P a t r i c i a S i m p s o n a n d R a f a e l Alonso

Department of Computer Science
Princeton University

Princeton, New Jersey 085~

A b s t r a c t

Informat ion ret r ieval (IR) systems provide individual
remote access to central ly managed da ta . The current prol-
iferation of personal computer systems, as well as advances
in s torage and communicat ion technology, have created new
possibilities for designing information systems which are

easily accessible, economical, and responsive to user needs.
This paper outlines methods of in tegra t ing personal comput-
ers (PCs) into large information systems, with emphasis on
effective use of the storage and processing capabili t ies of
these computers. In par t icular we discuss means for caching
retr ieved d a t a a t PC-equipped user sites, noting t h a t cach-
ing in this envi ronment poses unique problems. An event-
driven simulat ion program is described which models infor-
mat ion system operat ion. This s imulator is being used to
examine caching strategies. Some results of these studies
are presented.

1. I N T R O D U C T I O N

Informat ion systems const i tu te one of the oldest appli-
cat ions of digital computers, and one whose relevance and
importance increase with time. In pa r t because of their age
and established nature , information systems today operate
in much the same way as they did twenty years ago. Yet
cer tain technological advances have been made in recent
years which, if carefully in tegra ted with modern systems,
could substant ia l ly improve their availabili ty, economy of
operation, and ease of use.

Perhaps the most significant of these advances is the
personal computer or workstat ion, par t of a larger evolution
toward inexpensive, small-scale, dis t r ibuted computat ion.
Along with microcomputers have emerged personal, portable

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

© 1987 ACM 089791-232-2/87/0006/0296--75¢

storage media, primari ly disks and diskettes. Add to these a
widening choice of digital communicat ion media, and excit-
ing possibilities begin to appear. We believe t h a t these ele-
ments together h a v e the potent ia l not only for improving
the operat ion of existing information systems, but also for

dramat ica l ly expanding their role in society.

1.1 C h a r a c t e r i s t i c s o f i n f o r m a t i o n s y s t e m s

Although many variet ies of information system exist,
ranging from broadcas t videotex services to home shopping
and banking, we will in this paper assume a definition which
is character is t ic of the ma ins t r eam of current systems.
First, we assume t h a t the service and its users are indepen-
dent of each other . This leaves out management informa-
tion systems and others which are in ternal to an organiza-
tion. Most users connect to the system over telephone lines
with the aid of modems.

Secondly, the service takes all responsibility for acquir-
ing, organizing, and updat ing the information it provides,
and for defining the means of access. Users only read the
data , having no o ther control over it. Thirdly we assume
t h a t interact ion is in the form of a short query followed by a
fixed response from the system. Users do not submit pro-
grams or complex queries of a procedural nature . Most
queries consist of a single command with operands, or an
indication of a choice from a menu. Very few are longer
than one input line on a terminal .

Lastly, the ou tpu t is in display format (e.g. ASCII),
intended to be read directly by the user at a terminal . This

is because the typical information service presumes t h a t its
users operate terminals (not computers) and have no use for
machine-readable da ta . Many systems limit response length
to the capaci ty of a single screen for the same reason. This
lowest-common-denominator approach by information ser-
vices, while easy to implement and mainta in , f rus t ra tes
many users as it severely limits their means of interact ion
with a system t h a t is potential ly much more useful.

1.2 A d d i n g d e s k t o p c o m p u t e r s t o I R s y s t e m s

The desktop microcomputer has become widely avail-
able in recent years, to the point where the great majori ty
of subscribers to online information services use personal

296

computers r a the r than terminals to access them [Gold85!.

At present PC-based users are scarcely be t te r off than users
of so-called dumb terminals; the special capabili t ies of per-
sonal computers - - storage, computa t ional power, and
potentially high-level user interfaces - - have not yet been
put to work in the information system environment. Infor-
mat ion services today operate in a highly centralized
manner , defining a single interface for all users. This inflexi-
bility, together with the subs tant ia l expense of interact ive
telecommunication, causes most PC users (an est imated 80-
85~0 of them [Dunn84]) never to use ~ny information system
at all. Personal computers offer a remedy for this unhappy
situation. An information system, generally viewed as a
monolithic mainframe-based da tabase to which users occa-
sionally " a t t a c h " , can instead take on the role of auxiliary
processor or server, providing da t a on demand to supple-
ment the otherwise autonomous operat ion of personal works-
tations. It is now possible to place each user a t the center
of the system, ra ther than at the periphery, and to tailor
the user's view to suit individual needs. It is our claim tha t
this decentral izat ion is the next logical evolutionary stage
for information systems; a new dimension of usefulness can
be achieved through recognition and use of small computer
capabilities. Among the benefits t h a t can be expected are:

Greater autonomy for the user. When users can down-
load information and manipula te it locally, they have more
control over their own use of it. Every user can build a per-
sonal database , gleaned from many sources, containing the

information of interest to him or her - - much as people now
assemble personal l ibraries of pr inted mater ia l over time.
Each user can employ pr ivate software to process the da t a
in ways not provided by the information service. This
makes the service much more valuable to i ts subscribers.
Availabil i ty of the system is also increased in the sense tha t ,
even when the host site is down, it is possible for users to
have the da t a and programs they need available locally.

Better utilization of resources. If some processing and
storage responsibilities can be delegated to user computers,
there will be less content ion for resources a t the host site.
This should result in quicker system response overall, as well
as the ability of the service to accommodate more users at
one time. Since personal computers are single-user

machines, their processors are typically idle during online
sessions; they therefore const i tu te a source of "free" process-
ing power.

Lower communication costs. Communicat ion between

central site and user is an expensive par t of system opera-
tion. Our studies show t h a t a high percentage of online

session time is spent in da t a transmission, a result of using
s tandard telephone lines which necessitate slow transmission
speeds. The more work t h a t the user is able to do locally,
the less need there is to communicate with the host system.
For example, consecutive queries accessing the same da t a
should be processable locally, r a ther than through the cen-
t ra l site each time.

Improved user interface. Query languages can be
confusing and difficult to use, especially for users who need

to work with many different systems. Studies of interact ive

information systems have found t h a t a surprisingly large
number of queries contain errors and must be redone
[Borg83,Penn81]. A PC can be programmed to help users
formulate queries, checking for validity and syntact ic
correctness, providing menus of command choices, displaying
subject te rm thesauri , and so on. I t can do this within the
environment to which the user is accustomed, using windows,
menus, a light pen or mouse, and other tools to make
interact ion easier. Perhaps most important ly , each user can
have a different interface, customized to meet individual
needs. This is impossible within the ma in f r ame / t e rmina l
paradigm, one reason why today 's systems are underused.

Increased functionality. Many valuable enhancements
to IR systems have been proposed, but are seldom imple-
mented in practice because of the great expense and effort
required to make significant changes to an already-working
system. Some of these functions may be performed by user

computers with lit t le or no central ized effort. Current-
awareness service is a simple example. A user computer can
main ta in locally a profile of subject areas of interest , and
automat ica l ly query the service periodically to update the
user 's personal da t abase in those subjects. Another facility
might permit a user to weight the keywords used in a query

according to their importance; the PC can then post-process
the responses received, assigning a relevance value to each
and sort ing them by decreasing relevance for the user's

perusal.

2. R E L A T E D W O R K

Several promising a t t e m p t s have been made at giving
small computers a place in IR systems. Jamieson's intelli-
gent terminal [Jami79], built before PCs were commercially
available, was designed to implement and test sophist icated
retr ieval s t ra tegies wi thout modifying the operat ion of the
centra l system. More recently, commercial information ser-
vices have begun to provide the means for users to download
da t a and manipula te it locally. IRS, a European service, has

a DOWNLOAD facility which supplies bibliographic ci tat ions
in a format t h a t can be easily processed by user software
[King86 I. The users themselves must supply such software.
Dow Jones News/Retr ieval , on the other hand, sells PC
software to capture da t a from its f inancial da tabases and
produce graphic ou tpu t [Glos83]. While a step in the right
direction, the software applies to only a small subset of the
system's information and performs a very limited set of
operations on it. Users still have litt le control over their use
of the data .

An interest ing project is the Boston Communi ty Infor-
mat ion System (BCIS), a pilot service developed a t M.I.T.
[Giff85]. This system broadcas ts information of community
interest (such as current news) over FM radio to IBM PCs
which have been provided with da t a management software.
The entire da tabase is t r ansmi t t ed repeatedly, in cyclic
fashion. The PC software filters incoming da ta , storing only
the files which match cr i ter ia previously specified by the
user. When the user needs access to the system's informa-

j ,

297

tion, the files of interest are waiting. In this way the selec-

tion process is completely offloaded to each user site. A
drawback of a pure broadcas t system is t h a t the da tabase
to which a user has access a t any given time is limited to

the size of avai lable local storage. Access of an nnstored file
must wai t unti l t h a t file is next broadcast . To remedy this
problem, BCIS will provide dialup access so t h a t users may
solicit and receive specific d a t a files when needed.

Our work differs from this approach in a few impor tan t
ways. We place no restr ict ions on the size or content of the
database; it may be quite large and diverse, containing d a t a
t h a t changes rapidly (perhaps many t imes per day) in addi-
t ion to longer-lived d a t a which might remain fixed for years.
Some i tems will be of in teres t to many users, but most will

only rarely be accessed. Volatile da ta , to be useful, must be
retr ievable on demand and rapidly replaceable. Cyclic
broadcas t of da t a cannot accommodate this need for direct
interact ion, nor can it d is t r ibute very large da tabases in a
t imely manner . We are also interested in au tomat ing the
decisions of wha t d a t a is to be downloaded and when, r a the r
t han requiring t h a t users specify those choices in advance.
Ideally, decision-making should adap t dynamically to each
user 's changing access pa t te rns .

We would like to develop mechanisms for dis tr ibut ing
d a t a to users which are applicable to a wide var ie ty of sys-

tems, handl ing a rb i t r a ry d a t a and not restr icted to worksta-
t ions of a par t icu lar make. This is an ambit ious goal, given

the uns tandard ized s t a t e of personal computer systems. It

therefore seems wise to begin with general, s t ra ightforward
methods t h a t can be put into operat ion quickly wi thout
major res t ructur ing of system operation.

3. D A T A C A C H I N G

Downloading to common storage devices as par t of an
ordinary online session is probably the simplest way to pro-
vide da ta , requiring the least modification of the way
current systems operate . No novel communicat ion or

s torage media are required, and software changes at the cen-
t ra l site are minimal.

Because a user is concerned with only a small portion
of the available information, we must be selective about
what is downloaded, and when. We expect the greates t
benefit from local s torage when the da t a downloaded will be
accessed many t imes in the future before it becomes

obsolete. While it is impossible to predict future use, the
technique of caching has proven valuable in other environ-
ments when decisions about d a t a placement must be made
[Smit82]. Caching appears promising here as well. By cach-
ing we mean downloading d a t a as it is accessed into the
user 's available local storage. A rudimentary form of cach-
ing would simply store the ou tpu t from a query for review-
ing. A more sophist icated (and useful) version would cache
whatever d a t a i tems are necessary to re-execute locally the
query which was just processed a t the centra l site, and
presumably other queries on t h a t da t a as well.

As in a CPU cache, da t a is brought physically closer to
where it is actually used. This is done in the expectat ion
t ha t the same da t a will be referenced again in the near
future. As with s t anda rd caching, appropr ia tc replacement

policies are needed for efficient operation, and some mechan-
ism must exist for recognizing when cached da t a has become
out-of-date and so must be reacquired.

Although well understood in the context of hardware
memory caches, caching in the information system environ-
ment has not been fully studied. There are several signifi-
cant differences between s t andard m e m o r y caching and the
kind we are presenting here. First, since users do not per-
form updates, there is no need to keep t rack of changes and
write modified d a t a i tems back to the cent ra l site. When a
cached i tem is to be replaced by another , it can simply be
discarded (overwritten).

On the other hand, keeping a cache up to date is much
more difficult because updates originate a t the centra l site,
not a t the site holding the cache. Solutions to the multiple-
cache problem within multiprocessing systems do not apply,

for two reasons. There is no continuous connection over
which updates might be propagated as they occur, since
users are free to disconnect from the service whenever they
like, and it is clearly impossible for the service to know
which users have which versions of which da t a so t h a t it
might t r ansmi t updates to each a t their next session. In
addition, user needs will vary; some may wan t to receive

updates automatical ly , but o thers may not want updates a t
all or may wan t to receive them only when they specifically
request them or only for cer ta in da t a items.

There is also the issue of conversion. When moving
da t a between two very different systems it is likely t h a t
conversions in coding scheme, word length, numeric preci-
sion, charac te r set, file organization, and /o r s t ructure of
addresses, indexes, and pointers must be made. Software a t
the user site must unders tand the format of cached da t a and
be capable of accessing and manipula t ing it.

There is a choice of storage areas for a cache. The
most obvious are main memory, disks, and diskettes,
a l though high-density write-once optical disks can be
expected to gain acceptance in the near future for storage of
da t a of long-term value [Rose83]. Among these various
media there are tradeoffs between capacity, convenience,
speed, and cost.

The i tems being cached are not of a fixed, small size.
They may range from a few words to many hundreds of kilo-
bytes. The question arises of how best to organize them in
local storage for subsequent retrieval. Varying size results
in varying communicat ion delays as well. When large i tems
are to be t r ansmi t t ed we must ensure t h a t normal interac-
tive use of the system is not great ly impeded.

An impor t an t consideration is t h a t normal query out-
put is not necessarily suitable for caching. Outpu t is pro-
vided in display format for immediate viewing, not for
machine storage or manipulat ion. It is clear t h a t the cach-
ing of a record or file will involve an extra transmission of

298

" r aw" da ta in addition to the screen-oriented response to
the user 's query. For example, a request for the average
price of a stock over the previous seven days normally
re turns a single value, coded in ASCII and displayed on a
screen. It is desirable to cache the price for each day as a
separate machine-readable value, so tha t , for instance, the
average price over the previous five days can be computed
locally. Thus the action of caching is not "free" as it is in
s tandard single-system caching environments. Any caching
mechanisms employed must perform well enough to offset

this expense.

Because this type of caching is not subject to s tr ict
t iming cons t ra in ts as is hardware memory caching, much
more complex decisions can be made during system opera-
tion concerning what should be cached and where, and what
should be replaced when a cache is full. Indeed, the factors
mentioned above make it imperat ive t h a t sophist icated
caching techniques be explored. Communicat ion is a poten-
t ial bott leneck in an information system and any form of
caching must involve addit ional communication.

4. S I M U L A T I O N O F I R S Y S T E M S

4.1 Simulator design

We have wri t ten an event-driven simulation program
which is capable of modeling the operat ion of an information
system. Our pr imary design goals were accuracy and flexi-
bility. We have tried to keep the overall s t ructure simple,
yet with sufficient detail to ensure t h a t all elements signifi-
cant ly affecting system operat ion are represented. We chose
simulation ra the r than analyt ic modeling because it seemed
unlikely t ha t an analyt ic model could capture the complex-
ity of interact ion inherent in a large information system
with i ts diversity of users. Moreover, it is impor tan t t h a t
the model be easily extended to test modifications to the
system. The present version supports six levels of caching
and three cache replacement policies. In the future we
expect to simulate other caching s t rategies as well as da t a
prefetching, broadcasting, and shared communicat ion lines.
It is hoped t h a t this design is flexible enough to incorporate
these additions easily.

The program was wri t ten with the aid of SIMPAS

[BryaS1], a tool for construct ing event-driven simulators.
SIMPAS generates most of the code for managing the event
queue, advancing the clock, and gather ing cer tain statist ics.
It also supplies routines for generat ing random numbers
from several distributions. We found SIMPAS extremely
helpful in the programming process as it el iminated many
opportunit ies for error and enabled us to concentra te on
higher-level design issues.

As shown in Figure 1, the basic enti t ies in a s imulated
system are the host processor, its secondary storage, the
users, their processors and secondary storage, and the com-
municat ion lines. We will call these the fixed entities.
Although the pa ramete r s of secondary storage devices can
be defined to represent different media, we will generally

refer to them as disks. Current ly all communicat ion lines
are point- to-point lines serving one user each.

,0:r~E]

[EINEqul ~

[EINE]III~

Figure 1: Model of information system

Queries are temporary ent i t ies which represent the
interact ion between the user and the information service.
The user generates a query, or request, which travels over
the communicat ion line to the centra l site, is serviced alter-
nately by the host CPU and disks (queueing behind other
queries if necessary), and re turns with the system's response
via the communicat ion line to the user. The movement of
queries within the system is shown in Figure 1 by arrows.
When d a t a is to be cached, the re turning query is accom-
panied by a second temporary ent i ty representing t ha t data .
If the necessary d a t a for a query has already been cached,
then the query does not t ravel to the cent ra l site at all bu t
is serviced instead by the local CPU and disks. The assump-
tion is made t h a t every PC possesses software to implement
the full funct ional i ty of the cent ra l system. Upon receiving
the ou tpu t of a query, the user waits for some period of t ime
and then ini t ia tes a new query. Each user is associated with
exactly one query a t a time.

4.2 Purpose

The s imulator was designed to serve several purposes:

To provide a good model of current information system opera-
tion. Simulated users can operate terminals instead of com-
puters simply by defining no processor speed or storage
space for them. Such a model has been useful in "get t ing a
feel for" the in teract ion between current (noneaching) sys-
tems and their users. By examining the interplay of such
factors as line speed, user population, and da tabase size, we
can determine where performance bot t lenecks are most apt
to occur and thereby identify where the most productive
enhancements to the basic system may be made.

To determine an upper limit on the usefulness of P C involve-
ment. To find out how powerful desktop computers must be
if they are to be useful as IR processors, we can simulate
offloading all da t a and processing to them, varying their
capacity and speed if necessary.

To measure the effects of data caching on system perfor-
mance. We can model different degrees of caching and vari-
ous replacement policies to determine the conditions under
which caching improves response time and lessens central-
site congestion, as well as those under which performance
degrades.

299

4.3 Parameters and model v a l i d a t i o n

The results of any simulat ion experiments, of course,
depend on the choices of input pa ramete r values. Our simu-

lator takes as input about 30 parameters . Acquiring reason-
able, realistic values for some of these has been straightfor-
ward. Wi th others, however, subs tant ia l uncer ta int ies
remain. The following sections discuss each paramete r in
detail, explaining these uncer ta in t ies as they arise, so t h a t
the reader may unders tand the operat ion of the program
well enough to in te rpre t i ts results with confidence.

4.3.1 User configuration parameters

We associate with each user a personal computer, the
specification of which is called a user configuration. From

one to eight different user configurations may be active dur-
ing a given run. Disks are character ized by four parameters~
capaci ty (in bytes), t r ack size (in bytes), d a t a t ransfer speed
(in bytes per second), and overhead for each t rack access (in
seconds) due to seek t ime and ro ta t iona l delay. Values for

these pa rame te r s are all easily obtained from l i tera ture
describing peripheral s torage devices for modern PCs. Per-
t rack overhead t ime is a fixed value, equal to the average
value for the device. We assume t h a t each PC has only one

disk. Multiple disks can be s imulated by defining a greater
disk capaci ty. Thus it is assumed t h a t multiple disks are of
the same type and speed, and t h a t only one is active a t a
time. For our present purposes this is sufficiently realistic.

Communica t ion line speed is expressed in bytes per
second, and is identical in both directions (user to host CPU
and host CPU to user). Typical values for telephone lines
are 30 and 120 bytes per second. We assume no addi t ional
overhead t ime per transmission.

CPU speed is expressed in MIPS. This has proven to be
a difficult pa r ame te r to define. W h a t is wanted is some
measure of the t ime required to perform a " s t a n d a r d "
sequence of operat ions involving the re t r ieval and processing

of da ta . This is a nebulous concept to begin with, since we
do not have ac tua l instruct ion sequences to examine and so
cannot s t a t e exactly wha t takes place. In any case, instruc-
t ion mix would vary great ly depending on the type of pro-
eessing being done (searching, sorting, format t ing output ,
etc.). Charac te r iza t ion of a typical mix is fur ther compli-
ca ted by the intrinsic differences between large and small

computers. If a mainf rame and a microcomputer had identi-

cal instruct ion sets, then MIPS alone would be sufficient to
differentiate between the processing power of the two
machines once an instruct ion mix had been established. But

instruct ion set differences are so great t h a t measurements of
relat ive CPU speed are approximat ions a t best. However,
we do not expect processing speed to be a l imiting factor in

an IR system.

4.3.2 Appl icat ion parameters

An application definition character izes the type of
access a user engages in, and incorporates quite a bit of flex-
ibility. From one to eight applicat ions may be defined for a

given run, in any combinat ion with the available user confi-
gurations. Sta t is t ics are gathered for each group of users
which share the same configuration and application.

Think time is the average time (in seconds) t h a t elapses
while the user examines the output from a query and formu-
lates a new one. This includes the t ime required to type the
next request. Input size is the average number of bytes used
to t r ansmi t a query to the host; it includes both what was
typed and any necessary overhead bytes. Ou tpu t size is the
average number of bytes re turned to the user in response to
a query. Note t h a t ou tpu t size per ta ins only to the screen-
oriented response; it does not include any machine-readable
da ta which may be sent in conjunction with the s t anda rd

response.

Typical values we have used for the th ink time, input
size, and ou tpu t size pa ramete r s are 10-60 seconds, 100
bytes, and 1000 bytes, respectively. Sample values in each
case are drawn from a normal dis tr ibut ion with a s t anda rd
deviat ion of/~/5.15, which places 99°~ of the values between

p / 2 and 3p/2 . This choice of dis tr ibut ion and of the mean
values themselves is primari ly an educated guess arrived a t
by examining user manuals for two systems - - Compu-Serve
and Dow Jones News/Ret r ieval - - and by using each system
for a shor t period of time. Although we have no precise
measurements for these values over a wide range of usage, it
is clear t h a t those chosen are certainly reasonable.

Next are specified the average quant i ty of da t a read
from disk, and the average number of machine instruct ions
executed, per query. Again we use a normal dis tr ibut ion as
described above to choose the exact values for each query.
The experiments reported on in this paper all assumed an
average of 10,000 bytes accessed per query; this is roughly
equivalent to 50 bibliographic c i ta t ions or 3 printed pages of
full text. The average number of instruct ions was fixed a t
2.5 t imes the number of bytes; we cannot be sure t h a t this is
reasonable, but it is based on the assumption t h a t informa-
tion system act ivi ty is not computat ion-intensive. We hope
t h a t in the future we will have the opportuni ty to t race

periods of use on an ac tual system to get a be t t e r idea of
the ra t io of computa t ion to disk access.

Also par t of an application definition is da tabase size,
or more specifically the size (in bytes) of whatever portion of
the system's d a t a might be accessed by a user of the appli-
cation in question. All results presented here are based on

10 megabytes. This pa rame te r reserves an appropr ia te
number of central-si te disk blocks for the application.

Locality of reference is defined by dividing an
applicat ion 's blocks into three groups and specifying what
percentage of accesses are made within each group. We
defined six levels of reference locality, based on the Bradford
distr ibut ion [Broo69],which s ta tes t h a t given some collection
of journals a r ranged in decreasing order of the number of
" in teres t ing" articles contained therein, and then par t i -
t ioned into k groups of journals each containing the same
number of re levant articles, the number of journals in the
groups fit the proportion l:n:n2: • - - :n k-1. We have

300

adapted this idea to a da tabase environment by dropping
the journal boundaries and specifying groups of blocks each
containing the same number of relevant blocks (i.e., each
group is accessed with equal frequency). Levels are identi-
fied by the Bradford multiplier (n) used; level 1 represents
uniform access. Although the analogy is rough, it permits
an organized way to specify increasing degrees of locality.
The values used are shown in Figure 2.

i

Locality I] Percent of data accessed 1/8 of the time
- level

1 33 1/3
2 57
3 69
5 81

I0 90
15 g3.4

33 1/3 33 1/3
29 14
23 8
16 3

9 1
6.2 0.4

Figure 2: Increasing levels of reference locality

Lastly we assign a lifetime to the da t a blocks in each of
the three groups. Cached blocks are t imestamped upon
arr ival and are automat ica l ly deleted from the cache when
they expire. I t is not difficult to es t imate good values for
this pa ramete r based on a knowledge of the types of infor-
mat ion supplied by a system, Simulations need not address
the far more difficult question of how a block's expected life-
time might be determined in a real system.

4.3 .3 C e n t r a l s i t e d e f i n i t i o n

The cent ra l site consists of a single mainframe proces-
sor which services queries in round robin fashion. Each
query a l te rna tes between executing instruct ions and reading
disk blocks. If a query has not finished or requested disk ser-
vice af ter 50 milliseconds of CPU use, it is in terrupted and
requeued at the end of the CPU queue.

CPU speed is specified in MIPS but, as mentioned ear-
lier, this is only an approximate measure of real comput!ng
speed. It is impor tant , however, t ha t the ratio of mainframe
speed to PC speed be accurately represented. The simula-

tion runs reported upon in this paper used values of 4.0 and

0.5 MIPS for the mainframe and PCs respectively.

The remaining central-si te pa ramete r s describe secon-
dary storage characteris t ics: capacity, blocksize, average
seek time, average ro ta t ional delay, and da t a t ransfer speed.
These are all s t ra ightforward. We have been using values
representing IBM 3350 disks with a blocksize of 4096 bytes.
Disk capacity is 300 megabytes (a convenient approximation
to the ac tual value of 317.5 MB), average seek and latency
times are 25 msecs and 8.33 msecs respectively, and t ransfer
speed is 1.198 MB per second.

In general we do not intend to experiment with many
different centra l site configurations, but it is convenient to
parameter ize these character is t ics so t h a t we can test
whether reasonable var ia t ions in their values greatly affect
our results.

4.3.4 R u n p a r a m e t e r s

The few remaining paramete r s define cer tain charac-
teristics of the run as a whole. The length of the simulation
is given in minutes, as is the t ime interval between succes-
sive print ings of ou tpu t statist ics. General ly we run for 60
minutes and generate ou tpu t every 10 minutes. This is rea-
sonable because most real sessions are less than an hour in
length.

Each run employs one of six caching options: cache
every block accessed to local secondary storage, cache every
block accessed to local main memory, cache to disk only
blocks which have been requested more than once, cache to
disk only long-lived blocks, assume tha t the disk cache ini-
tially contains all d a t a blocks (all processing is local), or do
no caching a t all (all processing is central). All but the last
two options require a replacement policy. One of three can
be chosen: replace the oldest block (FIFO), replace the least
recently accessed block (LRU), or stop caching new items
until some cached block expires (replace only expired blocks).

From 0 to 900 users may be specified for each combina-
t ion of a user configuration and an application (we call each
such combinat ion a "group"), provided t h a t the to ta l
number does not exceed 900. Populat ion not only affects the
overall workload of the system, but large user groups serve
to "even ou t " the ou tpu t values obtained, since totals and

averages are reported by group ra the r than by individual

u s e r .

Outpu t values include: average and maximum queue
sizes at the cent ra l CPU and disks, average and maximum
response t imes and volume of da t a t r ansmi t t ed per query,
and the average percentage of t ime spent during each ses-
sion for processing, I /O, transmission, wait ing in queues, and
thinking.

5. R E S U L T S A N D D I S C U S S I O N

Performance measurement of an information system is
a complex issue, encompassing not only such tangible
phenomena as response t ime and queue lengths at shared
resources, but also the more slippery concepts of sui tabi l i ty
to the users' purposes, adaptabi l i ty , and ease of use. Simu-

lator ou tpu t gives us clear insights into the quantif iable
metrics; from these measurements we must infer the others.
Cache hi t ratio, for example, has a s trong bearing on
response time; but a high hit ra t io also means t h a t the user
is more likely to be able to continue processing should the
central site go down. The degree to which users "possess"
the da t a and can use it to advan tage is perhaps the most
impor tan t performance criterion and, a l though it cannot be
measured directly, we must keep it in mind as we examine
more concrete results.

5.1 E f f e c t o f l ine s p e e d on s t a n d a r d o p e r a t i o n

For reference, we begin by measuring a "basel ine" sys-
tem of 400 users, each accessing at most I0 megabytes of a
1200-megabyte da tabase contained on four IBM 3350-type
disks at the cent ra l site. No caching is performed, and

301

access of the database blocks is uniformly distributed. A
request requires 10O bytes of input and elicits 1000 bytes of
display output, on the average. Think time averages 10
seconds. Users differ only in their data transmission speed;
100 each transmit at 30, 120, 480, and 960 bytes per second.
All users are active simultaneously for one hour.

Response time is good; even at 30 bytes per second it
averages less than 4 seconds. Contention for CPU process-
ing is low, with the CPU active only 15% of the time. Some
disk contention is evident; each disk is busy abottt 65% of
the time. Still, less than 1% of the duration of the average
query is spent queued for disk service. Figure 3 shows
response time for this no-caching, or standard, ease. (Note
that response time is graphed on a logarithmic scale
throughout this paper.)

The primary bottleneck is in the transmission of queries
and their results. 10% of session time is spent in data
transmission at 960 bytes per second, 18% at 480, 47% at
120, and 78% at 30. Currently few information system usem
can transmit at higher rates than 1200 baud. In light of this
it is clear that caching will carry with it substantial
overhead.

5 . 2 T h e a d d i t i o n o f s i m p l e c a c h i n g

Next we provide each user with a single diskette which
can hold a 320 KB cache, or about 3% of the database.
Again, uniform access is assumed. We implement the simple
policy that every block accessed is cached, and if all blocks
necessary for a particular query have been cached then that
query can be executed locally. We assume for now that no
block expires - - once it has been cached, its contents are
valid for the remainder of the session. FIFO replacement is
used. Each query now causes the transmission of 11,700
additional bytes on the average. This has a disastrous effect
on response time, as seen in Figure 3. While at 960 bytes
per second it remains under 3 seconds, it leaps to 14 seconds

4 0 0 - -

100

4O

average
Response 10

Time
(seconds) 4

1

0.4

at 480, 86 at 120, and nearly 6 minutes at 30. Worse still,
the average response time does not decrease over the course
of the one-hour session; the cache is useless.

One reason for this behavior is that an average of three
blocks are needed to execute a single query, all of which
must be in the cache if the query is to execute locally. (In
this context, "hi t ra t io" is the ratio of locally executed
queries to all queries). Conjecturing that a single diskette is
too small to serve as a cache for a database of this size, we
increase the cache size to one 5-megabyte hard disk, or over
50% of the database. Yet this change produces nearly
identical results. At 9600 baud, although response time
drops from 2.74 to 2.08 seconds, the hit ratio reaches only
2½% after an hour of operation. At slow speeds no improve-
ment is seen.

The primary problem is that it takes a very long time
to fill the cache to a point where it becomes useful. It is
interesting to note that even at 9600 baud it would require
about 90 minutes of continuous transmission to fill a 5-
megabyte disk. When the database is accessed randomly,
virtually every query requires a large transmission of data to
the cache, and this delays the transmission of the following
query's response.

5.3 E f f ec t o f loca l i ty o f r e f e r e n c e o n c a c h i n g

Our assumption of uniformly distributed access is, for
most applications, unnecessarily strict. ~rhen most of a
user's access is within a small portion of the data base (a
"hot spot"), caching must be more effective. We repeated
our "simple caching" simulations (5 MB cache), but with
increasingly localized access. At the higher line speeds hit
ratio increases significantly as locality increases (Figure 5).
After an hour's operation, 960o-baud users are processing
over 25% of their queries locally. The slower lines, however,
cannot build the cache quickly enough to have much effect.
Even with very high locality response times are much worse
than with no caching at all (Figure 4).

) ~ ~ / simple caching, 320 K B diskette

N N N ~ ~ simple caching, 5 MB disk

. . . . ~ ~ ' ~ . . ~ prefetched to CD ROM

-k~" " ~ - - . - - - - - - - - - - - - - - - " ~ .~ prefetehed to diskette
- - ~ - - - - ~ - - - prefetched to hard disk "

cache on 2nd access, 5 MB disk

no caching
I I I l

30 120 480 960
Line Speed (bytes per second)

Figure 3: Caching and full prefetching compared to standard access,
uniform reference

302

4 o o -

I00--

4 0 -
a v e r a g e

Response 1 0 -
Time

(seconds) 4 -

1 -

0 . 4 -

30 bps

. . . . 1 2 0 b p s

~ 480 bps

- ~ 960 bps

I I I I I I
1 2 3 5 10 15

Locality of Reference

Figure 4: Simple caching (5 MB disk), with hot spots

400 -

100 -

4 0 -
average

Response 10 -
Time

(seconds) 4 -

1 -

0 . 4 -

3 0 bps

• - . ¢ ~ - - ~ - 120 b p s

• , - ' " ' - ' - - ' - - - - - ' - 480 bps
. 960 bps

I I I I I I
1 2 3 5 10 15

Locality of Reference

Figure 6: Caching on 2nd access (5 MB disk), with hot spots

.30 -

.25 -

.20
Hit Ratio ..

(steady state).1o -

. 1 0 -

. 05 -

. 0 0 ~

_ - " 960 bps

f
/ ~ 480 bps

/ 120 bps

I I I I I I
1 2 3 5 I 0 15

Locality of Reference

Figure 5: Simple caching (5 ~ disk), with hot spots

.30 -

.25 -

.20 -
Hit Ratio ,~

(steady state).~v
.10

.05

. 0 0 - -

960 bps • 480 bps

120 bps
30 bps

I I I I I . I
1 2 3 5 I 0 15

Locality of Reference

Figure 7: Caching on 2nd access (5 MB disk), with hot spots

It is evident that caching must be restricted in some
way if low-speed users are to experience acceptable response
times. We applied a simple heuristic: cache blocks only on
the second access, rather than the first. In this way time is
not wasted caching rarely used blocks. This first cut at bas-
ing the caching strategy on actual patterns of use produced
interesting results. The reduced transmission volume does
improve response times substantially (although they are still
unpleasantly high for low-speed users), but the improvement
is greatest when locality is low (Figure 6), demonstrating
again the extreme sensitivity of system operation to
transmission time. The slower the line speed, the greater
value a data item must have to make its downloading
worthwhile. At high speeds hit ratios decreased; transmis-
sion lines were often idle when they might have been caching
(Figure 7). At low speed the hit ratio increased; more
queries were processed during the hour, and more high-value
blocks were cached.

5 . 4 E f f e c t o f t h i n k t i m e

Recall that the foregoing simulations assumed an aver-
age think time of 10 seconds. Although suitable for some
applications,• this value is quite low for others. We examined
the effects of longer think times. Interestingly, this "idle"
time during the session can be crucial to caching perfor-
mance. Increasing think time lessens the demand for data
transmission while providing more time during which to
transmit. Figure 8 (solid lines) shows the resulting decrease
in average response time. For comparison, the no-caching
case is also shown (dotted •lines) for think times of 10 and
100 seconds.

With a think time of only 30 seconds, simple caching
becomes feasible for 4800-baud users. With 60 seconds,
response time is finally reduced to the no-caching level;
caching is now free. The improvement at 9600 baud is even
more pronounced. We conclude that in an IR environment
the performance of caching is dominated by the speed and
bandwidth of the communication channel, and the propor-
tion of session time during which that channel is idle.

303

4 0 0 -
k think time = 10 see = =
~ 30 see • , _

100 \ \ ,~ , , . 80 sec -_ _-

a v e r a g e 40 ~- . . . ~

Response 1 0 -
Time

(seconds) 4 -
' l

~-~.~':~; ::.. ~ 1 - ~;..._:::
no " -:::

0.4 - ca

I I I I
30 120 480 960

Line Speed (bytes per second)

Figure 8: Simple caching compared to s t a n d a r d access
for varying think times,

uniform reference

5 . 5 P r e f e t c h i n g a n d l o c a l m a s s s t o r a g e

Perhaps the most reliable solution to the transmission
bottleneck is to cache only while the line is otherwise idle, or
at least to place a limit (based on the user's line speed and
think time) on the quant i ty of da ta which may be cached
during any query. This would keep response times reason-
able while still permitt ing da ta to slowly accumulate in local
storage. Another solution is to prefetch data. Prefetching
may be viewed as caching ahead of time; that is, acquiring
data before it is requested at all. This might be done
between user queries during a session, or an hour before the

user is expected to log on, or further in advance, depending
on both the quanti ty of da ta in question and its volatility.

We are beginning to study approaches to prefetehing.
An upper bound on performance can be obtained by suppos-
ing that all necessary da ta had been prefetched before the
session begins. All queries can then be processed locally. We
simulated this with hard disk storage. Average response
time is one second, representing an improvement over stan-
dard operation for users of 300- and 1200-baud lines, though
not for higher speeds (see Figure 3). Even using slower
diskettes, response time averages only 1.7 seconds. Because
the time required for each transaction is dependent only on
the quanti ty of da ta involved and the amount of processing,
it is predictable and reliable. Users are no longer affected
by changing system loads or contention for heavily used files.
These results are encouraging, for they imply that a small
computer system is sufficiently powerful to run an IR system
for z single user.

Several services have begun to distribute the full con-
tent of their databases on read-only compact disks (CD
ROM) [Chen88]. It is certain that in the near future the use
of small, portable, mass-storage media for distributing large
quantities of da ta will increase. This practice is, in a sense,
massive prefetehing. CD ROM, videodiscs, and optical disks

are all potential media for this type of use [Pari83]. While
compact disks exhibit slower data transfer speeds than mag-
netic disks, they still performed well in our simulations, with
an average response time of about 3 seconds. Furthermore,
a CD can hold 500 to 600 megabytes of data. Having this
large store of information available at all times is of enor-
mous benefit to the user. Although the need for remote
interactive access to volatile and short-lived data will
remain, local mass storage is very a t t ract ive for large and
relatively fixed bodies of information. When rewritable opti-
cal storage becomes available it will be possible to keep a

l o c a l database current by downloading updates when

necessary .

6. F U T I Y R E W O R K

MoTe work needs to be done regarding mechanisms for
distributing da ta to users. We expect to investigate policies
for prefetching and broadcasting, par t icu lar ly those which
vary dynamically based on observed patterns of usage, and
t o e x a m i n e what effect new communication media, such as
all-digital phone lines, cable television, and satellite

t ransmission, may have on information system access. We
also hope to ineoi-porate promising data distribution stra-
tegies into an experimental small computer system accessing
a commercial information system. This prototype will likely
be implemented on a dus ter of Sun workstations which are
joined via a local area iietwork. Using a single connection to
the information service we can then investigate strategies
which take advantage of such clustering. The value of cach-
ing and prefetehing will certainly increase for clustered
users, as each can benefit from data downloaded by others.
Decision making, however, becomes more complex. In decid-
ing what da ta to store, where to store it, and when to dis-
card it, members of the cluster may compete, cooperate via
a voting mechanism, or rely on one member which acts as a
coordinator.

7. C O N C L U S I O N S

We have discussed issues concerning the addition of
caching capability to workstations accessing information
systems. Results of simulations were presented which indi-
cate that while even simple caching strategies can be of
benefit when communication lines are not heavily loaded,
heuristics restricting the amount of caching must be used to
produce acceptable performance at slow transmission rates.
The speed of the user (think time) greatly affects the quan-
ti ty of da ta that may be cached without seriously degrading
performance. It is expected that data prefetehing can be
used to advantage when transmission is slow, provided that
the range of da ta required is not too broad. Emerging
small-scale mass storage media offer the opportunity to
bypass telecommunicat ion altogether when accessing long-
lived data. All da ta distribution mechanisms give users
greater potential power over the information they acquire.

This research is supported by the State of New Jersey
Governor's Commission on Science and Technology, Con-
t ract 85-990660-6.

304

REFERENCES

[Borg83]

[Broo69]

[Brya811

[Chen86]

[DunnS4]

[tiff85]

[GlosS3]

[ColdSS]

[Jami79]

[KingS6]

[PariS3]

Borgman, Christine L. End u~er behavior o~ ,~
online information retrieval system: a computer
monitoring study. In Proceedings of the Sixth
Annual International A CM SIGIR Conference
(Bethesda, Md., June 6-8). S[GIR Forum 17, 4
(Summer 1983), pp. 162-176.

Brookes, B. C. Bradford's law and the bibliogra-
phy of science. Nature 224, 5223 (Dee. 6, 1969),
pp.953-956.

Bryant, R. M. SIMPAS 5.0 user manual. Com-
puter Sciences Department Technical Report
#456, University of Wisconsin - - Madison,
November 1981.

Chen, Peter Pin-Sham The compact disk ROM:
how it works. IEEE Spectrum 23, 4 (April 1986),
pp. 44.-49.

Bill Dunn of Dew Jones: The data merchant
[interview]. Personal Computing 8, 12 (December
1984), pp. 174-180.

Gifford, David K., Lucassen, John M., and Berlin,
Stephen T. The application of digital broadcast
communication to large scale information systems.
IEEE Journal on Selected Areas in Communica-
tions SAC-3, 3 (May 1985), pp. 457-467.

Glossbrenner, Alfred. The Complete Handbook of
Personal Computer Communications. St. Martin's
Press, New York, 1983.

Creative Strategies International. Online Data-
Base (September 1984). As quoted in Goldmann,
Nahum. Online Research and Retrieval with
Microcomputers. TAB, Blue Ridge Summit, Penn.,
1985.

Jamieson, S. H. The economic implementation of
experimental retrieval techniques on a very large
scale using an intelligent terminal. In Proceedings
of the Second International Conference on Informa-
tion Storage and Retrieval (Dallas, Tx., Sept. 27-
28). SIGIR Forum 14, 2 (1979), pp. 45-51.

Kingsmill, Brian A. IRS-DIALTECH. In Down-
loading Bibliographic Records, John Foulkes, Ed.
Gower Pub. Co., Ltd., Aldershot, England, 1986,
pp. 28-33.

Paris, Judith. Basics of videodisc and optical disk
technology. Journal of the American Society for
Information Science 34, 6 (November 1983), pp.
408-413.

[renu81]

[Rose83]

[Smit82]

Penniman, W. D. Modeling and evaluation of on-
line user behavior. Final Report to the National
Library of Medicine, Extramural Program Grant
No. NLM/EMP (1 R01 LM 03444-01). Dublin, OH,
September 1981.

Rose, Denis A. Optical disk for digital storage
and retrieval systems. Journal of the American
Society for Information Science 34, 6 (November
1983), pp. 434-440.

Smith, Alan Jay. Cache memories. Computing
Surveys 14, 3 (September 1982), pp. 473-530.

305

